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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 10, No. 2, May 1985 
Printed in U.S.A. 

A BEST POSSIBLE HEURISTIC FOR THE k-CENTER 
PROBLEM* 

DORIT S. HOCHBAUMt AND DAVID B. SHMOYSt 

University of California, Berkeley 

In this paper we present a 2-approximation algorithm for the k-center problem with triangle 
inequality. This result is "best possible" since for any 8 < 2 the existence of 8-approximation 
algorithm would imply that P = NP. It should be noted that no 3-approximation algorithm, 
for any constant 8, has been reported to date. Linear programming duality theory provides 
interesting insight to the problem and enables us to derive, in O(lElloglEl) time, a solution 
with value no more than twice the k-center optimal value. 

A by-product of the analysis is an O(fEI) algorithm that identifies a dominating set in G2, 
the square of a graph G, the size of which is no larger than the size of the minimum 
dominating set in the graph G. The key combinatorial object used is called a strong stable set, 
and we prove the NP-completeness of the corresponding decision problem. 

1. Introduction. An instance of the k-center problem consists of a complete graph 
G = (V,E) with edge weights we > 0, e E E and w(v) 

= 0, v E V. The problem is to 
find a subset S c V of size at most k such that w(S) = maxiEvminSW(i) is 
minimized. In this paper we consider instances of the k-center problem that satisfy the 
triangle inequality, i.e. for every triple, i, j, k E V, w(i,j) + 

W(j,k) 
> 

W(i,k). 
A 8-approximation to the k-center problem is the problem of finding a set S' C V of 

size k at most such that w(S') is at most 8 times the value of an optimal solution. The 
k-center problem with triangle inequality is not only NP-complete but also any 
(-approximation for 8 < 2 is NP-hard ([H1], [HN]). 

The k-center problem is intimately related to another problem-the dominating set 
problem (DS). An instance of DS is a graph G = (V, E), and the problem is to identify 
a set S c V of minimum size such that for all v E V - S there exists s E S with 
(v,s) E E. The relationship between the two problems has been described and used in 
[H2]. We shall use precisely this reduction for our worst case analysis. The reduction 
relies on the fact that the k-center solution must assume one of m = IEI values, 
wel, . . . , we. Let W= We, for some i. We define the W-graph of G, G(W) to be 
G(W) = (V, Ew) where e E Ew if and only if we < W. It can be easily verified that 
finding the solution to the k-center problem is equivalent to finding a minimum value 
of W such that the graph G( W) has a dominating set of size not exceeding k. We call 
this dominating set S*, and the value of the corresponding k-center optimal solution is 
w(S*). We call the graph corresponding to that minimum value of W the bottleneck 
graph, GB = G(w(S*)). Unfortunately, the problem DS is itself NP-complete and in 
that sense this reduction is not helpful. 

We now define the square of a graph G = (V,E) to be the graph G2 = (V,E2) 
where e E E2 if and only if e = (u,v) E E or 3t E V such that (u,t) E E and (t,v) E E 
(alternatively, if the shortest path between u and v in the graph G contains at most 2 
edges). 

* Received June 13, 1983; revised December 9, 1983. 
A MS 1980 subject classification. Primary 05C99. 
OR/MS Index 1978 subject classification. Primary: 485 Networks/graphs/heuristics. 
Key words. k-center problem, dominating set, strong stable set. 
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The square of a graph played a fundamental role in a recent result for a 2- 
approximation algorithm for the bottleneck TSP with triangle inequality [PR]. That 
result relied on the fact that a Hamiltonian circuit in the square of a biconnected 
graph can be found in polynomial time. The analogue in our case would be to solve 
the problem of finding a k-dominating set in the square of a graph. However, we 
showed that this problem is NP-complete. Our approach is based on the following 
idea. Rather than finding the optimal dominating set for the square of the graph, we 
will show that it suffices to identify a feasible dominating set that satisfies certain 
additional properties. 

The following notation will be useful in the remainder of this paper. Consider a 
graph G = (V, E). Let NG(u) denote the neighborhood of u, that is, 

NG(u) v E VI(u,v) E U u}. 

2. Squared graphs and bottleneck graphs. We begin by stating some simple, but 
useful facts about the squares of graphs, and bottleneck graphs. 

LEMMA 1. Consider the graph G(W) = (V, Ew) corresponding to a complete edge 
weighted graph G = (V, E) and a specified value W. Let G( W)2 = (V, E 2) be the square 
of the graph G(W). If e E E12 then e E E2, where G(2 W) = (V, E2). 

