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SVM-Pairwise was a major breakthrough in remote homology detection techniques, significantly 
outperforming previous approaches. This approach has been extensively evaluated and cited by later 
works, and is frequently taken as a benchmark. No known work however, has examined the gap 
penalty model employed by SVM-Pairwise. In this paper, we study in depth the relevance and 
effectiveness of SVM-Pairwise’s gap penalty model with respect to the homology detection task. We 
have identified some limitations in this model that prevented the SVM-Pairwise algorithm from 
realizing its full potential and also studied several ways to overcome them. We discovered a more 
appropriate gap penalty model that significantly improves the performance of SVM-Pairwise. 

1 Introduction 

With protein sequences readily available, much challenge lies with understanding 
the functions and the interactions that proteins are involved in. Current techniques in 
homology detection have achieved encouraging progress but are far from reliable, 
especially for proteins with diverged evolutionary relationship where sequence 
similarities are hardly detectable.  

Earlier approaches in homology detection made use of pairwise local alignment 
search algorithms such as the well-known Smith-Waterman algorithm[1] and its efficient 
heuristic approximations BLAST [2] and FASTA [3]. Homology is inferred based on 
sequence similarity between an unknown protein and annotated sequences. These 
methods have proven very useful. Nonetheless, homologous proteins with remote 
sequence similarity (less than 25% sequence identity [6]) remain elusive. To detect more 
subtle similarities, later approaches adopted a superfamily approach. Known proteins are 
first clustered into different families or superfamilies based on their evolutionary origin, 
and an unknown protein is compared against each superfamily to detect possible 
similarities. Several schemes for classifying proteins into families and superfamilies have 
been established, such as SCOP [21], FSSP [22] and CATH [23]. Techniques that 
utilized the superfamily concept generally adopted two approaches: generative and 
discriminative. 

Generative techniques construct a statistical model for each protein family from 
sequences belonging to that family. The probability that an unknown protein belongs to 
the family is inferred by its similarity to this model. Generative approaches have been 
shown to be able to infer three times more homologies than simple pairwise 
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alignment[12]. Examples of generative approaches include Position Specific Scoring 
Matrices (also known as Profiles[7]) and Hidden Markov Models (HMM) [5], and are 
used by many popular tools such as PFam[10], PROSITE[9], E-MOTIF[8] and 
eBlocks[11]. Iterative methods such as SAM[5] and PSI-BLAST[4] improve upon the 
sensitivity of generative approaches by iteratively updating the model with discovered 
homologues. 

Discriminative techniques, on the other hand, try to find features in family 
members(positive examples) that best distinguishes them from non-members (negative 
examples). While generative approaches consider only positive examples, discriminative 
approaches consider both positive and negative examples. Discriminative methods such 
as Fisher-SVM[13] and SVM-Pairwise[15] that combine Support Vector 
Machines(SVM) with sequence similarity performed relatively well. SVM takes in a 
fixed-length feature vector for each training example that models its characteristics. SVM 
then transforms these vectors using a kernel and finds a hyperplane that best separates 
transformed feature vectors of positive examples from those of negative ones. A similar 
transformed feature vector is derived from each test example and it is classified as 
positive or negative based on which side of the hyperplane this vector resides. 

SVM-Pairwise significantly outperforms all preceding methods and is often used by 
later approaches as a benchmark for performance evaluation. Its edge over previous 
approaches stems from its inclusion of negative examples during training, its ability to 
detect motif or domain-sized similarities even when overall sequence similarity is 
low[15], as well as the inclusion of unrelated dimensions in the feature vector. 
Subsequent approaches largely adopted the discriminative framework [16-20]. Some 
studies proposed to find more concise local structural information by using the 
presence/absence of motifs to derive feature vectors. [17] used motifs from the eBlocks 
database while SVM-I-Sites[16] used structural motifs from the I-Sites database. Such 
methods have been shown to perform well, reinforcing the significance of motif-sized 
similarity. Other works explored new similarity metrics in place of local alignment scores 
[18-20]. 

Although SVM-Pairwise has been extensively evaluated and studied, no known 
work has studied the gap penalty model and parameters that it employs. SVM-Pairwise’s 
improvement over Fisher-SVM depended largely upon its use of local alignment 
algorithms. Since gap penalty has a fundamental effect on alignment algorithms, the use 
of an appropriate gap penalty model can be vital to the performance of SVM-Pairwise.  
In this paper, we study how SVM-Pairwise derived the gap penalty model for its local 
alignment algorithm and how well this model performs for homology detection. We 
discovered that with the original gap penalty model, only a single motif-sized local 
similarity is captured between more distant homologues. To realize the full potential of 
Pairwise-SVM, we need to consider all possible motif-sized local similarities so that 
domain-sized similarities can be detected. We proposed some new algorithms and 
investigated more appropriate gap penalty models. We discovered that simply using a 
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more appropriate gap penalty scheme can significantly improve the performance of 
SVM-Pairwise.  

