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A Better Alternative to Piecewise Linear Time Series Segatem’

Daniel Lemiré

Abstract e provide the necessary vocabulary such as flat, increasing

Time series are difficult to monitor, summarize and predict. at ratez, decreasing atrate, .. .;

Segmentation organizes time series into few intervalstgavi ¢ be accurate (good model fit and cross-validation).
uniform characteristics (flatness, linearity, modalitypno-

tonicity and so on). For scalability, we require fast linear

time algorithms. The popular piecewise linear model can 1250 i
determine where the data goes up or down and at what rate. 159q |-
Unfortunately, when the data does not follow a linear model,
the computation of the local slope creates overfitting. We
propose an adaptive time series model where the polyno- 1100
mial degree of each interval vary (constant, linear and 3o on 1050
Given a number of regressors, the cost of each interval is its  1ggg
polynomial degree: constant intervals cost 1 regressof, li

T T T T LU
adaptive (flat,linear)

1150

. . 950
ear intervals cost 2 regressors, and so on. Our goal is to
minimize the Euclideani{) error for a given model com- 900
plexity. Experimentally, we investigate the model where in 850 . . . ' .
tervals can be either constant or linear. Over synthetie ran 0 100 200 300 400 500 600

dom walks, historical stock market prices, and electraocard
grams, the adaptive model provides a more accurate segmen-

tation than the piecewise linear model without increasimgy t 1250 i ' piec'ewi'se Mear —
cross-validation error or the running time, while proviglin 1200 - : -
a richer vocabulary to applications. Implementation issue 1150
such as numerical stability and real-world performance, ar 1100
discussed.
1050
1 Introduction 1000
Time series are ubiquitous in finance, engineering, and sci- 950

ence. They are an application area of growing importance in 900
database research [2]. Inexpensive sensors can record data 850 . . . . .
points at 5 kHz or more, generating one million samples ev- 0 100 200 300 400 500 600

ery three minutes. The primary purpose of time series seg-

mentation is dimensionality reduction. It is used to find freFigure 1: Segmented electrocardiograms (ECG) with adap-
quent patterns [24] or classify time series [29]. Segmé@niattive constant and linear intervals (top) and non-adaptive
points divide the time axis into intervals behaving approxpiecewise linear (bottom). Only 150 data points out of 600
mately according to a simple model. Recent work on segre shown. Both segmentations have the same model com-
mentation used quasi-constant or quasi-linear inter2 [ plexity, but we simultaneously reduced the fit and the leave-

quasi-unimodal intervals [23], step, ramp or impulse [2t], one-out cross-validation error with the adaptive modgd)to
gquasi-monotonic intervals [10, 16]. A good time series seg-

mentation algorithm must Typically, in a time series segmentation, a single model
e be fast (ideally run in linear time with low overhead); 1S applied to all intervals. For example, all intervals ase a
sumed to behave in a quasi-constant or quasi-linear manner.
However, mixing different models and, in particular, con-
stant and linear intervals can have two immediate benefits.
—Supported by NSERC grant 261437. Firstly, some applications need a qualitative descriptibn
TUniversité du Québec & Montréal (UQAM) each interval [48] indicated by change of model: is the tem-
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perature rising, dropping or is it stable? In an ECG, we need

to identify the flat interval between each cardiac pulses- Sfa_ble L Com_plexny of various segmentation aIgc_Jrlthms
ondly, as we will show, it can reduce the fit error withodt>"9 polynomial models with segments and data points,

increasing the cross-validation error. Intuitively, aqa@ise Including the exact solution by dynamic programming.
model tells when the data is increasing, and at what rate, and

vice versa While most time series have clearly identifiable Algorithm Complexity

linear trends some of the time, this is not true over all tiM&ynamic Programming O(n’k)

intervals. Therefore, the piecewise linear model localigre Top-Down O(nk)

fits the data by computing meaningless slopes (see Fig. 1). Bottom-Up O(nlogn) [39] or O(n?/k) [27]
Global overfitting has been addressed by limiting the  gjiding Windows O(n) [39]

number of regressors [46], but this carries the implicit as-
sumption that time series are somewhat stationary [38].
Some frameworks [48] qualify the intervals where the slope

is not significant as being “constant” while others look ffomplexity ofO(n*/31>/3) for the piecewise constant model
constant intervals within upward or downward intervals][lOOy running(n/k)2/3 dynamic programming routines and us-

Piecewise linear segmentation is ubiquitous and was GRE weighted segmentations. The original dynamic program-
of the first applications of dynamic programming [7]. Wehing solution proposed by Bellman [7] ran in tiniEn3k),
argue that many applications can benefit from replacingaiiq while it is known that & (n2k)-time implementation is
with a mixed model (piecewise linear and constant). Whggssible for piecewise constant segmentation [42], we will
identifying constant intervala posteriorifrom a piecewise gpow in this paper that the same reduced complexity ap-
linear model, we risk misidentifying some patterns inchgli pjies for piecewise linear and mixed models segmentations
“stair cases” or “steps” (see Fig. 1). A contribution of thigs well.
paper is experimental evidence that we reduce fit without gxcept for Pednault who mixed linear and quadratic
sacrificing the cross-validation error or running time for Segments [40], we know of no other attempt to segment
given model complexity by using adaptive algorithms whefgne series using polynomials of variable degrees in the
some intervals have a constant model whereas others haygm mining and knowledge discovery literature thougheher
linear model. The new heuristic we propose is neither mqgerelated work in the spline and statistical literature,[19
difficult to implement nor more expensive computationallgs 37] and machine learning literature [3, 5, 8]. The
Our experiments include white noise and random walks ig&oduction of “flat” intervals in a segmentation model has
well as ECGs and stock market prices. We also comp@gen addressed previously in the context of quasi-monotoni
against the dynamic programming (optimal) solution whidbgmentation [10] by identifying flat subintervals within
we show can be computed in tinign’k). increasing or decreasing intervals, but without concern fo