PROOF. To prove the lemma we can equivalently show that for all e E E , 
we < 2 W. This follows directly from the fact that the weights satisfy the triangle 
inequality. I 

Let Sw be a dominating set of size k in the graph G(W) (if such a dominating set 
exists). Note that the value of the k-center solution corresponding to the set of centers 
SW is at most W. 

LEMMA 2. Let W < w(S*). Consider S such that S I < k and S is dominating in the 
graph G(W)2; then S is a feasible k-center solution with cost w(S) < 2 W < 2w(S*). 

PROOF. This follows immediately from Lemma 1 and the observation made above. 
I 

Consider G2, the square of the graph G =(V, E). We will show in ?5 that the 
dominating set problem for G2 is NP-complete. Let S2* be a minimum dominating set 
for G2. Since every dominating set of G is a dominating set for G2, it follows that 
IS2* S< IS*I. Our strategy will be to identify a set S which is dominating in G2 such 
that 

IS2*l < ISI < IS*. (*) 

3. The strong stable set problem. The key notion in finding the approximate 
k-center is that of a strong stable set. A subset of vertices S is a strong stable set if for 
each u E V, ING(u) n SI < 1. In other words, a strong stable set S is a stable set (or 
independent set) with the additional restriction that every vertex not in S can be 
adjacent to at most one vertex in S. It is not hard to see that the problem of finding 
the largest strong stable set is dual to that of finding the smallest dominating set, in the 
usual linear programming sense of duality. We note that the problem of finding the 
largest strong stable set is NP-hard. 

From the weak duality theorem of linear programming we derive the following 
lemma. 

LEMMA 3. Consider a graph G = (V, E). Let SS C V be a feasible strong stable set, 
and let S* be the minimum cardinality dominating set in G. Then ISSs I< S*|. 
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This duality result can also be viewed as a special case of a known result in the 
theory of hypergraphs that relates the strong stability number and covering number of 
a hypergraph [B]. 

4. The algorithm. Any set S that is both strongly stable in G(W) and dominating 
in the square of the graph, G( W)2, satisfies inequalities (*). If W < w(S*) and S is of 
size not exceeding k, then, by Lemma 2, we have found our 2-approximate solution. 
Our algorithm finds a 2-approximate solution by satisfying precisely these constraints. 

Before proving the main result, we introduce one final lemma. 

LEMMA 4. Let S be a strong stable set in G. If x is not dominated by S in G2 then 
S U {x) is a strong stable set in G. 

PROOF. Suppose not, i.e. suppose that there is some vertex v such that U= 
NG(v) n (S U {x}) contains at least two vertices one of which is x. But then x is 
dominated in G2 by all other vertices in U. I 

Algorithm k-center. INPUT: G = (V,E), a complete graph, with E= {el, 
e2 .. ., em}, and we, for all e E E. (We assume that the edges are ordered such that 

we, < we, < * < we . Furthermore, we assume that the graph is stored in adjacency 
list form, where for each vertex, the vertices adjacent to it are listed in increasing edge 
weight order. Let Gi = (V, E) where Ei = {e, . . e i}.) 

OUTPUT: A set S with SI < k. 

begin 
if k = I VI then output V and halt 
low:= 1 {S can be all V} 
high:= m {S can be any single v E V) 
until high = low + 1 do (binary search} 

begin 
mid:= [high + low/2] 
{Let A DJ,id denote the adjacency lists for Gmid. 
These need not be constructed because given weed, 
and the sorted adjacency lists, we can simulate having them.} 
S:=0 
T:= V 
while 3x e T do 

begin 
S:= S U {x} 
for all v E ADJmid(x) do 

T:= T-ADJmid(V) - {v} 

end 
if |SI < k then do 

begin 
high := mid 
S':= .-S 

end 
else low := mid 

end 
output S' 

end 

THEOREM 1. Algorithm k-Center produces a set S such that w(S) < 2w(S*) in 

O(IElloglEI) time. 
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PROOF. Let S be the set produced by the algorithm at the end of a given pass 
through the until loop. We first show that S is both strongly stable in Gmid = (V, Emid) 
and dominating in Gmid. Consider the computation of S for some value of mid. At the 
start of any pass through the while loop, S is a strong stable set, and T is the set of 
vertices not dominated by S. This claim clearly holds initially. Now suppose that the 
claim is true at the start of the ith pass through the while loop; we will show that it is 
still true at the end of loop. By Lemma 4, it follows that the new S is strongly stable. 
Furthermore, the vertices dominated by x in Gmid are precisely those vertices that we 
delete from T. Hence it follows that T is still the set of undominated vertices. 
Therefore, we have shown by induction that the claim holds, and when the algorithm 
leaves the while loop, S must be both a strong stable set in Gmid and a dominating set 
in G2a. 

