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Abstract

This paper presents a method for solving the Best Next View problem. This
problem arises while gathering range data for the purpose of building 3D
models of objects. The novelty of our solution is the introduction of a quality
criterion in addition to the visibility criterion used by previous researchers.
This quality criterion aims at obtaining views that improve the overall range
data quality of the imaged surfaces. Results demonstrate that this method
selects views which generate reasonable volumetric models for convex, con-
cave and curved objects.

1 Introduction

When building a complete 3D model of an object, it is necessary to obtain views of the
object from several directions, so that data for all surfaces of the object is acquired. Since
obtaining a range scanner view is a time-consuming process, a method of automating
the data acquisition process would be desirable. The Best Next View problem is that of
selecting the next view for the imaging system to take, given some already acquired views
of the object. Solving the Best Next View problem is a step towards automating the range
data acquisition process.

Various Best Next View algorithms have been proposed in the literature, [1, 5, 6, 7,
10]. According to Tarabanis [8], the approaches used can be divided in thegenerate and
test andsynthesisparadigms. In the generate and test paradigm [1, 5, 6, 10] potential
(generated) Best Next Views are evaluated (tested) using some sort of optimality func-
tion to decide which view is the best. In the synthesis paradigm [1, 7] constraints on the
viewpoint location are used to define volumes of possible view placements. Our approach
[4] follows the generate and test paradigm. Its view evaluation function is a combination
of two view evaluation criteria. The first criterion, called the visibility criterion, aims at
maximising the amount of unseen surface seen by the next view. This is the main criterion
used previously. Unfortunately, this can lead to surfaces that are seen at very oblique an-
gles, which results in low quality range measurements. The new quality criterion aims at
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Value Comment

Surface Normal Estimated using Least Squares Fitting
Local Quality Estimate of the quality of the measurement
Region Quality Estimate of the quality in the region

Table 1: Values associated with Seen voxels.

improving the quality of the data. Use of this criterion is new, and is the main contribution
of this research.

In this paper, we begin by describing our approach for selecting the Best Next Views,
then we give a brief account of our implementation. Results obtained using our imple-
mentation on a variety of objects are presented which suggest that the combination of the
visibility and quality criteria provides us with data that covers the objects and is of good
quality.

2 Best Next View selection approach

2.1 Volumetric representation

At each cycle of the best next view computation, we use the range data from all previous
views to set up a volumetric representation of the scanned object. This volumetric repre-
sentation is called avoxelmap. This is a 3D structure made out of voxels which essentially
mark whether their area of space is part of the object or not. Each of these voxels is an
identical cube and the collection of these cubes (the voxelmap) is a parallelepiped.

2.1.1 Possible voxel values

The voxel marking scheme is similar, but not identical, to the ones used in [1] and [7].
Each voxel has one of the following values:

Empty. The voxel’s area of space is empty.

Seen.The voxel’s area of space contains a range measurement (i.e. it corresponds to a
seen surface). Each Seen voxel also records several values related to thequality of
the range measurement used to mark the voxel (see Table 1).

Unseen. The voxel’s area of space has not been seen yet.

OcclusionPlane.The voxel’s area of space lies on an occlusion plane (see Fig 1). This
is essentially an unseen voxel that neighbours with one or more empty voxels.

2.1.2 Voxelmap marking

This voxelmap is constructed following the procedure described by Wren [9]. Some ex-
tensions have been made to make this procedure capable of determining the accuracy of
each Seen measurement as well as finding the Unseen and OcclusionPlane voxels. Given
some already acquired views the algorithm is:
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Figure 1: The two different voxel marking ray directions and the occlusion planes.

1. Determine the size and resolution of the voxelmap.This looks at the range data, of
the already acquired views, to determine its extent and resolution. This information
is then used to find how many voxels are needed in each of the 3 dimensions.

2. Create and Initialise voxelmap.Allocates the 3-D voxelmap memory structure and
also marks all the voxels as Empty.

3. Mark Unseen voxels.Shoots a ray from each range point(xp; yp; zp) in the di-
rection pointing away from the viewpoint and marks all the voxels encountered on
the way as Unseen (Fig. 1). This step is repeated for each already acquired range
image.

4. Mark Empty voxels.Shoots a ray from each range point(xp; yp; zp) in the direction
pointing towards the viewpoint and marks all the voxels encountered on the way as
Empty (Fig. 1)1 This step is repeated for each already acquired range image.

5. Mark Seen voxels.Marks all the voxels that contain range measurements as Seen.
Associated with each Seen voxel is a value that relates to how good the measure-
ment used to mark that voxel is. This value can be determined by looking atn̂ � v̂
wheren̂ is the local surface normal of the range data point andv̂ is the viewing
direction (see next section). This step is repeated for each already acquired range
image.