Performance-wise, common heuristics (piecewise lifhe cross-validation error.
ear or constant) have been reported to require quadratic \whijle we focus on segmentation, there are many
time [27]. We want fast linear time algorithms. When thgethods available for fitting models to continuous vari-
number of desired segments is small, top-down heuristig§ies such as a regression, regression/decision trees, Ne
might be the only sensible option. We show that if we ala| Networks [25], Wavelets [14], Adaptive Multivariate
low the one-time linear time computation of a buffer, ada@;plines [19], Free-Knot Splines [35], Hybrid Adaptive
tive (and non-adaptive) top-down heuristics runin lin@aet - gpines [37], etc.
(O(n)).

Data mining requires high scalability over very largg complexity Model

data sets. Implementation issues, including numerichlilsta ; . .

) . . ... Our complexity model is purposely simple. The model
ity, must be considered. In this paper, we present algosthm . or
- ST complexity of a segmentation is the sum of the number of
that can process millions of data points in minutes, not fiour ; ) .
regressors over each interval: a constant interval hasta cos

> Related Work of 1 a Im_ear mterval a cost of 2 and so on. In othe_zr words,
) ) o a linear interval is as complex as two constant intervals.
Table 1 summarizes the various common heuristics and @snceptually, regressors are real numbers whereas afl othe

gorithms used to solve the segmentation problem with pofysrameters describing the model only require a small number
nomial models while minimizing the Euclideaf) error. of pits.

The top-down heuristics are described in section 7. When | our implementation, each regressor counted uses
the number of data points is much larger than the num-g4 pits (“double” data type in modern C or Java). There
ber of segments (n > k), the top-down heuristics is par-are two types of hidden parameters which we discard (see
ticularly competitive. Terzi and Tsaparas [42] achievedmg. 2): the width or location of the intervals and the number



of regressors per interval. The number of regressors perdn-Time Series, Segmentation Error and L eave-One-Out
tervalis only a few bits and is not significantin all casese Thijme ~ series are  sequences of data  points
width of the intervals in number of data points can be reprez; o), ... (z,_1,y,_1) Where thez values, the “time”

sented using [log m | bits wherem is the maximum length yajyes, are sortedz; > x;_1. In this paper, both the

of a interval ands is the number of intervals: in the experanq values are real numbers. We define a segmentation
imental cases we con&dere{dog_m} < 8 which is small a5 5 sorted set of segmentation indexgs. . , z,, such that
compared to 64, the number of bits used to store each reges= ( andz, = n. The segmentation points divide the time
sor counted. We should also consider that slopes typicaliies into intervalsy, . . . , S, defined by the segmentation

need to be stored using more accuracy (bits) than consigfktxes asS; = {(zi,y:)|zj1 < i < z;} . Additionally,
values. This last consideration is not merely theoretic@ks each intervalS;, ..., S, has a model (constant, linear,

a 32 bits implementation of our algorithms is possible fer thysward monotonic, and so on).

piecewise constant model whereas, in practice, we require | this paper, the segmentation error is computed from

64 bits for the piecewise linear model (see proposition %{11 Q(S;) where the functior is the square of thi re-
and discussion that follows). Experimentally, the piecawi .~

linear model can significantly outperform (by 50%) the gre255|on error. Formall2(S;) = min, 32,2, (P(zr) —
piecewise constant model in accuracy (see Fig. 11) and Weé Where the minimum is over the polynomialst a given

versa. For the rest of this paper, we take the faimess of d&@ree. For example, if the mten?; is said to be constant,
complexity model as an axiom. thenQ(S;) =3, <i<., . (yl - Y) Yvher(?g is the average,
Y=o, \<ics, 5= Similarly, if the interval has a lin-
ear model, them(x) is chosen to be the linear polynomial
p(z) = ax + b wherea andb are found by regression. The
c 1 segmentation error can be generalized to other norms, such

as the maximume-erroi {) norm [10, 32] by replacing the

Zj—l

ax+b ax+b
‘ ‘ > operators bynax operators.
When reporting experimental error, we use therror
Z;ﬂ Q(S;). We only compare time series having a fixed
™ 2 K number of data points, but otherwise, the mean square error

