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Abstract. In this paper we study a scheduling problem arising from
executing numerical simulations on HPC architectures. With a constant
number of parallel machines, the objective is to minimize the makespan
under memory constraints for the machines. Those constraints come from
a neighborhood graph G for the jobs. Motivated by a previous result on
graphs G with bounded path-width, our focus is on the case when the
neighborhood graph G has bounded tree-width. Our result is a bi-criteria
fully polynomial time approximation algorithm based on a dynamic pro-
gramming algorithm. It allows to find a solution within a factor of 1 + ε
of the optimal makespan, where the memory capacity of the machines
may be exceeded by a factor at most 1 + ε. This result relies on the
use of a nice tree decomposition of G and its traversal in a specific way
which may be useful on its own. The case of unrelated machines is also
tractable with minor modifications.

1 Introduction

In this paper, we study the scheduling problem Pk|G,mem|Cmax previously in-
troduced in [1] where the number of machines is a fixed constant. This problem
is motivated by running distributed numerical simulations based on high-ordered
finite elements or volume methods [5, 12]. Such approaches require the geometric
domain of study to be discretized into basic elements, called cells, which form
a mesh. Each cell has a computational cost, and a memory weight depending
on the amount of data (i.e. density, pressure, . . . ) stored on that cell. More-
over, performing the computation of a cell requires, in addition to its data, data
located in its neighborhood4. For a distributed simulation, the problem is to
assign all the computations to processing units with bounded memory capaci-
ties, while minimizing the makespan. As an illustration of the previous notions,
4 The neighborhood is most of the time topologically defined (cells sharing an edge or
a face).
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let us consider Figure 1(a) where a mesh and its associated computations are
assigned onto 3 processing units. Each color corresponds to a processing unit
and the total amount of memory needed by each processing unit is not limited
to the colored cells but extends to some adjacent cells. An exploded view of
the mesh is pictured in Figure 1(b), where we consider an edge-based adjacency
relationship and where the memory needed by each processing unit is equal
to both colored and white cells. In practice, efficient partitioning tools such as
Scotch [18], MeTiS [19], Zoltan [20] or PaToH [17] are used. However, the
solutions returned by these tools may not respect the memory capacities of the
processing units [21].

(a) (b)

Fig. 1: In (a), a 2D mesh and its computations are assigned onto 3 processing
units. In (b), an exploded view of the assignment with an edge-based adjacency
relationship.

Formally, the scheduling problem under memory constraints is defined as
follows. We have a set of n jobs J , and each job j ∈ J requires pj ∈ N units
of time to be executed (computation time) and an amount mj ∈ N of memory.
Jobs have to be assigned among a fixed number k of identical machines, each
machine l having a memory capacity Ml ∈ N, for l = 1, . . . , k. Additionally
we have an undirected graph G(J,E), which we refer to as the neighborhood
graph. Two jobs j ∈ J and j′ ∈ J are said to be adjacent if there is an edge
(j, j′) ∈ E in G. Moreover, each job j requires data from its set of adjacent
jobs, denoted by N (j) := {j′ ∈ J | (j, j′) ∈ E}. For a subset of jobs J ′ ⊆ J , we
note N (J ′) := ∪j∈J′ N (j) \ J ′ and denote N [J ′] := N (J ′) ∪ J ′. When a subset
of jobs J ′ ⊆ J is scheduled on a machine, this machine needs to allocate an
amount of memory equal to

∑
j∈N [J′] mj , while its processing time is

∑
j∈J′ pj .

The objective is to assign each job of J onto exactly a machine, such that the
makespan (the maximum processing time over all machines) is minimized and
ensuring that the amount of memory allocated by each machine is smaller than
or equal to its memory capacity.

The scheduling problem under memory constraints embraces other well-
known NP-hard scheduling problems and cannot be solved in polynomial time
unless P=NP. Thus, one could be interested in developping approximation al-
gorithms. An α-approximation algorithm (for some α ≥ 1) for a minimization
problem is a polynomial-time algorithm that produces, for any given problem
instance I, a solution whose value is at most α times the optimum value. In
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particular, a fully polynomial-time approximation scheme (FPTAS) is a family
of (1+ε)-approximation algorithms for all ε > 0 whose time complexity is poly-
nomial in both the input size and 1/ε. Considering the scheduling problem under
memory constraints, one could wonder if approximation algorithms can be ob-
tained when the memory constraints are relaxed. For α ≥ 1 and β ≥ 1, an (α, β)
(bi-criteria) approximation algorithm returns a schedule with objective value at
most αC and with memory load at most βM , where C and M , respectively, are
the maximum computation time and the memory load of an optimal schedule
with respect to the makespan. Following the terminology of [22], a bi-FPTAS
for the scheduling problem under memory constraints is a FPTAS which is a
bicriteria (1 + ε, 1 + ε) approximation algorithm.

1.1 Related problems

The problem Rk|G,mem|Cmax contains other well-known NP-hard scheduling
problems. When mj = 0 for each job j, the problem Rk|G,mem|Cmax becomes
the scheduling problem Rk||Cmax for which several approximations algorithms
exist [6, 11, 15]. When the neighborhood graph has no edges, and the memory
is bounded on each machine, and mj = 1 for each job j, we get the so-called
Scheduling Machines with Capacity Constraints problem (SMCC). In this prob-
lem, each machine can process at most a fixed number of jobs. Zhang et al. [4]
gave a 3-approximation algorithm by using the iterative rounding method. Saha
and Srinivasan [14] gave a 2-approximation in a more general scheduling setting,
i.e. Scheduling Unrelated Machines with Capacity Constraints. Lately, Keller
and Kotov [8] gave a 1.5-approximation algorithm. Chen et al. established an
EPTAS [3] for this problem and, for the special case of two machines, Woeginger
designed a FPTAS [16].