We observe that throughout the execution of this algorithm, We, < w(S*). This 
follows from the fact that Glow has a strong stable set of size greater than k and thus 
the minimum dominating set has size larger than k. (Recall that for all W > w(S*), 
G(W) has a dominating set of size at most k.) Consider the values low and high at 
termination; at this point high = low + 1, so w,, < w(S*). The set S' output by the 
algorithm is a dominating set in G2gh. The performance guarantee of the algorithm 
follows directly from Lemma 2. 

The until loop is performing a binary search, and thus is executed at most loglEl 
times. To complete the proof we need only note that each edge of the graph is 
examined at most once (since the other endpoint is deleted from T as soon as the edge 
is detected) and using straightforward data structures the while loop will take 0(IEmidl) 
time. Note that the assumption that the edges are sorted is only a notational 
convenience, since the time to sort them is of the same order as the remainder of the 
algorithm. I 

5. Complexity results. In this section we show that both the dominating set 
problem for squared graphs and the strong stable set problem are NP-complete. 

Dominating set for squared graphs (DS 2). INSTANCE: A graph G = (V, E) and an 
integer k. 

QUESTION: Does the graph G2 have a dominating set of size k? 

THEOREM 2. DS2 is NP-complete. 

PROOF. We will reduce from 3-SA T. Suppose that an instance of 3-SA T contains 
the variables x,x2, . . . , x", and has clauses C, . . . , Cm. Then construct G as 
follows. For each variable xi construct Gi = (Vi,Ei) where Vi = {iv,,vil, . .. , vi5} and 

Ei = {(vi0, vi), (vil, vi2), *.. , (vi4, i5), (vi5, vo)} U {(vi3,Vi,5)}. It will be convenient to 
refer to nodes vi0 and vi2 as xi and .i, respectively. Let Vc = { 1, . . .,ym}; that is, 
each vertex in Vc corresponds to a clause. Let Ec = {(yi, 1) is a literal (i.e., xj or Xj) 
in clause C1). Let V= (U= I V) U Vc and let E =(U= Ei) U Ec. Then G = (V,E) 
and set k = n. It is not hard to verify that G2 has a dominating set of size k if and only 
if the original boolean formula was satisfiable. I 

Next we consider the following problem. 

Strong stable set (SSS). INSTANCE: A graph G and an integer k. 
QUESTION: Does the graph G contain a strong stable set of size k? 

THEOREM 3. SSS is NP-complete. 

PROOF. We reduce from the ordinary stable set problem. Suppose that the instance 
of the stable set problem consists of a graph G' = (V', E') and an integer k'. Without 
loss of generality, we can assume that k' > 0 and that G' does not contain any isolated 
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vertices. Let V'= {v1,v2 ... , )}. If k'= 1, let k = k' and G = G'. Otherwise, we 
create G as follows. Start by making k' copies of G', Gi = (FV, E), i = 1, . . , k'. Let 

- {v, v2i,. . .i, vni}. The essential idea of this reduction is that we will insure that 
every strong stable set in the graph G will have at most one vertex in each copy GC; 
every strong stable set will have at most one copy of a given vertex vi; and finally, if a 
strong stable set contains vI and vjl then (vi, v) is not an edge of G'. This is 
accomplished by adding a number of gadgets to the union of the G,. For each copy we 
add a vertex y1 that is adjacent to every vertex in Gi. This insures the first condition. 
For each (v, vj) E E' we create a vertex z,j that is adjacent to vi and vj? for all 1. This 
forces both the second and third conditions. Finally, to insure that the new vertices 
cannot be used in nontrivial strong stable sets, form a clique on the new vertices. 
Formally, let Vc == { Y 2. * y, u {zi ,I(vi, v) c E'} and let V = (Uk' Vi) u Vc 
Then set 

k' 

E=( U Ei U {(yI,v,l)i.,= l, ... k'} 
i=1 

U t(z, j, vi),(z,j, t,) (vi ,vj) E E', / = 1, . . , k'} U {(w,x) Iw, x E V }. 

It is straightforward to verify that this construction does indeed work. I 

6. Summary. An interesting aspect of our result is that we identify a set bounded 
between the dominating set of a graph and a dominating set in the square of the graph. 
Both of these problems are NP-complete; however, our analysis shows how to find 
such an intermediate set in polynomial time. This approach, and the insight provided 
by linear programming, might well be used to find approximation algorithms for other 
NP-complete problems. 
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