/20521 Q(S5)
Figure 2: To describe an adaptive segmentation, you n&8@uld be usedy/ ====—=. _
the length and regressors of each interval If the data follows the model over each interval,

then the error is zero. For example, given the time se-
) ries (0,0),(1,0),(2,0),(3,1), (4,2), we get no error when
_The desired total number_ of regressors depenc_is on gﬁc')osing the segmentation indexgs= 0,2 = 2,2, = 5
main knowledge and the application: when processing EGGEn 4 constant model over the index interyal 2) and a
data, whether we want to have two intervals per cardiac puisg.ar model over the index intervée, 5). However, the
or 20 intervals depends on whether we are satisfied Wiffsice of the best segmentation is not unique: we also get
the mere identification of the general location of the pulsgg error by choosing the alternative segmentation indexes
or whether we desire a finer analysis. In some instancgos,: 0,20 = 3,20 = 5.
the user has no guiding principles or domain knowledgé There are two types of segmentation problem:
from which to choose the number of intervals and a model
selection algorithm is needed. Common model selectioh
approaches such as Bayesian Information Criterion (BIC),
Minimum Description Length (MDL) and Akaike Informa- ® given a bound on the segmentation error, find a segmen-
tion Criterion (AIC) suffer because the possible model com- tation minimizing the model complexity.
plexity p is large in a segmentation problem £ n) [11]. If we can solve efficiently and incrementally one problem
More conservative model selection approaches such as Rygle, then the second problem type is indirectly solved.
Inflation Criterion [17] or Shrinkage [14] do not directlyBecause it is intuitively easier to suggest a reasonabladbou
apply because they assume wavelet-like regressors. Crossthe model complexity, we focus on the first problem type.
validation [18], generalized cross-validation [12], agé\e- For applications such as queries by humming [49], it
one-out cross-validation [45] methods are too expensiye.useful to bound the distance between two time series
However, stepwise regression analysis [9] techniques swgling only the segmentation data (segmentation points and
as permutation tests (“pete”) are far more practical [46]. polynomials over each interval). Lét- || be any norm in
this paper, we assume that the model complexity is knowrBanach space, including the Euclidean distance. Given
either as an input from the user or through model selection.

given a bound on the model complexity, find the segmen-
tation minimizing the segmentation error;



time serieg, v/, let s(y), s(y’) be the piecewise polynomialinto quasi-polynomial intervals in optimal time, we must
approximations corresponding to the segmentation, thendmympute fit errors in constant timé(1)).
the triangle inequality]s (y) —s(y/)|| | (y) —y/| — | s(s')— S _
o' < lly='Il < Is(w)— )|+ [1s()~yll +[ls()) ~y/||. PROPOSITIONS.1. Given a time serie§(xi, yi) }i=t, ..., If
Hence, as long as the approximation errors are sidl)) — We allow the one-timé(n) computation of a prefix buffer,
yll < eand|s(y') — 4| < e then we have that nearbyfinding the best polynomial fitting the data over the interval
segmentations imply nearby time seris(¢/) — s(v/)|| < [p, z4] is O(1). This is true whether we use the Euclidean
e = |ly — /|| < 3¢) and nearby time series imply nearbgistance {z) or higher order normsi(. for co > r > 2).
segmentationd|y — v'|| < e = [|s(y) — s(v')|| < 3€). This . _
result is entirely general. Proof. We_ prove the re_sult using the Euclidedn)(norm,
Minimizing the fit error is important. On the ondne proofis similar for higher order norms. _
hand, if we do not assume that the approximation errors are e begin by showing that polynomial regression can be
small, it is possible for the segmentation data to be ider{zduced to a matrix inversion problem. Given a polynomial
cal|[s(y) — s(y/)|| = 0 while the distance between the time—;—o_%;%’, the square of the Euclidean erroig_ (y; —
series||y — /||, is large, causing false positives when identEj.V:’o1 ajzl)?.  Setting the derivative with respect tg
fying patterns from the segmentation data. For example, thezero fori = 0,...,N — 1, generates a system of
sequences00, —100 and —100, 100 can be both approxi- N equations andV unknowns, > " a; 320 2t =
mated by the same flat modél, (), yet they are far apart. ijp Wﬁ wherel = 0,...,N — 1. On the right-hand-
On the other hand, if the fit error is large, similar time seri%ide, we have aVv dimensional vectorl( = g:p )

can have different segmentations, thus causing false n&gRareas on the left-hand-side, we have Mex N Teeplitz

tives. For example, the sequence$00, 100, —100.1 and magrix 4,; = 9 2+ multiplied by the coefficients of
—100.1,100, —100 have the piecewise flat model approXine polynomial (LO”.’)_ .,an—_1). Thatis, we have the matrix-

mations0, 0, —100.1 and—100.1, 0, 0 respectively. vectorequatiorZN_l Ay sa; =V
Beside the data fit error, another interesting form of ~ zq |ong asi 1;‘3]_; the matrixA is invertible. When
error is obtained by cross-validation: divide your datanp®i »; < q—p the solution i's given by settiny = ¢ — p and
into two sets (training and test), and measure how well qufting . ~ 0fori > ¢ — p. Overall, when¥ is bounded
. .. . 1 T . ’
model, as fitted over the training set, predicts the tesi\get. a priori by a small integer, no expensive numerical analysis

predict a missing data poit;, y;) by first determining the ;s yeeded. Only computing the mateixand the vectol is

interval [z, z;) corresponding to the data point{, < ,entially expensive because they involve summations ove
r; < x) and then we computg(z;) wherep is the a large number of terms.