1.2 Main Contribution

As the scheduling problem under memory constraints is a generalization of those
well-known scheduling problems, a reasonable question is to know whether we
can get approximation algorithms, which could depend on some parameters of
the neighborhood graph, when the number of machines is a fixed constant. We
answered this question in a previous paper [1] by providing a fixed-parameter
tractable (FPT) algorithm with respect to the path-width of the neighborhood
graph, which returns a solution within a ratio of (1 + ε) for both the optimum
makespan and the memory capacity constraints (assuming that there exists at
least one feasible solution). In this paper we extend this result by providing a
bi-FPTAS for graphs with tree-width bounded by a constant. Unlike the FPT
algorithm which relies on the numbering of the vertices of the neighborhood
graph, the bi-FPTAS takes advantage of a nice tree decomposition of the neigh-
borhood graph and of its traversal in a particular way to bound the algorithm
complexity.
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1.3 Outline of the Paper

We start by briefly recalling in Section 2 the definitions of different notions
useful in the sequel. We then provide in Section 3 an algorithm that computes
all the solutions to this problem. This algorithm consists of three steps: build
a nice tree decomposition of G(J,E); compute a layout L defining a bottom-
up traversal of the nice tree decomposition; and use a dynamic programming
algorithm traversing the nice tree decomposition following L. Since the time
complexity of this algorithm is not polynomial in the input size, we apply the
Trimming-of-the-State-Space technique [7] in Section 4 obtaining a bi-criteria
approximation algorithm for graphs with tree-width bounded by a constant.
Finally, we give some concluding remarks in Section 5.

2 Definitions

Throughout this paper we consider simple, finite undirected graphs. Let us start
by defining the notions of tree decomposition, tree-width and nice tree decompo-
sition. The notions of tree decomposition and tree-width were initially introduced
in the framework of graph minor theory [13]. For a graph G(J,E), let J(G) := J
be its vertices and E(G) := E be its edges. A tree decomposition for G is a pair
(T,X), where T := (J(T ), E(T )) is a tree, and X := (Xu)u∈J(T ) is a family of
subsets of J satisfying the following conditions:

1. For each j ∈ J(G) there is at least one u ∈ J(T ) such that j ∈ Xu.
2. For each {j, j′} ∈ E(G) there is at least one u ∈ J(T ) such that j and j′ are

in Xu.
3. For each j ∈ J(G), the set of vertices u ∈ J(T ) such that j ∈ Xu induces a

subtree of T .

To distinguish between vertices of G and T , the latter are called nodes. The
width of a tree decomposition is max(|Xu| − 1 : u ∈ J(T )) and the tree-width
of G, noted tw(G), is the minimum width over all tree decompositions of G.
A graph G(J,E) is illustrated on Figure 2(a) and a tree decomposition of this
graph is illustrated on Figure 2(b).

Choosing an arbitrary node r ∈ J(T ) as root, we can make a rooted tree
decomposition out of (T,X) with natural parent-child and ancestor-descendant
relations. A node without children is called a leaf.

A rooted tree decomposition (T,X) with root r is called nice if every node
u ∈ J(T ) is of one of the following types:

– Leaf: node u is a leaf of T and |Xu| = 1.
– Introduce: node u has only one child c and there is a vertex j ∈ J(G) such

that Xu = Xc ∪ {j}.
– Forget: node u has only one child c and there is a vertex j ∈ J(G) such

that Xc = Xu ∪ {j}.
– Join: node u has only two children l and r such that Xu = Xl = Xr.
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(a) A graph G(J,E).
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(b) A tree decomposition (T,X) of
the graph G(J,E).

Fig. 2: Example of a graph G(J,E) in (a) and a tree decomposition (T,X) of
this graph where X is composed of the sets X1 = {j1, j4}, X2 = {j1, j2, j4},
X3 = {j1, j3, j4}, X4 = {j2, j5} in (b).
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Fig. 3: Example of a nice tree decomposition of the graph G(J,E) with width
tw(G) = 2 where the node types are written in grey.

In Figure 3 we present a nice tree decomposition of G(J,E) illustrated on
Figure 2(a)

Note that a vertex of J(G) can be forgotten at most once in a node of J(T ).
Otherwise, it would conflict with the third condition listed in the definition of a
tree decomposition. We leverage this property later in the article.

There is an alternative definition to the nice tree decomposition where the
root r and all leaves u of T are such that Xr = Xu = ∅. But one can switch
from one of these decompositions to the other in a trivial way.

When G is a graph with tw(G) = h, where h is any fixed constant, we can
compute a tree decomposition of G in linear time with tree-width at most h [2].
Given a tree decomposition (T,X) of G(J,E) of constant width h ≥ 1, there is an
algorithm that converts it into a nice tree decomposition (T ′, X ′) with the same
width h and with at most 4n nodes, where n = |J(G)|, in O(n) times (Lemma
13.1.3 in [9]). In the rest of the article, we will consider a nice tree decomposition
obtained in this way.