2 SVM-Pairwise 

SVM-Pairwise uses the pairwise local alignment score between a protein and every 
protein in the dataset to form a feature vector for SVM training. Specifically, the Smith-
Waterman algorithm is used to compute the local alignment score. The default 
parameters for protein sequence alignment are used. That is, an affine gap penalty with 
gap initiation penalty 11 and gap extension penalty 1, as well as the BLOSUM62 
substitution matrix. SVM-Pairwise employs the GIST SVM classifier from the GIST 
SVM software package, which is provided by the authors of the SVM-Pairwise[15] 
paper. The kernel is normalized and transformed into a Radial Basis Function as follows: 
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where width σ is the median Euclidean distance (in feature space) from any positive 
training example to the nearest negative example. The constant 1 is added to the kernel in 
order to translate the data so that the separating hyperplane passes through the origin. An 
asymmetric soft margin is implemented by adding to the diagonal of the kernel matrix a 
value 0.02ρ, where ρ is the fraction of training set sequences that have the same label as 
the current sequence. The trained SVM model produces a discriminant score that is used 
to rank the members of the test set [15]. For a dataset of n proteins, the algorithm 
generates n length-n vectors. For a protein X, its corresponding feature vector will be Fx 
= (fx1, fx2, …, fxn) where fxi is the E-value of the Smith-Waterman score between the x-th 
sequence and the i-th sequence in the dataset. The Smith-Waterman algorithm is a 
dynamic programming algorithm that finds the optimal local alignment between 2 
sequences. Implementations of Smith-Waterman and other local similarity algorithms 
such as BLAST and FASTA typically use the abovementioned gap penalty because of 
their satisfactory performance in finding the most significant local alignment. They do 
not take into account any good local alignments that are not part of the best local 
alignment. To study the effect of such possible limitations in SVM-Pairwise we examine 
the alignment of sequences taken from the Nucleic Acid-Binding proteins superfamily 
(SCOP 2.38.4.1) in version 1.53 of the Structural Classification of Proteins (SCOP) 
database. Figure 1 shows pairwise alignments between Aspartyl-tRNA synthetase(SCOP 
2.38.4.1.1) and some of its family and superfamily members using the default gap 
penalty. 
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Figure 1. Smith-Waterman Alignments between Aspartyl-tRNA synthetase and members of  the Nucleic Acid-
Binding proteins superfamily using affine gap penalty with 11 for gap initiation and 1 for gap extension 
The aligned regions are indicated by the lighter regions and are shown based on their 

position in the Aspartyl-tRNA synthetase sequence. We can see from the alignments that 
while the algorithm is able to capture substantial local similarity regions between the 
sequence and those from its family members (SCOP 2.38.4.1), it does not capture ample 
local similarity with other superfamily members outside its family. The algorithm is 
unable to detect domain-sized similarity but rather only motif-sized similarity between 
these distant homologues. We will see later that distant homologues may have multiple 
regions of short (motif-sized) local similarities rather then a single substantial (domain-
sized) region of local similarity.  

3 Multiple local similarity 

3.1 Recursive Smith-Waterman 

To verify our suspicion that there may be multiple significant motif-sized local 
similarity regions between remote homologues that escape the detection of SVM-
Pairwise, we modified the Smith-Waterman algorithm to recursively capture all 
significant alignments longer then a user-defined minimum length ε. We will refer to this 
new algorithm as Recursive SW. Refer to Figure 2 for an illustration of the algorithm.  

 
RecursiveSW ( X , Y ) 
{ 

                 m = length of X;  n = length of Y; 
Compute the alignment using the Smith-Waterman algorithm. Let S be the alignment 
score and l be the length of matches 
If  (S = 0 or l < ε )  return 0; 
If  (bx > ε and by > ε)  S += RecursiveSW ( X(0, bx - 1) , Y(0, by - 1) ); 
If  (m – ey > ε and n – ey > ε) 

S += RecursiveSW ( X(ex + 1 , m - 1) , Y (ey + 1 , n - 1) ) + h; 
Return S; 

} 
 

Figure 2. The Recursive SW algorithm. 