regression polynomial ovef;. The error is|p(zi) — vil. Once the coefficients, . . ., ay_1 are known, we com-
We opt for the leave-one-out cross-validation where the tf)ﬁte the fit error using thevforn:lula:

set is a single data point and the training set is the remainde

We repeat the cross-validation over all possible missirig da . B 2

. . . ) A N-1 N—-1N-1 q
, 0
p0|_nts, except for the first and last data point in the.tlm Z ajal —y; _ Z ajay Zxﬁ
series, and compute the mean square error. If computing the | “— ‘= = =
segmentation takes linear time, then computing the leave- ' N1

one-out error in this manner takes quadratic time, which is j Z 9

prohibitive for long time series. -2 Z aj ) Ti¥i+ Z Yi:
Naturally, beyond the cross-validation and fit errors, a =0 -

segmentation should provide the models required by thgain, only the summations are potentially expensive.

application. A rule-based system might require to know Hence, computing the best polynomial fitting some data

where the data does not significantly increase or decregsts over a specific range and computing the corresponding

and if flat intervals have not been labelled, such queries @teerror in constant time is equivalent to computing range

hard to support elegantly. sums of the forn}_?_ =%y! in constant time fof < i,1 <

] o ] 2N. To do so, simply compute once all prefix sum§'l =

5 Polynomial Fittingin Constant Time P : .

S ) ) ) > i xly; and then use their subtractions to compute range

The naive fit error computation over a given interval tak%ﬁjerieszf‘ 2lyl — pil — pit

linear time O(n): solve for the polynomialp and then o 1 p—1

computey;(y; — p(z;))®. This has lead other authors  prefix sums speed up the computation of the range sums

to conclude that top-down segmentation algorithm such @$aking them constant time) at the expense of update time

Douglas-Peucker’s require quadratic time [27] while wé wianq storage: if one of the data point changes, we may have to

show they can run in linear time. To segment a time seriggompute the entire prefix sum. More scalable algorithms

-

P



Table 2- A fth | il fitting i tant ti see Algorithm 1). Once we have computed the n + 1
avie ccuracy ol the polynomial fitting in constant tim atrix, we reconstruct the optimal solution with a simple

using 32 bits and 64 bits floating point numbers respectweyé algorithm (see Algorithm 2) using matricés and P

We give the worse percentage of error over 1000 runs us : ' :
ring respectively the best segmentation points andake b
uniformly distributed white noisen( = 200). The domain deglre?as pectively g 'on pol

ranges fromx = 0 to x = 199 and we compute the fit error
over the interval180, 185).

Algorithm 1 First part of dynamic programming algorithm
for optimal adaptive segmentation of time series into inter

32 bits 64 bits vals having degree, ..., N — 1.
N=1(y=0) 7% 10°% 1 x 10 119% 1: INPUT: Time Seriegz;, y;) of lengthn
N =2(y=az+b) 5% 6 x 10~9% 2: INPUT: Model Complexityk and maximum degred’
N =3(y = az®+ bz +c) 240% 3 x1073% (N = 2 = constant and linear)

3: INPUT: Function E(p, ¢, d) computing fit error with
poly. of degreel in range[z,,, z,) (constant time)
4. R, D, P — k x n+ 1 matrices (initialized at 0)

are possible if the time series are dynamic [31]. Computing: for » € {0,...,k — 1} do
the needed prefix sums is only done once in linear time argl  { scans the rows of the matrices}
requires(N? + N + 1)n units of storage@n units when 7. for g {0,...,n} do

N = 2). For most practical purposes, we argue that we wilk.

soon have infinite storage so that trading storage for sgeedgd:

a good choice. Itis also possible to use less storage [33].
When using floating point values, the prefix sum ap-

proach causes a loss in numerical accuracy which becomes 0 < p < ¢+ 1 with the convention thaR is co

significant ifz or y values grow large an&/ > 2 (see Ta- on negative rows exceptfdt_; o = 0.

ble 2). WhenV = 1 (constant polynomials), 32 bits floatingio: RETURN cost matrixR, degree matrixD, segmenta-

point numbers are sufficient, but fo¥ > 2, 64 bits is re- tion points matrixP

quired. In this paper, we are not interested in higher ordet

polynomials and choosinly = 2 is sufficient.

{q scans the columns of the matrices}

Find a minimumotR,_1_4 ,+ E(p, ¢, d) and store
its value inR, ,, and the corresponding p tuple
in Dy q,Prq for 0 < d < min(r + 1,N) and

Algorithm 2 Second part of dynamic programming algo-

6 Optimal Adaptive Segmentation
An alaorith timal, if it find tati trlthm for optimal adaptive segmentation.

n algorithm is optimal, if it can find a segmentation with 1: INPUT: k£ x n + 1 matricesR, D, P from dynamic
minimal error given a model complexity. Since we can .