Now, let us introduce the notion of layout of a nice tree decomposition (T,X),
which is simply a one-to-one mapping L : J(T ) → {1, . . . , |J(T )|}. We say that
a layout L defines a bottom-up traversal of a nice tree decomposition (T,X) if
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for any edge {u, v} ∈ E(T ) such that v is a child of u one has L(v) < L(u). In
that case, we say that L is a bottom-up layout.

3 An Exact Algorithm Using Dynamic Programming

Briefly, our algorithm consists of three steps. First, we build a nice tree de-
composition (T,X) of the graph G(J,E) with bounded tree-width. Such a tree
decomposition can be obtained in polynomial time for graph G with tree-width
bounded by a constant (see Section 2). Then, we compute a specific layout
L defining a bottom-up traversal of the nice tree decomposition. Finally, a dy-
namic programming algorithm passes through the nodes following the previously
defined order L and computes a set SL(u) of states, which encodes partial so-
lutions for Gi = (Ji, Ei) a subgraph of G = (J,E), for each node u ∈ J(T ). In
Section 3.1, we start by presenting the dynamic programming algorithm where
we detail how the set of states SL(u) is computed depending on the type of node
u. Then, in Section 3.2, we give a proof of correctness of our dynamic program-
ming algorithm when the nodes of the nice tree decomposition are traversed in
a bottom-up way. Eventually, we compute the complexity of our dynamic pro-
gramming algorithm when the decomposition is traversed following the layout
L. This layout is used to bound the complexity of our algorithm and, being
bottom-up, it is compliant with the pre-requisite on proof of completeness.

3.1 The Dynamic Programming Algorithm

The presentation of the dynamic algorithm is done for two machines, but it can
be generalized to a constant number k of machines, with k > 2. The dynamic
algorithm goes through |J(T )| phases. Each phase i, with i = 1, . . . , |J(T )|,
processes the node L−1(i) ∈ J(T ) and produces a set Si of states. In the sequel,
for sake of readability, we use the notation Zi := XL−1(i). Each state in the state
space Si encodes a solution for the graph Gi = (Ji, Ei), where Ji := ∪io=1Zo
with J0 = ∅, and Ei := Ei−1 ∪ EZi

with E0 = ∅ and EZi
the set of all edges in

E which have both endpoints in Zi.
For each phase i, we denote by JL(i) the set of vertices of J(G) which have not

been forgotten when going through nodes L−1(1) to L−1(i). For convenience, we
note JL(0) := ∅. Formally, JL(i) := Ji \ VR(i), where VR(i) is the set of vertices
that where removed in a Forget node o such that L(o) ≤ i.

A state s ∈ Si is a vector [c1, c2, c3, c4, Ci] where:

– c1 (resp. c2) is the total processing time on the first (resp. second) machine
in the constructed schedule,

– c3 (resp. c4) is the total amount of memory required by the first (resp. second)
machine in the constructed schedule,

– Ci is an additional structure, called combinatorial frontier. For a given so-
lution of Gi(Ji, Ei), it is defined as Ci := (JL(i), σi, σ

′
i) where σi : JL(i) →

{1, 2} and σ′i : JL(i) → {0, 1} such that σi(j) is the machine on which
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j ∈ JL(i) has been assigned, and σ′i(j) := 1 if the machine on which j is
not assigned, i.e. machine 3 − σi(j), has already memorised the data of j.
Notice that JL(i) ⊆ Ji and keeping into memory the combinatorial frontier
with respect to JL(i) rather than Ji is a key point in our algorithm in order
to bound its complexity.

In the following, we present how to compute Si from Si−1 depending on the
type of node L−1(i). For that, we present how states of Si are obtained from
an arbitrary state s = [c1, c2, c3, c4, Ci−1] ∈ Si−1. When L−1(i) is a Leaf node
with Zi = {j} or an Introduce node with j the vertex introduced, we note sa
(a = 1, 2) the state of Si obtained from s and resulting from the assignment of
j to machine a, and Cai the combinatorial frontier obtained from Ci−1 when j is
assigned to machine a.

Leaf Let L−1(i) ∈ J(T ) be a Leaf of T with Zi = {j}. For each state of Si−1
we add at most two states in Si. If j ∈ JL(i − 1), it means that j has already
been assigned to a machine. Therefore, there is nothing to do and Si = Si−1.
Now, let us assume that j /∈ JL(i − 1). In this case, we must compute two new
states taking into account the assignment of j to machine one or two. We have

sa = [c1 + δa,1cj , c2 + δa,2cj , c3 + δa,1 mj , c4 + δa,2 mj , Cai ]

where δ is the Kronecker function (δi,j = 1 if i = j, and δi,j = 0 otherwise).
Since j /∈ JL(i−1), the new combinatorial frontier is obtained by extending Ci−1
in adding new information related to j, i.e. σi(j) = a and σ′i(j) = 0. Note that
we have σ′i(j) = 0 because j was not assigned before phase i and EZi

= ∅.
Introduce Let L−1(i) ∈ J(T ) be an Introduce node of T and j ∈ J(G)

being the vertex introduced. Again, for each state s of Si−1 we are going to add
at most two states to Si depending on j assignment. However, processing an
Introduce node differs from a Leaf because we may have to consider new edges.
This happens when Ei\Ei−1 6= ∅. There are two cases to consider. The first one
is when j ∈ JL(i− 1). In that case, job j has already been assigned on machine
a = σi−1(j). We add a state in Si for every state s in Si−1. Let Fa and F ′a be
the set of edges such that