6. Mark OcclusionPlane voxels.OcclusionPlane voxels are found by checking each
Unseen voxel to determine if any of its neighbours are Empty. If such an Unseen
voxel is found it is marked OcclusionPlane (Fig. 1). OcclusionPlane voxels would
end up being either Empty or Seen if a view that attempts to image them is taken.
Therefore, eliminating OcclusionPlane voxels by viewing them also tends to in-
crease the amount of object surfaces imaged.

2.1.3 Quality marking of Seen voxels

The quality of Seen voxels (Table 1) is estimated using the following algorithm.

1. The normals of the current data set are calculated using a least square error fitting
of a 3 � 3 local surface patch (or smaller at edges) in the neighbourhood of each
range measurement.

1Note that in Fig. 1 the rays are parallel because the camera model of our range scanner is orthographic.
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2. For each voxels to be marked Seen:

(a) The data set normal is averaged with any existing surface normal estimate.

(b) The dot product of the normal estimate at voxels and the viewing direction
v̂ is calculated. If the dot product is greater than the previous local quality
estimate, the dot product becomes the new local quality estimatequality(s).

3. After the local quality estimates are calculated, the region quality estimate of each
voxel is found by picking the maximum quality estimate in a5� 5� 5 neighbour-
hood. If the voxel lies next to the edge of the voxelmap only the neighbours found
are used. This step is necessary because, due to inaccuracies, it is possible for a sur-
face to be a few Seen voxels thick. When this is the case the local quality estimates
do not reflect the real quality of the surface data.

These steps are repeated for each view taken by the system so far. At the end of this
process, the Region Quality measure should reflect the quality of the range measurements
collected for that part of the surface.

2.2 Constrained viewpoints and projection

After the voxelmap is constructed, it is projected to points on a constrained tessellated
sphere representing potential new viewpoints. The tessellated sphere can be generated
using various methods. The method we preferred is that of taking an icosahedron and
recursively subdividing it until the required resolution is achieved (see left of Fig. 2).
The resolution can be controlled by selecting the number of recursive subdivision steps
to be applied. This tessellation has the advantage of generating an even distribution of
viewpoints.

After viewpoints on the tessellated sphere are generated those which cannot be achieved
due to positioning constraints are removed and are effectively not used in the later stages
of our process. For example, the centre of Fig. 2 depicts the viewpoint sphere for the
icosahedron tessellation. On the right of the same figure the constrained viewpoint sphere
for a constraint on the maximum and minimum elevation angle can be found.

The next step is to project the voxelmap to each point on this constrained tessellated
sphere. For projection purposes the sphere is placed at the centre of possible rotation of
the object. Each voxel is modeled for projection purposes as a 3-D cube (6-Quads) of
different colour (see right of Fig. 5 ). Black is used for the OcclusionPlane voxels and
different shades of grey are used for the Seen voxels. The shades of grey in Seen voxels
correspond to the varying Region Quality Estimates. Since the Empty and Unseen voxels
are not used in the view evaluation process they are not projected to increase performance.
The projected voxelmaps are used in the viewpoint evaluation (see next section).

2.3 Viewpoint evaluation

We propose to evaluate the desirability of viewpoints using the weighted sum of thevisi-
bility and thequalitycriteria.

The visibility criterion maximises the amount of OcclusionPlane voxels that are visi-
ble from the new viewpoint. This can be implemented by defining a functionfvisibility(v̂)



784 British Machine Vision Conference

Figure 2: Tessellated sphere, viewpoints and constrained viewpoints.

of the viewing direction̂v such that:

fvisibility(v̂) = sizeof(OP \ V (v̂)) (1)

whereOP is the set of OcclusionPlane voxels in the voxelmap andV (v̂) is the set of the
visible voxels2 from viewing direction̂v.

The quality criterion maximises the amount of low quality voxels that are visible
from the new viewpoint. This criterion can be defined using a functionfquality(v̂) of the
viewing directionv̂ such that:

fquality(v̂) =

Psizeof(S\V (v̂))
i=1 (1� quality(S[i]))(jv̂ � normal(S[i])j)

sizeof(S \ V (v̂))
(2)

whereS is the set of Seen voxels in the voxelmap,V (v̂) is the set of the visible voxels
from viewing direction̂v, quality(S[i]) is the Region Quality Estimate andnormal(S[i])
is the surface normal atS[i]. The value offquality(v̂) is bound in the region [0,1]. The
quality criterion prefers views that will image areas of low quality vertically (i.e. where
jv̂ � normal(S[i])j = 1).