4 . . . programming algo.

compute best fit error in constant time for arbitrary polyno-z_ e
mials, a dynamic programming algorithm computes the opéj < — empty list
timal adaptive segmentation in tin@(n>Nk) where N is ' Py

the upper bound on the polynomial degrees. Unfortunatel4 whiler =0 do

if N > 2, this result does not hold in practice with 32 blts Z: g”
floating point numbers (see Table 2). 7 ey Td L1

We improve over the classical approach [7] because we append interval from to z having degree to s
allow the polynomial degree of each interval to vary. In the —p

tradition of dynamic programming [30, pages 261-265], in a9
first stage, we compute the optimal cost mati®:( R, is
the minimal segmentation cost of the time interja, z,,)
using a model complexity of. If E(p,q,d) is the fit error
of a polynomial of degre€ over the time intervalz,, z,),
computable in tim& (1) by proposition 5.1, then

RETURN optimal segmentation

7 PiecewiseLinear or Constant Top-Down Heuristics

Computing optimal segmentations with dynamic program-
ming is ©2(n?) which is not practical when the size of the

time series is large. Many efficient online approximate al-
gorithms are based on greedy strategies. Unfortunately, fo

R = 1 R L E d
T,q ogpﬁrqr}ér%d<N r—1-dp+ (p’q’ )

with the convention thak, 1., is infinite whemr — 1 —
d < 0 except forR_; o = 0. Because computing, ,
only requires knowledge of the prior rowB,. . for v’ < r,

small model complexities, popular heuristics run in quédra
time (O(n?)) [27]. Nevertheless, when the desired model
complexity is small, a particularly effective heuristictise

we can computer row-by-row starting with the first row top-down segmentation which proceeds as follows: starting



with a simple segmentation, we further segment the worst
interval, and so on, until we exhaust the budget. Keogh
et al. [27] state that this algorithm has been independently
discovered in the seventies and is known by several name:
Douglas-Peucker algorithm, Ramers algorithm, or lteeativ /", [lnitially, solve for piecewisg
End-Points Fits. In theory, Algorithm 3 computes the top- I linear segmentation
down segmentation, using polynomial regression of any de- |
gree, in timeO(kn) wherek is the model complexity, by E
using fit error computation in constant time. In practice, ou !
implementation only works reliably faf = 0 ord = 1 us- !
ing 64 bits floating point numbers. The piecewise constant \
(d = 0) and piecewise linear(= 1) cases are referred to v

Intervals are further subdivided
into flat intervals.

as the “top-down constant” and “top-down linear” heuristic —
respectively.

Algorithm 3 Top-Down Heuristic.

INPUT: Time Serieqz;, y;) of lengthn
INPUT: Polynomial degreé (d = 0, d = 1, etc.) and

model complexityk Figure 3: Adaptive Top-Down Segmentation: initially, we
INPUT: FunctionE(p, q) computing fit error with poly. compute a piecewise linear segmentation, then we further
in range(z,, z,) subdivide some intervals into constant intervals.

S empty list

S« (0,n,E(0,n))

b—Fk—d this alternative since, over our data sets, it gives worsalt®
while b —d > 0 do and is slower than all other heuristics.

find tuple(, j, €) in .S with maximum last entry
find minimum of E(i,1) + E(l,j)forl=i+1,....j 9 |mplementation and Testing
remove tuplgz, j, ¢) from S
insert tuplesi, !, E(i,1)) and(l, j, E(l,5)) in S
be—b—d

S contains the segmentation

Using a Linux platform, we implemented our algorithms
in C++ using GNU GCC 3.4 and flag “-O2". Intervals
are stored in an STlist object. Source code is available
from the author. Experiments run on a PC with an AMD
Athlon 64 (2 GHZ) CPU and enough internal memory so
that no disk paging is observed.
8 Adaptive Top-Down Segmentation Using ECG data and various number of data points, we
Our linear time adaptive segmentation heuristic is basedlmnchmark the optimal algorithm, using dynamic program-
the observation that a linear interval can be replaced by tming, against the adaptive top-down heuristic: Fig. 4 demon
constant intervals without model complexity increase eAftstrates that the quadratic time nature of the dynamic pro-
applying the top-down linear heuristic from the previougramming solution is quite prevalent & n?/50000 sec-
section (see Algorithm 3), we optimally subdivide eaabnds) making it unusable in all but toy cases, despite a C++
interval once with intervals having fewer regressors (suthplementation: nearly a full year would be required to opti
as constant) but the same total model complexity. Theally segment a time series with 1 million data points! Even
computational complexity is the sam@((k + 1)n). The if we record only one data point every second for an hour, we
result is Algorithm 4 as illustrated by Fig. 3. In practiceg wstill generate 3,600 data points which would require about
first apply the top-down linear heuristic and then we seek4aminutes to segment! Computing the leave-one-out error of
split the linear intervals into two constant intervals. a quadratic time segmentation algorithm requires cubie:tim
Because the algorithm only splits an interval if the fib process the numerous time series we chose for this paper,
error can be reduced, it is guaranteed not to degrade dags of processing are required.
fit error. However, improving the fit error is not, in itself, =~ We observed empirically that the timings are not sensi-
desirable unless we can also ensure we do not increasetitieeto the data source. The difference in execution time of
cross-validation error. the various heuristics is negligible (under 15%): our imple
An alternative strategy is to proceed from the top-downentation of the adaptive heuristic is not significantly enor
constant heuristic and try to merge constant intervals irggpensive than the top-down linear heuristic because its ad
linear intervals. We chose not to report our experiments wiitional step, where constant intervals are created oubhof |