Fa = {{j, j′} ∈ EZi
: a 6= σi−1(j

′) and σ′i−1(j
′) = 0}, (1)

F ′a = {{j, j′} ∈ EZi
: a 6= σi−1(j

′) and σ′i−1(j) = 0}. (2)

The set Fa represents the new edges in EZi inducing additional amount of data
on machine a. The set F ′a represents the new edges in EZi inducing that mj

must be added on the machine not processing j. Note that some edges in EZi

may have already been considered in a previous node and that they can’t be a
part of Fa or F ′a. Thus, we have

sa = [c1, c2, c3 + δa,1α
1
i + δa,2β

1
i , c4 + δa,2α

2
i + δa,1β

2
i , C

a
i ]

where αai =
∑
{j,j′}∈Fa

mj′ and βai = mj IJF ′a 6= ∅K where IJAK is the indicator
function which returns one if condition A is satisfied and zero otherwise. Finally,
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the combinatorial frontier of the new state sa is obtained from that of s by
updating, if necessary, the information of j and vertices j′ such that {j, j′} ∈ Fa.
If we have F ′a 6= ∅, it means that j was not memorised by machine 3− a in state
s. However, this is no longer the case for sa as new edges have been taken into
account leading us to σ′i(j) = 1 6= σ′i−1(j). If we have Fa 6= ∅, then some vertices
processed by machine 3− a were not memorised by machine a in state s. Again,
this is no longer the case in sa following the inclusion of new edges leading us to
σ′i(j

′) = 1 6= σ′i−1(j
′) for every vertex j′ such that {j, j′} ∈ Fa.

Now, if j /∈ JL(i− 1) then we add two states in Si for every state s ∈ Si−1.
For a = 1, 2, we have

sa = [c1 + δa,1 pj , c2 + δa,2 pj ,

c3 + δa,1(mj +α
1
i ) + δa,2β

1
i , c4 + δa,2(mj +α

2
i ) + δa,1β

2
i , C

a
i ].

The way to obtain the first four coordinates of each new state in Si is similar
to the case where j ∈ JL(i − 1) except that we have to add pj and mj on the
machine processing j. In the case of the combinatorial frontier, updates defined
for j ∈ JL(i − 1) also apply and we have to add information related to j since
it was unknown so far. The added data is σi(j) = a and σ′i(j) = IJ∃j′ ∈ Zi :
{j, j′} ∈ EZi and σi−1(j′) 6= aK.

Forget Let L−1(i) ∈ J(T ) be a Forget node of T and j ∈ J(G) being the
vertex forgotten. This type of node is easier to handle than previous ones since
we don’t have to deal with new vertex or edges. The only thing to do is to
withdraw j from the combination frontier. Thus, for each state s ∈ Si−1 we add
a state s′ ∈ Si where the combinatorial frontier of s′ is equal to that of s from
which information on j was removed.

Join Let L−1(i) ∈ J(T ) be a Join node of T . This type of node is even
simpler to deal with than the previous one. Once again, there are no new vertex
or edges to handle. Moreover, we don’t forget any vertex. For each state s ∈ Si−1
we add s to Si. Thus, we have Si = Si−1.

Our algorithm ends up by returning the state s = [c1, c2, c3, c4, C|J(T )|] ∈
S |J(T )| with c3 ≤M1, c4 ≤M2 and such that max{c1, c2} is minimum.

3.2 Algorithm Correctness

Now, let us present the proof of correctness of our dynamic programming algo-
rithm when the nodes of the nice tree decomposition are traversed in bottom-up.
We will prove our algorithm correctness by maintaining the following invariant:
the states in Si encode all the solutions for the graph Gi = (Ji, Ei), defined at
Section 3.1.

Initialization Let us start with the first node encountered. Let G0 = (J0, E0)
be an empty graph and S0 be the set composed of the single state [0, 0, 0, 0, C0]
where C0 does not store information. The nodes being traversed in bottom-up,
the first node encountered is a Leaf. Let j ∈ J(G) be the vertex such that
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Z1 = {j}. Since j /∈ JL(0) we have S1 = [(pj , 0,mj , 0, C11), (0, pj , 0,mj , C21)]
where, for a = 1, 2, Ca1 is such that σ1(j) = a and σ′1(j) = 0. These two states
encode the assignment of j on machines one and two when considering the graph
G1 = (J1, E1). Moreover, the combinatorial frontier obtained allows us to keep
in memory potentially necessary knowledge for graphs of which G1 = (J1, E1) is
a sub-graph. Thus the invariant is correct for the first node.

Maintenance Now let us assume that the invariant holds for L−1(i−1) ∈ J(T )
and let us prove that it is still correct for L−1(i) ∈ J(T ).

Leaf Let L−1(i) ∈ J(T ) being a Leaf with Zi = {j}. If j ∈ JL(i−1) then our
algorithm states that Si = Si−1. In that case, the invariant holds because Gi =
(Ji, Ei) is equal to Gi−1 = (Ji−1, Ei−1). Now, if j /∈ JL(i) then our algorithm
adds two new states in Si for every state in s ∈ Si−1 to take into account the
assignment of j to machine one and two. Each new state is obtained by adding
pj and mj according to the assignment of j and the associated combinatorial
frontier is obtained by extending the combinatorial frontier of s with information
on j assignment, i.e. σi(j) = a and σ′i(j) = 0. Since we are dealing with a Leaf
and j /∈ JL(i) we have Gi = (Vi−1 ∪ {j}, Ei−1). Therefore, the invariant holds.