The weighted sumftotal(v̂) of the two criteria can be then found by:

ftotal(v̂) = wvfvisibility(v̂) + wqfquality(v̂) (3)

Both criteria should be applied to each viewing directionv̂ in the constrained tessel-
lated sphere for the partially acquired voxel representation. The direction for whichftotal
is maximal should then be selected to be our Best Next View.

To apply these criteriâv becomes a point on the tessellated sphere. To determine
sizeof(OP \ V (v̂)) the volumetric representation is projected to eachv̂ of the tes-
sellated sphere and the number of unseen empty voxels visible is counted. The Seen
voxels in this projection are also observed to determinesizeof(S \ V (v̂)) as well as
Psizeof(S\V (v̂))

i=1 (1� quality(S[i])).

2.4 Summary of our approach

To sum up, our approach uses a volumetric representation for representing the object. The
voxels in the volumetric representation are marked as Empty, Seen, Unseen or Occlusion-
Plane. A tessellated sphere is fitted over the volumetric representation. Then constraints
are applied on the tessellated sphere to account for scanner/object positioning limits. All
points on the constrained tessellated sphere correspond to possible viewing directions.

2visible voxels = voxels that are visible after a projection in directionv̂.
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Figure 3: Diagram of the laser range scanner setup with one rotational and one transla-
tional degree of freedom, both aligned with the X-axis.

The volumetric representation is projected to every direction in the constrained tessel-
lated sphere and the selection criteria are applied for each view direction.

The criterion application works as follows:

1. The criteria of Equation (3) are applied to determine the desirability of the each
view.

2. The direction that has the highest aggregate score is selected.

After the Best Next View is selected, it is used to take the new range image of the object.
The old and the new range images are used to rebuild the volumetric representation and
the modified volumetric representation is used to select the new Best Next View.

3 Implementation

This approach was implemented in C/C++, using OpenGL to perform the projections. Our
implementation used the range scanner available at the Machine Vision Unit to collect the
views (Fig. 3). The laser scanner utilises two cameras to collect the images. Using
optical lenses, a laser produces a planar beam that intersects the object being modeled
thus creating a thin bright line on the surface of the object. The object is placed on a
metal base with one rotational degree of freedom which in turn is placed on the imaging
surface. This surfaces moves in discrete steps along a very accurate conveyor belt that is
driven by a stepper motor. Points along the line of intersection of the laser plane and the
object are used to collect range data by means of triangulation. Each camera collects a
separate range image of the object. These two range images are then fused [2] into a more
accurate range image. The Best Next Views planned correspond to rotations of the object
positioning base. So, for the base currently being used, the constrained viewpoints lie on
a circle rather than on a sphere.

4 Results

Fourteen parts were used to evaluate our Best Next View planning procedure (Fig. 4).
The parts used varied in terms of material, shininess and curvature. The testing process
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Figure 4: The 14 parts our procedure has been evaluated on.

started from simple parts and progressed to more complicated ones. The size of the parts
that could be used was limited by the size of the rotating base and by the range sensor
measurement bounds. The largest part’s dimensions were5� 10� 7cm3.

Data was gathered with the part attached to the base. The base rotation angles were
measured anti-clockwise looking down the imaging surface motion direction vector (i.e.
down the x-axis in Fig. 3). The first view was always taken with the base set at90o (i.e.
with the base being horisontal).

This first view was used to build a voxelmap. The Best Next View determination pro-
cess then assessed the current voxelmap every10o of possible base rotation to determine
the second view direction and then the base was set to the new angle. So effectively only
views on a circular arc were used in our experiments. Note however this was due to the
type of positioning base available and is not a limitation of our algorithm. The views from
the starting and new angle were then merged to build the new voxelmap and the same pro-
cedure was repeated until the Best Next View planning program requested the base to be
set to an angle that had already been tried. The process then stopped since no new infor-
mation could be derived from obtaining an already acquired view (except possibly some
noise reduction from image averaging).

For most parts 3-4 views were enough and some parts needed up to 5 views. The
average number of views used over all the parts was approximately 3.79. Selecting the
Best Next View for our base takes 23.5 seconds on a SPARCstation Ultra 1. This means
that the total sensor planning cost for most parts is3:79� 23:5� 89 seconds. Taking one
view with our range scanner requires approximately 120 seconds, and this figure accounts
the time used to set the base to the correct angle. Therefore, the total view taking cost
is 3:79� 120 � 454 seconds. So, the the sensor planning cost is one1

5 that of the view
taking cost, making our approach highly feasible in terms of speed.