Algorithm 4 Adaptive Top-Down Heuristic.
INPUT: Time Serieqx;, y;) of lengthn

INPUT: Bound on Polynomial degre®® and model com- 8 — ; —

plexity K 7L adaptive top-down h(e)gtr;;tgi |

INPUT: FunctionE(p, ¢, d) computing fit error with poly. 61

in rangez,, z,) D i:

S empty list g Sl

d— N-1 T ool

S — (0,n,d, E(0,n,d)) 1}

b—k—d or

while b —d >0 do 0 1loo 22)0 32)0 4|00 52)0 600
find tuple(, j, d, €) in S with maximum last entry n
find minimum of E(i,l,d) + E(l,j,d) for il = i + ) . - .
1,....j Figure 4: Adaptive Segmentation Timings: Time in seconds

remove tuplgi, j, €) from S versus the numk_)er of data .points using_ ECG dgta. We
insert tuplegi, I, d, E(i,1,d)) and(l, j, d, E(l, j,d)) in compare the opur_na] dynamic programming solution with
g the top-down heuristick(= 20).
b—b—d

for tuple (i, j, ¢, ¢) in S do
find minimumm of E(i,l,d’) + E(l,j,q — d — 1) for
l=i+1,....57and0 < d <q—1

if m < e then 16
remove tuplgz, j, q, ¢) from S 1.4 |
insert tuples(s,l,d’, E(i,1,d")) and (I, j,q — d' — 12+
1,E(l,j,g—d —1))inS s 1
S contains the segmentation g 8-2 F
- 0:4 adaptive
02| ity
ear ones, can be efficiently written as a simple sequential 0 e ‘

0 5000 10000 15000 20000 25000 30000

n

scan over the time series. To verify the scalability, we gen-
erated random walk time series of various length with fixed

model complexity § = 20), see Fig. 5. Figure 5: Heuristics timings using random walk data: Time

10 Random Time Series and Segmentation in seconds versus the number of data poikts-(20).

Intuitively, adaptive algorithms over purely random data a
wasteful. To verify this intuition, we generated 10 sequenc
of Gaussian random noise & 200): each data point takes
on a value according to a normal distribution£ 0,0 = 1).

The average leave-one-out error is presented in Table B (top top-down heuristics optimal
with model complexityk = 10,20,30. As expected, the T Tk
adaptive heuristic shows a slightly worse cross-valigatio

error. However, this is compensated by a slightly better fit 10 ¢
error (5%) when compared with the top-down linear heuristic 8
(Fig. 6). On this same figure, we also compare the dynamic 6l

programming solution which shows a 10% reduction in fit

error for all three models (adaptive, linear, constanj/ffar

twice the running time (Fig. 4). The relative errors are not 1

sensitive to the model Comp|8Xity. 0 7adapt. linear flat adapt. linear  flat
Many chaotic processes such as stock prices are some-

times described as random walk. Unlike white noise, tfégure 6: Average Euclideari;(norm) fit error over syn-

value of a given data point depends on its neighbors. We g#ietic white noise data.

erated 10 sequences of Gaussian random walks €00):

starting at the value 0, each data point takes on the value




top-down heuristics optimal top-down heuristics optimal
T T T 1.4 T T T T T
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- - - - - 0
adapt. linear flat adapt. linear flat adapt. linear flat adapt. linear flat

Figure 7: Average Euclideariy(norm) fit error over syn- Figure 8: Average Euclideary(norm) fit error over 14 dif-

thetic random walk data. ferent stock prices, for each stock, the error was nornlize
(1 = optimal adaptive segmentation). The complexity is set
at 20 ¢ = 20) but relative results are not sensitive to the

Table 3: Leave-one-out cross-validation error for top-dovf®MPIexity.
heuristics on 10 sequences of Gaussian white noise (top)
and random walks (bottom):(= 200) for various model

complexities k) spite some controversy, technical analysis is a Data Mining
- - - - : _ topic [44, 20, 26].
white noise  adaptive linear constant linear/adaptive We segmented daily stock prices from dozens of compa-

: - ;8 igz 123 1'22 333’ nies [1]. Ignoring stock splits, we pick the first 200 trading
= . . . 0 . . .
b — 30 1.20 117 116 98% days of each stock or index. The model complexity varies

_ _ : ~k =10, 20, 30 so that the number of intervals can range from
random walks adaptive linear constant Ilnear/adaptlvg to 30. We compute the segmentation error using 3 top-

k=10 1.43 151 143 106% down heuristics: adaptive, linear and constant (see Table 4
k=20 116 1.21 1.19 104% for some of the result). As expected, the adaptive heuris-
k = 30 103 106  1.06 103% : pected, P

tic is more accurate than the top-down linear heuristic (the
gains are between 4% and 11%). The leave-one-out cross-
validation error is improved with the adaptive heuristicamh
the model complexity is small. The relative fit error is not
¥ = yi—1+ N(0,1) whereN (0, 1) is a value from a normal sensitive to the model complexity. We observed similar re-
distribution (x+ = 0,0 = 1). The results are presented in Tasults using other stocks. These results are consistent with
ble 3 (bottom) and Fig. 7. The adaptive algorithm improvesir synthetic random walks results. Using all of the histori
the leave-one-out error (3%-6%) and the fit errer(3%) cal data available, we plot the 3 segmentations for Micrtosof
over the top-down linear heuristic. Again, the optimal astock prices (see Fig. 9). The line is the regression polyno-
gorithms improve over the heuristics by approximately 108bial over each interval and only 150 data points out of 5,029
and the model complexity does not change the relative err@e shown to avoid clutter. Fig. 8 shows the average fit error
for all 3 segmentation models: in order to average the re-
11 Stock Market Pricesand Segmentation sults, we first normalized the errors of each stock so that the