Introduce Let L−1(i) ∈ J(T ) being an Introduce node with j ∈ J(G) being
the vertex introduced. If j ∈ JL(i− 1) then our algorithm adds one new state in
Si for every state in Si−1. A new state in Si is obtained from a state in Si−1 by
adding, if needed, some amount of data on machine one and two. Let a = σi−1(j)
and Fa and F ′a be the sets defined in (1) and (2). We note F ′′a the set such that
F ′′a = EZi\(Fa ∪ F ′a).

Lemma 1. Let s be a state encoding a solution of a graph G′ = (J ′, E′). Then,
if we add an edge e = {j, j′} such that j ∈ J ′, j′ ∈ J ′ and e ∈ F ′′a then s also
encodes a solution of the graph G′ = (J ′, E′ ∪ e).

Proof. The proof of this lemma is based on the fact that introducing such edge
does not make s inconsistent with graph G′ = (J ′, E′∪e). Let us begin by noting
that adding an edge e = {j, j′} ∈ F ′′a does not require to modify the processing
times in s to make it a state encoding a solution of G′ = (J ′, E′ ∪ e). Indeed,
since s encodes a solution for G′ = (J ′, E′), the processing time induced by the
assignment of j and j′ has already been encoded. Now, suppose that e ∈ F ′′a .
Then, we have either j and j′ that are assigned to the same machine, or j and j′
that are memorised by both machines. In either case, adding such an edge does
not require to modify the amount of memory or combinatorial frontier in s to
make it a state encoding a solution of G′ = (J ′, E′ ∪ e). �

Let us now go back to our algorithm. On the machine processing j, our
algorithm adds mj′ for every vertex j′ ∈ Ji such that {j, j′} ∈ Fa. Indeed, since
j′ is on a different machine than j and that this machine does not memorise
j′, it is necessary to add mj′ on machine σi−1(j) to take into account the edge
{j, j′}. On the machine not processing j, our algorithm adds mj if there is an
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edge {j, j′} ∈ F ′a. Indeed, as j′ is on a different machine than j′ and j is not
memorised by this machine, it is necessary to add mj on machine σi−1(j′) to take
into account the existence of such an edge. Finally, we update the combinatorial
frontier information on vertex j if F ′a 6= ∅ and on vertices j′ such that {j, j′} ∈ Fa.
Therefore, the states returned by our algorithm encode solutions for the graph
G′ = (Ji, Ei−1 ∪ Fa ∪ F ′a ∪ F ′′a ) and the combinatorial frontier is consistent with
the addition of new vertices or edges. According to Lemma 1, our algorithm
encodes solutions for the graph Gi = (Ji, Ei) since Ei = Ei−1 ∪ EZi

and EZi
=

Fa ∪ F ′a ∪ F ′′a . Thus, the invariant holds.
Now, if j /∈ JL(i− 1) the proof of the invariant enforcement is similar to the

case where j ∈ JL(i−1). The difference lies in the fact that j is not yet assigned.
Thus, one must generate two new states in Si for each state in Si−1 and the
processing time, and amount of memory, of j must be added on the machine
processing j.

Forget Let L−1(i) ∈ J(T ) be a Forget node of T and j ∈ J(G) being the
vertex forgotten. Here, our algorithm generates the states of Si by taking those
of Si−1 from which it removes information on vertex j from the combinatorial
frontier. First, let us note that Gi = (Ji, Ei) is equal to Gi−1 = (Ji−1, Ei−1)
and the invariant holds. Notice that since we traverse T in bottom-up, we know
that removing a vertex j implies that all edges linked to it have been explored.
Otherwise, it would lead to the violation of a property of the tree decomposition
(the third listed in Section 2). Therefore, we can stop memorising the information
related to vertex j.

Join Let L−1(i) ∈ J(T ) be a Join node of T . In that case, our algorithm
computes Si by retrieving the states of Si−1 without modifying them. Since we
have Gi = (Ji, Ei) equal to Gi−1 = (Ji−1, Ei−1) and no modification on the
combinatorial frontier is performed, the invariant holds.

Termination Finally, from the first and second conditions listed in the defini-
tion of the tree decomposition, we know that the graphG|J(T )| = (J|J(T )|, E|J(T )|)
is equal to G = (J,E). Since our invariant is valid for the first node and during
the transition from nodes L−1(i−1) to L−1(i), our algorithm returns an optimal
solution for the scheduling problem under memory constraints.

3.3 Algorithm Complexity

Let us now evaluate the time complexity of our dynamic programming algo-
rithm. Let JmaxL := max1≤i≤|J(T )| |JL(i)|. Let psum :=

∑
j∈J(G) pj and msum :=∑

j∈J(G) mj , then for each state s = [c1, c2, c3, c4, Ci] ∈ Si, c1 and c2 are in-
tegers between 0 and psum, c3 and c4 are integers between 0 and msum. The
number of distinct combinatorial frontiers is 4J

max
L . Therefore, the number of

states is | Si | = O(p2
sum×m2

sum×4J
max
L ). The dynamic programming algorithm

processes all |J(T )| = O(n) nodes of the nice tree decomposition. Each state
in a phase can give at most two states in the next phase with a processing
time of O(JmaxL ) to compute these states. Recall also that in the algorithm,
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if two states s and s′ have the same components, including the same combi-
natorial frontier, then only one of them is kept in the state space. The time
complexity to test whether two states s and s′ are the same is thus propor-
tional to the length of the combinatorial frontier, and is therefore O(JmaxL ). We
obtain that the overall complexity of the dynamic programming algorithm is
O(n× |Si | × (JmaxL + | Si |JmaxL )) = O(n× JmaxL × (p2

sum×m2
sum×4J

max
L )2).