Our results demonstrate that a correct voxelmap is constructed for a variety of objects
with various properties. More importantly, the combination of the quality and visibility
criteria selects views that span convex, concave and curved objects. Due to size limitations
here, we will only discuss in greater detail the results obtained for thedouble-wedgepart,
which is the most suitable for demonstrating the quality criterion.

The double-wedgepart and its generated voxelmap can be found in Fig. 5. In this
voxelmap, the Seen voxels are grey while the OcclusionPlane voxels are black. Some
OcclusionPlane voxels remain on the sides of the object. Note also the lighter gray areas
(e.g. the one pointed by one of the arrows) correspond to Seen voxels of low Region
Quality estimates.
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Figure 5: Double-wedge part and resulting voxelmap.

In order for the sensor to see the remaining OcclusionPlane voxels, on the sides of the
voxelmap, it is necessary to rotate the object around a different axis, which is not possible
with our base. However all other areas have been imaged. This shows that the visibility
criterion worked. We can also see that there are very few voxels of low quality remaining.
This implies that the quality criterion also performed its task.

In Fig. 6 we give plots of the visibility (a) and quality (b) criteria as well as their
weighted sum (c) for thedouble-wedgepart. In these plots the vertical axis marks the
value of the criterion for different possible best next angles (0-180). The criteria values
are obtained after each selected view is acquired (axis pointing out). Since we always
start from an angle of90o the first evaluation occurs after the90o view.

The weights used in equation 3 for the experiments werewv = 1 and wq =
maximum(fvisibility) for wq . The justification of this choice is that we wanted to scale
the very low ([0,1]) values for the quality criterion and make them comparable with those
of the visibility criterion. So for the double-wedge part it was thatwq � 10000.

The object is first viewed from an angle of90o, and after this view the visibility
criterion value for the90o view is low. This is because there are no OcclusionPlane voxels
left to be seen from this view. However, high visibility criterion values are obtained for
views that recommend that the part be observed at0o and1800. After the object is viewed
from 0o (the next view selected), the visibility criterion values become low at0o, which
means that this side of the part has also been seen. The next view selected is the one that
sets the base at180o and after this view the visibility criterion values also become low
for 180o. There is now a much smaller peak at the weighted sum at50o. This peak is
caused by the quality criterion. The quality criterion wants to improve the quality of the
data on the slope of the part which is at45o to the horisontal. The last view from130o

is also selected because of the quality criterion now wants to improve the quality of the
135o slope.

What can be seen from the sum graph is that the quality criterion is driving the Best
Next View selection procedure after most OcclusionPlane voxels are seen and the vis-
ibility criterion values become very low. This essentially means that we have a 2 step
acquisition process that first tries to capture as much data as possible and then tries to
improve the already acquired data. This was one of the improvements for Best Next View
processes suggested in [3].
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Figure 6: Criteria plots for the double-wedge part. a) The visibility criterion b) the quality
criterion and c) the combined criteria. The horizontal axis is the angular viewpoint, the
depth axis is the view number (back is first view, front is most recent view) and vertical
axis is the criterion score.

5 Conclusions and Further Work

In this paper we used a volumetric representation to select Best Next Views for building
3D models of objects. The main novelty of the paper is to incorporate estimates of the
quality of the range measurements into the volumetric representation. This representation
is evaluated from viewpoints lying on a constrained tessellated sphere using a visibility
and a quality criterion. Our results demonstrate that this approach generates a good ac-
quisition plan for a variety of parts. Our voxelmap marking scheme can use the Region
Quality Estimate to find areas of low quality. Projected voxelmap images demonstrate
that the quality marking of the voxelmap building procedure also works well. In fact,
our results suggest it might be possible to remove some of the erroneous measurements
caused by specular reflection, by removing low quality voxels.

To sum up:

� The approach works for our combination of positioning mechanism and sensor.

� The voxelmap constructed is correct and adequately accurate for the task at hand.

� The combination of the quality and visibility criterion is effective.
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� The procedure is efficient in terms of time.

� It is the only Best Next View procedure that uses a quality criterion.

Further tests can be done in evaluating views for a part positioning mechanism with
more degrees of freedom. In this case it will be necessary to project views to a full sphere
rather than a circular strip. Furthermore, in this paper we have analysed the performance
of the approach in terms of the quality of the generated voxelmap. However, the voxelmap
is not intented to be the final 3D representation of the object and it is only constructed so
that the Best Next Views can be planned. More tests can be performed to check whether
the 3D CAD models generated using the views selected are correct. Finally, the scheme
introduced here improves the quality of previously measured voxels. One could also
investigate a scheme that attempts to avoid taking voxels with low quality.
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