Creating, searching and identifying stock market patteyn®Ptimal adaptive is 1.0. These results are consistent Wéth t

sometimes done using segmentation algorithms [48]. Ked@hdom walk results (see Fig. 7) and they indicate that the

and Kasetty suggest [28] that stock market data is indistfaptive model is a better choice than the piecewise linear

guishable from random walks. If so, the good results frofaodel.

the previous section should carry over. However, the random )

walk model has been strongly rejected using variance edg- ECGsand Segmentation

mators [36]. Moreover, Sornette [41] claims stock markeiectrocardiograms (ECGs) are records of the electridél vo

are akin to physical systems and can be predicted. age in the heart. They are one of the primary tool in screen-
Many financial market experts look for patterns aridg and diagnosis of cardiovascular diseases. The regultin

trends in the historical stock market prices, and this apgio time series are nearly periodic with several commonly iden-

is called “technical analysis” or “charting” [4, 6, 15]. Iftifiable extrema per pulse including reference points P, Q, R

you take into account “structural breaks,” some stock m&; and T (see Fig. 10). Each one of the extrema has some

ket prices have detectable locally stationary trends [D8} importance:



Table 4: Euclidean segmentation errbriform) and cross-validation error far= 10, 20, 30: lower is better.

fit error leave one out error
adaptative  linear  constant linear/adaptiveadaptative linear constant linear/adaptive
Google 79.3 87.6 88.1 110% 26 2.7 2.8 104%
Sun Microsystems 23.1 26.5 21.7 115% 1.5 1.5 14 100%
Microsoft 14.4 15.5 15.5 108% 11 11 11 100%
Adobe 15.3 16.4 14.7 107% 11 11 1.2 100%
ATI 8.6 9.5 8.1 110% 0.8 0.9 0.8 113%
Autodesk 9.8 10.9 10.4 111% 0.9 0.9 0.9 100%
Conexant 326 34.4 326 106% 17 17 17 100%
Hyperion 39.0 41.4 389 106% 1.9 2.0 17 105%
Logitech 6.7 8.0 6.3 119% 0.7 0.8 0.7 114%
NVidia 13.4 15.2 12.4 113% 1.0 11 1.0 110%
Palm 51.7 54.2 48.2 105% 19 2.0 2.0 105%
RedHat 125.2 147.3 145.3 118% 3.7 3.9 3.7 105%
RSA 17.1 19.3 15.1 113% 13 13 13 100%
Sandisk 13.6 15.6 12.1 115% 11 11 1.0 100%
Google 52.1 59.1 52.2 113% 23 2.4 2.4 104%
Sun Microsystems 13.9 16.5 13.8 119% 14 14 14 100%
Microsoft 10.5 12.3 11.1 117% 1.0 11 1.0 110%
Adobe 8.5 9.4 8.3 111% 11 1.0 11 91%
ATI 5.2 6.1 51 117% 0.7 0.7 0.7 100%
Autodesk 6.5 7.2 6.2 111% 0.8 0.8 0.8 100%
Conexant 21.0 22.3 21.8 106% 14 14 15 100%
Hyperion 26.0 29.6 27.7 114% 1.8 1.8 17 100%
Logitech 4.2 4.9 4.2 117% 0.7 0.7 0.7 100%
NVidia 9.1 10.7 9.1 118% 0.9 1.0 1.0 111%
Palm 33.8 35.2 31.8 104% 1.9 1.9 18 100%
RedHat 7.7 88.2 82.8 114% 3.6 3.6 35 100%
RSA 9.8 10.6 10.9 108% 1.2 11 1.2 92%
Sandisk 9.0 10.6 85 118% 1.0 1.0 0.9 100%
Google 37.3 42.7 395 114% 22 22 2.3 100%
Sun Microsystems 11.7 13.2 11.6 113% 14 14 14 100%
Microsoft 75 9.2 8.4 123% 1.0 1.0 1.0 100%
Adobe 6.2 6.8 6.2 110% 1.0 0.9 1.0 90%
ATI 3.6 4.5 3.7 125% 0.7 0.7 0.7 100%
Autodesk 4.7 5.5 4.9 117% 0.8 0.7 0.8 87%
Conexant 16.6 17.6 15.9 106% 14 14 14 100%
Hyperion 18.9 215 18.4 114% 1.7 1.7 16 100%
Logitech 3.2 3.7 3.1 116% 0.7 0.6 0.7 86%
NVidia 6.9 8.6 6.9 125% 0.9 0.9 0.9 100%
Palm 24.5 25.9 225 106% 18 18 18 100%
RedHat 58.1 65.2 58.3 112% 3.8 3.8 3.6 100%
RSA 7.1 8.7 7.3 123% 12 12 12 100%
Sandisk 6.5 7.6 6.4 117% 1.0 1.0 0.9 100%
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Figure 9: Microsoft historical daily stock prices (closeysmented by the adaptive top-down (top), linear top-dowiddie),
and constant top-down (bottom) heuristiEsr clarity, only 150 data points out of 5,029 ar e shown.
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Figure 11: Average Euclideafy(norm) fit error over ECGs
e amissing P extrema may indicate arrhythmia (abnormgt 6 different patients.
heart rhythms);

e alarge Q value may be a sign of scarring;

the somewhat flat region between the S and T Ointsthe random walk and stock market data, the piecewise con-
¢ 9 . . aip stant model is no longer competitive in this case. The op-
called the ST segment and its level is an indicator

ischemia [34 final solution, in this case, is far more competitive with an
ischemia [34]. improvement of approximateB0% of the heuristics, but the