Notice that JmaxL depends on the chosen layout L, and to minimize this
complexity it is therefore important to find a layout L with a small JmaxL .

Lemma 2. There exists a bottum-up layout L of the nice tree decomposition
such that JmaxL ≤ tw(G) dlog 4ne.

Proof. To prove that such a layout exists we present an algorithm which, when
applied to the root of the nice tree decomposition, computes a bottom-up layout
L such that JmaxL ≤ tw(G) dlog 4ne. To ease the understanding of certain parts
of the proof, these parts will be illustrated on Figure 4 where a tree with 174
nodes is depicted.

The algorithm works as follows. We perform a depth-first search starting from
the root node, and when we have a Join node we first go to the subtree having
the greatest number of nodes. With this depth-first search we get a discovery
and finishing times for each node. The labeling is obtained by sorting the nodes
in increasing order of their finishing time. As an example, the nodes of the nice
tree decomposition in Figure 3 have been labelled according to this procedure if
we consider in this example that L−1(i) = i for 1 ≤ i ≤ 12.

Now, let us analyze JmaxL on the layout returned by our algorithm. Recall
that we use the notation Zi := XL−1(i) and let us define the operator t such
that Zi t Zi+1 := Zi \ {j} if L−1(i + 1) is a Forget node, with j the vertex
forgotten, and ZitZi+1 := Zi∪Zi+1 otherwise. Notice that JL(i) = to≤iZo and
that if we have a set of consecutive nodes L−1(l), L−1(l + 1), . . . , L−1(u) such
that L−1(i + 1) is a parent node for L−1(i) (l ≤ i ≤ u − 1), then tui=lZi = Zu.
Moreover if this chain is maximal, i.e. L−1(u+1) is not a parent node of L−1(u),
then it means that the parent of L−1(u) is a Join node. For any node L−1(i), we
have JL(i) = to≤iZo = ∪l∈AXl, with A a set of nodes, of minimum size, that
we call critical. This set of critical nodes A can be obtained by taking the last
node in each maximal chain over nodes L−1(1) to L−1(o). Thus, A is composed
of the current node L−1(i) along with other nodes whose parents are Join nodes.
Such set A is illustrated in Figure 4(a) where we consider i = 166 and where the
nodes composing A are green colored.

For a Join node L−1(i) having two childrens L−1(l) and L−1(r), let denote by
Tl(i) and Tr(i) the corresponding subtrees. We will assume that |Tl(i)| ≥ |Tr(i)|
and therefore during the depth-first search we use, node L−1(l) will be examined
before node L−1(r). We say that L−1(l) (resp. L−1(r)) is the left (resp. right)
children of L−1(i). By the way the depth-first search is performed, all nodes in A,
excepted the current node L−1(i), are left children of Join nodes, and these Join
nodes are on the path P between the root node and the current node L−1(i). In
Figure 4(a), such path P contains the Join nodes purple colored.
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Now, let us bound the number of Join nodes on the path P . First, we con-
struct a reduced graph by removing the nodes of R where R is the set of nodes
of P that are not Join nodes. Such a reduced graph is illustrated in Figure 4(b).
By doing this set of deletions, we get a tree with fewer than 4n nodes (recall
that the nice tree decomposition we started from has at most 4n nodes). The
number of Join nodes is equal to the length of the reduced path P \R which is
dlog 4ne. Indeed, starting from the root, each time we go on a node along this
path the number of remaining nodes is divided by at least 2.

Thus, we have proved that |A| ≤ dlog 4ne for any node L−1(i) labelled with
our algorithm. Recall that JL(i) = ∪l∈AXl, and moreover from the definition of
tree-width, we have |Xl| ≤ tw(G). Thus, we have |JL(i)| ≤ tw(G) dlog 4ne and
the proof is complete. �

(a) (b)

Fig. 4: Illustration of the proof of Lemma 2 on a possible tree with 174 nodes.
The tree is labelled with a bottum-up layout L, and for notational convenience
we consider that L−1(i) = i for 1 ≤ i ≤ 174. Some subtrees are represented by
dashed triangles. On Figure (a) is depicted the tree. When considering node 166,
the set of critical nodes A = {166, 165, 160, 140, 100}. All nodes in A, excepted
the node 166, are left children of Join nodes, and these Join nodes are on the path
P = {174, 173, 172, 171, 170, 169, 168, 167, 166} between the root node 174 and
the node 166. On Figure (b) is depicted the reduced tree obtained by removing
all nodes in P which are not Join nodes, namely R. In each figure, the set of
critical nodes A associated to node 166 is green colored and the Join nodes in P
are purple colored.