Given two protein sequences X and Y of length m and n respectively, the algorithm 
first finds the best local alignment between the two sequence, X(bx , ex) and Y(by , ey), 
where bi and ei are the beginning and ending indices of the alignment in the i-th sequence 
respectively. If the Smith-Waterman score of the alignment is 0 (local alignment scores 
are never negative) or if the number of aligned residues is less then ε, the score is set to 0 
and returned. This is the termination condition of the recursive function. If the condition 
is not met, the function will recursively call itself to find the best alignment between 
subsequences not included in the alignment. To preserve sequential ordering of the local 
alignments, we restrict the recursive alignments to X(0, bx - 1) with Y(0, by - 1) and X(ex 
+ 1 , m - 1) with Y(ey + 1 , n - 1). The score from the recursive call is added to the 
current score. The default gap penalty is used and the gap initiation penalty h is imposed 
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for each recursion. In Figure 3, the new algorithm is used to align the same set of 
sequences from the Nucleic Acid-Binding proteins superfamily as before to illustrate the 
improvement in the coverage of local similarities. The alignments showed that Recursive 
SW captured multiple local similarities between the homologues, affirming our earlier 
speculation that  the Smith-Waterman with default parameters overlooked possible 
significant similarities. 

 

 
Figure 3. Recursive Smith-Waterman Alignments between Aspartyl-tRNA synthetase and members of the 

Nucleic Acid-Binding proteins superfamily using affine gap penalty with 11 for initiation and 1 for extension 
The Recursive SW assumes a sequential ordering of these motif-sized similarities. 

To study whether it is significant, we designed another algorithm that allows discovery of 
non-sequential local similarities. This algorithm performs an initial Smith-Waterman 
alignment, then concatenates unaligned regions and aligns them again. This is repeated 
until the alignment is shorter than a minimum length ε. We refer to this algorithm as 
Non-Sequential Recursive SW.  

3.2 Experimental Setup 

We evaluate the performance of the new algorithms using sequences from version 
1.53 of the SCOP database selected with the Astral database[24] such that the E-value  of 
sequence similarity among sequences are above 10-25. The resulting dataset contains 
4352 distinct sequences, grouped into families and superfamilies. For each family, family 
members are used as test examples while superfamily members that are not in the family 
are used as training examples. The data set comprises 54 families with at least 10 family 
members and 5 superfamily members not in the family. Protein domains that do not 
belong to the superfamily are considered negative examples and are randomly split into 
training and testing sets in the same ratio as the positive examples. We used raw Smith-
Waterman alignment scores in the vectorization step of the SVM-Pairwise method as 
Karlin-Altschul statistics may not be appropriate for this application. We shall explain 
this in detail in our journal publication. 

To compare the relative performance of different algorithms, we use the Receiver 
Operating Characteristic (ROC)[25] score, which is the area under the curve derived 
from plotting true positives as a function of false positives for various thresholds. A 
higher ROC score indicates a better classifier and the perfect classifier has an ROC score 
of 1. The dataset is classified using the SVM-Pairwise framework in 3 different setups. 
The first uses a Smith-Waterman implementation for the vectorization step, with the 
default gap penalty. The other two employs Recursive SW and Non-Sequential Recursive 
SW respectively in place of Smith-Waterman in the vectorization step with the same gap 
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penalty and a value of 10 for ε. Figure 4 is obtained by plotting the total number of 
families for which each method obtains an ROC score that exceeds or equals some 
threshold h where h ∈ [0..1]. The curve of the setup using Recursive SW dominates that 
using Smith-Waterman, indicating that it is a better classifier. This reinforced our idea 
that capturing a more complete local similarity between two homologues can better 
reflect their relationship. We also observed that the classifier using Recursive SW 
performed better than that using Non-Sequential Recursive SW. This indicates that the 
sequential ordering of local similarities may be significant in homology detection.  

 

 
Figure 4.  Number of families with ROC scores equals or exceeding different thresholds scores 
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Figure 5. 2D plot of the ROC scores for Pairwise-SVM using Smith-Waterman against Pairwise-SVM using 

Recursive SW 

Figure 5 illustrates a 2D-plot that compares the relative ROC scores for each method 
family-by-family. It is observed that while Recursive SW performs better then Smith-
Waterman for most families, it performs unsatisfactorily for a handful of families 
(indicated by the arrows). Among the worst is the Legume lectins family (SCOP 
2.38.1.1) as indicated by the circle in Figure 5. 