ECG segmentation models, including the piecewise lindgfative results are the same.
model [43, 47], are used for compression, monitoring or
diagnosis. 13 Conclusion and Future Work

We use ECG samples from the MIT-BIH ArrhythmidMe argue that if one requires a multimodel segmentation
Database [22]. The signals are recorded at a samplingluding flat and linear intervals, it is better to segment
rate of 360 samples per second with 11 bits resoluti@tcordingly instead of post-processing a piecewise linear
Prior to segmentation, we choose time intervals spannsggmentation. Mixing drastically different interval mdsle
300 samples (nearly 1 second) centered around the QR®notonic and linear) and offering richer, more flexible
complex. We select 5 such intervals by a moving windosegmentation models remains an important open problem.
in the files of 6 different patients (“100.dat”, “101.dat”, To ease comparisons accross different models, we pro-
“102.dat”, “103.dat”, “104.dat”, “105.dat”). The modelpose a simple complexity model based on counting the num-
complexity variest = 10, 20, 30. ber of regressors. As supporting evidence that mixed mod-

The segmentation error as well as the leave-one-out@ls are competitive, we consistently improved the accuracy
ror are given in Table 5 for each patient and they are plotteg 5% and 13% respectively without increasing the cross-
in Fig. 11 in aggregated form, including the optimal errorgalidation error over white noise and random walk data.
With the same model complexity, the adaptive top-doviioreover, whether we consider stock market prices of ECG
heuristic is better than the linear top-down heuristic (35%ata, for small model complexity, the adaptive top-down
but more importantly, we reduce the leave-one-out cro$euristic is noticeably better than the commonly used top-
validation error as well for small model complexities. Adown linear heuristic. The adaptive segmentation hearisti
the model complexity increases, the adaptive model everitunot significantly harder to implement nor slower than the
ally has a slightly worse cross-validation error. Unlikeé faop-down linear heuristic.



We proved that optimal adaptive time series segmenta-
tions can be computed in quadratic time, when the model
complexity and the polynomial degree are small. However,

Table 5: Comparison of top-down heuristics on ECG dat§Spite this low complexity, optimal segmentation by dy-
(n = 200) for various model complexities: segmentatioR@MiC programming is not an option for real-world time se-

error and leave-one-out cross-validation error.

Fit error fork = 10, 20, 30.

patient adaptive linear constant linear/adaptive
100 99.0 110.0 116.2 111%
101 142.2 185.4 148.7 130%
102 87.6 114.7 99.9 131%
103 2155 300.3 252.0 139%
104 124.8 153.1 170.2 123%
105 1785 252.1 195.3 141%
average 141.3 185.9 163.7 132%
100 46.8 53.1 53.3 113%
101 55.0 65.3 69.6 119%
102 2.2 48.0 50.2 114%
103 88.1 94.4 131.3 107%
104 53.4 53.4 84.1 100%
105 52.4 61.7 97.4 118%
average 56.3 62.6 81.0 111%
100 335 34.6 34.8 103%
101 325 33.6 40.8 103%
102 30.0 324 35.3 108%
103 59.8 63.7 66.5 107%
104 29.9 30.3 48.0 101%
105 35.6 37.7 60.2 106%
average 369 38.7 47.6 105%
Leave-one-out error fat = 10, 20, 30.
patient adaptive linear constant linear/adaptive
100 32 3.3 3.7 103%
101 3.8 4.5 4.3 118%
102 4.0 4.1 35 102%
103 4.6 5.7 5.5 124%
104 4.3 4.1 4.3 95%
105 3.6 4.2 4.5 117%
average 39 4.3 4.3 110%
100 2.8 2.8 3.5 100%
101 33 33 3.6 100%
102 3.3 3.0 3.4 91%
103 29 3.1 4.7 107%
104 3.8 3.8 3.6 100%
105 24 25 3.6 104%
average 31 31 3.7 100%
100 2.8 22 3.3 79%
101 29 29 3.6 100%
102 3.3 29 3.3 88%
103 3.7 31 4.4 84%
104 3.2 32 35 100%
105 21 21 3.4 100%
average 3.0 2.7 3.6 90%

ries (see Fig. 4). With reason, some researchers go as far
as not even discussing dynamic programming as an alterna-
tive [27]. In turn, we have shown that adaptive top-down
heuristics can be implemented in linear time after the linea
time computation of a buffer. In our experiments, for a small
model complexity, the top-down heuristics are competitive
with the dynamic programming alternative which sometimes
offer small gains10%).

Future work will investigate real-time processing for
online applications such as high frequency trading [48] and
live patient monitoring. An “amnesic” approach should be
tested [39].
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