Using the previous defined layout, we obtain an overall complexity of our dy-
namic programming algorithm of O(p4

sum×m4
sum×tw(G)×log(n)×n2tw(G)+1×

16tw(G)). The time complexity of this dynamic programming algorithm being
pseudo-polynomial (because of psum and msum), we are going to transform it
into a bi-FPTAS.
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4 Application of a trimming technique

In this Section, we propose a bi-FPTAS derived from the algorithm presented
in Section 3. To transform the dynamic programming algorithm, we apply an
approach for transforming a dynamic programming formulation into a FPTAS.
This approach, called the trimming-the-state-space technique is due to Ibarra
& Kim [7] and consists in iteratively thin out the state space of the dynamic
program by collapsing states that are close to each other.

In the approximation algorithm, we are going to trim the state space by dis-
carding states that are close to each other. While carrying these states deletions,
we must ensure that the resulting errors cannot propagate in an uncotrolled
way. To this end, we characterize a notion of proximity between states. We de-
fine ∆ := 1 + ε/8n, with ε > 0 a fixed constant. Let us first consider the first
two coordinates of a state s = [c1, c2, c3, c4, Ci]. We have 0 ≤ c1 ≤ psum and
0 ≤ c2 ≤ psum. We divide each of those intervals into intervals of the form [0]
and [∆l, ∆l+1], with l an integer value getting from 0 to L1 := dlog∆(psum)e =
dln(psum)/ln(∆)e ≤ d(1+ 8n

ε )ln(psum)e. In the same way, we divide the next two
coordinates into intervals of the form [0] and [∆l, ∆l+1], with l an integer value
getting from 0 to L2 := dlog∆(msum)e. The union of those intervals defines a
set of non-overlapping boxes. If two states have the same combinatorial frontier
and have their first four coordinates falling into the same box, then they encode
similar solutions and we consider them to be close to each other.

The approximation algorithm proceeds in the same way as the exact algo-
rithm, except that we add a trimming step to thin out each state space Si. The
trimming step consists in keeping only one solution per box and per combinato-
rial frontier. Thus, the worst time complexity of this approximation algorithm is
O(L4

1×L4
2×tw(G)× log(n)×n2tw(G)+1×16tw(G)). We therefore get a bi-FPTAS

when the tree-width tw(G) is bounded by a constant.

Theorem 1. There exists a bi-FPTAS for the problem Pk|G,mem|Cmax when
the tree-width of G is bounded by a constant, which returns a solution within
a ratio of (1 + ε) for the optimum makespan, where the memory capacity Mi,
1 ≤ i ≤ k, of each machine may be exceeded by at most a factor (1 + ε).

For sake of readability, the proof is presented when k = 2. In the conclusion,
we mention the general case when k is any fixed constant. We denote by U i
(resp. T i) the state space obtained before (resp. after) performing the trimming
step at the i-th phase of the algorithm. The proof of this theorem relies on the
following lemma.

Lemma 3. For each state s = [c1, c2, c3, c4, Ci] ∈ Si, there exists a state [c#1 , c
#
2 , c

#
3 , c

#
4 , Ci] ∈

T i such that

c#1 ≤ ∆ic1 and c#2 ≤ ∆ic2 and c#3 ≤ ∆ic3 and c#4 ≤ ∆ic4. (3)
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Proof. The proof of this lemma is by induction on i. The first node we consider
is a Leaf of the nice tree decomposition and we have T 1 = S1. Therefore, the
statement is correct for i = 1. Now, let us suppose that inequality (3) is correct
for any index i − 1 and consider an arbitrary state s = [c1, c2, c3, c4, Ci] ∈ Si.
Due to a lack of space, proof of the validity of the Lemma when passing from
phase i − 1 to i is only presented for a node of type Introduce. Note that the
proof for other types of nodes can be derived from that of an Introduce node.
Let L−1(i) be an Introduce node with j ∈ J(G) being the vertex introduced. We
must distinguish between cases where j belongs to JL(i− 1) and where he does
not.

First, let us assume that j ∈ JL(i − 1). Then s was obtained from a state
[w, x, y, z, Ci−1] ∈ Si−1 and s = [w, x, y+ δa,1α

1
i + δa,2β

1
i , z+ δa,2α

2
i + δa,1β

2
i , C

a
i ]

with a = σi(j). According to the induction hypothesis, there is a state [w#, x#, y#, z#, Ci−1] ∈
T i−1 such that

w# ≤ ∆i−1w , x# ≤ ∆i−1x , y# ≤ ∆i−1y , z# ≤ ∆i−1z. (4)

The trimmed algorithm generates the state [w#, x#, y#+δa,1α
1
i+δa,2β

1
i , z

#+
δa,2α

2
i + δa,1β

2
i , C

a
i ] ∈ Ui and may remove it during the trimming phase, but it

must leave some state t = [c#1 , c
#
2 , c

#
3 , c

#
4 , C

a
i ] ∈ Ti that is in the same box as

[w#, x#, y# + δa,1α
1
i + δa,2β

1
i , z

# + δa,2α
2
i + δa,1β

2
i , C

a
i ] ∈ Ui. This state t is an

approximation of s in the sense of (4).
Indeed, its first coordinate c#1 satisfies

c#1 ≤ ∆(w#) ≤ ∆(∆i−1w) ≤ ∆iw = ∆ic1, (5)

its third coordinate c#3 satisfies

c#3 ≤ ∆(y# + δa,1α
1
i + δa,2β

1
i ) ≤ ∆(∆i−1y + δa,1α

1
i + δa,2β

1
i )

≤ ∆iy +∆(δa,1α
1
i + δa,2β

1
i ) ≤ ∆ic3

(6)

and its last coordinate is the same as s. By similar arguments, we can show that
c#2 ≤ ∆ic2 and c#4 ≤ ∆ic4.