To see why Recursive SW classified these families so badly, we examine the 
classification results of the Legume Lectins family (SCOP 2.28.1.1). We study one of the 
positive test examples, West-central African Legume (SCOP 2.38.1.1.5) in which the 
algorithm erroneously classified them as unlikely to belong to the ConA-like 
lectins/glucanases superfamily (SCOP 2.38.1) (it was given a very low discriminant 
score).  Figure 6 shows the alignment of West-central African Legume with all the 24 
training examples for the ConA-like lectins/glucanases superfamily using Recursive SW. 
The alignments revealed that the algorithm detected very little similarity between them. 
Using other members of the family yielded similar observations. This lead us to speculate 
that there may be more subtle similarity between remote homologues that may contain 
frequent non-contiguous gaps. Such similarities would be undetected by the harsh gap 
initiation penalty. Another problem with Recursive SVM is that it does not take into 
account the length of gaps between any two local alignments (the gap initiation penalty is 
imposed for every recursion independent of the gap length). 
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Figure 6. Recursive SW Alignments between West-central African Legume (SCOP 2.38.1.1.5) and all 18 

training examples from the ConA-like lectins/glucanases superfamily (SCOP 2.38.1) 

4 Relaxed Gap Penalty 

We have seen that despite its relatively better performance, the Recursive SVM 
algorithm has some possible pitfalls. Based on the above study, we need to find an 
approach that can capture multiple sequential local motif-sized similarities between any 
pair of protein sequences. The approach should also allow more general alignment with 
multiple gaps, and is sensitive to the length of gaps between motif-sized similarities. If 
we take such gap lengths into consideration, motif-sized local similarities that are too far 
apart from each other may no longer be significant as a group. Hence we do not have to 
capture all possible local similarities but only capture those that are relatively close to 
each other. The most straight forward way to achieve all these characteristics is to use 
Smith-Waterman algorithm with a more relaxed gap penalty. 

We examine the effect of relaxing the gap initiation penalty for the affine gap model 
to be 4 while retaining the gap extension penalty of 1. Using the same set of sequences as 
in Figure 4, we examine the effect on the alignment of these sequences. The alignment 
results are shown in Figure 7. From the alignments, we can see that the more relaxed 
penalty allows for more general similarity with frequent short gaps and at the same time 
provides a comprehensive coverage of motif-sized similarities. We observed that the new 
gap penalty model can capture most of the motif-sized similarities that Recursive SW 
was able to discover. At the same time, the sequential order of these motif-sized 
similarities is required for successful alignment. The effect of varying length of gaps 
between motif-sized similarities is also taken into consideration since the alignment will 
be penalized according to the gap length.  
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Figure 7. Recursive Smith-Waterman Alignments between Aspartyl-tRNA synthetase and members of the 
Nucleic Acid-Binding proteins superfamily using affine gap penalty with 4 for gap initiation and 1 for gap 
extension 

 
Figure 8.  Number of families with ROC scores equals or exceeding different thresholds scores 

The same experimental setup in Section 3.2 is used to evaluate the relative 
performance of the relaxed gap model when used for homology detection. The original 
Pairwise-SVM is again used as the baseline model.  To illustrate the significance of a less 
restrictive gap penalty, we also run one set of experiment using a simple linear gap 
penalty model with a gap penalty of 4. Figure 8 is obtained by plotting the total number 
of families for which each method obtains an ROC score that exceeds or equals some 
threshold h where h ∈ [0..1]. We can see a significant improvement in the classification 
performance of SVM-Pairwise when a more relaxed gap penalty model is used. A 
family-to-family comparison with the original SVM-Pairwise method (refer to Figure 10) 
reveals that both relaxed penalty models can achieve an equal or better prediction then 
the original gap penalty model for most families. For the linear model, the boost in 
improvement comes with a bonus – reduction in memory requirement and running time. 
The linear gap penalty model requires only 1 dynamic programming table compared to 3 
for affine gap penalty, reducing memory requirement by a factor of 3. Complexity is also 
reduced by a factor of 3 since fewer tables are updated, speeding up the execution time.  
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Figure 10. ROC 2D-Plot between SVM-Pairwise and SVM-Pairwise using Affine Penalty of 4 for gap initiation 

and 1 for gap extension (left) and between SVM-Pairwise and SVM-Pairwise with Linear Penalty (Right) 

5 Conclusion 

We have studied the gap penalty model used by the SVM-Pairwise method in detail 
and discovered several limitations, namely that it fails to detect multiple localized motif-
sized similarities and it does not capture more subtle similarities with frequent gaps. We 
also studied several approaches to improve the performance of SVM-Pairwise by 
rectifying these limitations. Through these studies, we have affirmed our speculation that 
a more complete similarity assessment between any two sequences should consider 
multiple motif-sized local similarities that are in sequential order. This also implies that 
the ordering of motifs in a protein sequence may significantly affect its function. Among 
the approaches studied, we have found that using a relaxed affine gap penalty with a gap 
initiation penalty of 4 and a gap extension penalty of 1 works well for the most number 
of families studied.  
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