Now, let us assume that j /∈ JL(i − 1). In that case, the state s was ob-
tained from a state [w, x, y, z, Ci−1] ∈ Si−1 and either s = [w + pj , x, y +

mj +α
1
i , z + β2

i , C
1
i ] or s = [w, x + pj , y + β1

i , z + mj +α
2
i , C

2
i ]. We assume that

s = [w + pj , x, y + mj +α
1
i , z + β2

i , C
1
i ] as, with similar arguments, the rest of

the proof is also valid for the other case. By the inductive assumption, there
exists a state [w#, x#, y#, z#, Ci−1] ∈ T i−1 that respects (4). The trimmed al-
gorithm generates the state [w# + pj , x

#, y# + mj +α
1
i , z + β2

i , C
1
i ] ∈ Ui and

may remove it during the trimming phase. However, it must leave some state
t = [c#1 , c

#
2 , c

#
3 , c

#
4 , C

1
i ] ∈ Ti that is in the same box as[w# + pj , x

#, y# +

mj +α
1
i , z + β2

i , C
1
i ] ∈ Ui. This state t is an approximation of s in the sense

of (4). Indeed, its last coordinate C1i is equal to Ci and, by arguments similar to
those presented for j ∈ JL(i − 1), we can show that c#o ≤ ∆ico, for o ∈ J1, 4K.
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Thus, our assumption is valid during the transition from phase i− 1 to i when
i is an Introduce node.

Since the proof for the other type of nodes can be derived from the proof of
an Introduce node, the inductive proof is completed.

�

Now, let us go back to the proof of Theorem 1. After at most 4n phases,
the untrimmed algorithm outputs the state s = [c1, c2, c3, c4, C] that minimizes
the value max{c1, c2} such that c3 ≤ M1 and c4 ≤ M2. By Lemma 3, there
exists a state [c#1 , c

#
2 , c

#
3 , c

#
4 , C] ∈ Tn whose coordinates are at most a factor

of ∆4n above the corresponding coordinates of s. Thus, we conclude that our
trimmed algorithm returns a solution where the makespan is at most ∆4n times
the optimal solution and the amount of memory for each machine is at most
∆4n its capacity. Moreover, since ∆ := 1+ ε/8n, we have ∆4n ≤ 1+ ε for ε ≤ 2.

So we have presented an algorithm that returns a solution such that the
makespan is at most (1 + ε) times the optimal solution and the amount of
memory for each machine is at most (1 + ε) its capacity. It ends the proof of
Theorem 1.

Notice that if we no more consider the maximum memory load as a constraint
but as an objective, our algorithm can be modified to get an (1 + ε) approxi-
mate Pareto set [23]. At the end of the algorithm, we consider all the states in
S |J(T )| and compute for each state s = [c1, c2, c3, c4, C|J(T )|] ∈ S |J(T )| the vector
[max{c1, c2},max{c3, c4}]. Then among this set of vectors, we compute the set
of nondominated vectors. The problem of finding a set of nondominated vectors
among a given set of vectors has been first introduced in [24] and there exists a
lots of efficient algorithms for this problem (see for example [25]). It is easy to
see that the obtained set is a (1 + ε)-approximate Pareto set for our problem.

5 Conclusion

Given 2 machines and a neighborhood graph of jobs with bounded tree-width,
we have presented an algorithm that returns a solution, where the capacity of
the machines may be exceeded by a factor at most 1+ ε, if at least one solution
exists for the scheduling problem under memory constraints. This algorithm
consists of three steps: construct a nice tree decomposition of the neighborhood
graph; compute a specific bottom-up layout L of the nice tree decomposition;
and use a transformed dynamic programming algorithm traversing the nice tree
decomposition following L. The specific bottom-up layout L is designed to bound
the complexity of our algorithm but it is not optimal. It would be interesting to
lower this complexity by taking into account the number of vertices associated
to each node (see for example [10]) and avoiding counting duplicate vertices.
However, using layout L, the output of our algorithm is generated in polynomial
time and is such that the makespan is at most (1+ε) times the optimal solution
and the amount of memory for each machine is at most (1 + ε) its capacity.
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Although the algorithm is presented for 2 machines, it can be extended to
any number of machines as adding machines means increasing the number of
dimensions of a state. It would require to modify the combinatorial frontier
such that σ′i(j) would be the machines on which j has not been assigned and
which have memorized the data of j. This would change the time complexity to
O(n×L2k

1 ×L2k
2 ×k× tw(G)× log(n)×n2(ktw(G)+1)×16ktw(G)×k4tw(G)) where

n is the number of phases; Lk1 × Lk2 is the number of of boxes, Lk1 × Lk2 × k ×
tw(G)× log(n) is the the processing time to compute if the states are the same;
and n2(ktw(G)+1) × 16ktw(G) × k4tw(G) is the number of distincts combinatorial
frontiers.

Now that we have provided a bi-FPTAS for graphs of bounded tree-width,
it would be interesting to look at graphs bounded by more generic graph pa-
rameters like the clique-width and local tree-width. The latter is all the more
interesting as we know that planar graphs have locally bounded tree-width and
can be used to model numerical simulations on HPC architectures.
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