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INTRODUCTION 

It is now widely accepted that the boundary element method has become a powerful tool in the 
solution of practical problems in engineering. So, during the last decade, a great number of 
publications and much research has appeared on the subject with regards to both the theoretical 
aspects as well as the practical applications.4,9 '10,19 

Recently, it has been shown how self-adaptive techniques can be successfully applied within the 
BEM context.1 , 2 '6 '7 '2 1 , 2 4 , 2 5 However, although the numerical results are certainly spectacular, 
it has been found that the poor accuracy in the numerical evaluation of both the nearly singular 
kernels and the singular ones (i.e. those which exist only in the Cauchy principal value (CPV) 
sense) is a problem which still remains in the BEM. This lack of accuracy especially affects the 
BEM p-adaptive version, since the macro-elements used to discretize the boundary are chosen as 
large as possible, provided they do not violate the requirements imposed by the geometry and the 
boundary conditions. 

Furthermore, the evaluation of the residual function in the p-version, necessary for the 
determination of error parameters which govern the refinement process,2,5,7,8,12 is a subject that 
requires the greatest accuracy in the calculation of the variables involved, in order to obtain a 
reliable refinement criterion. 



In the case of nearly singular integrals (i.e. when the source point closely approaches the interval 
of integration), some special precautions must be taken. Various schemes have been proposed in 
the technical literature. Jun et al.15 subdivide the interval of integration at the regions close to the 
source point and then perform the integration in each subdivision by means of standard 
Gauss-Legendre quadratures. In another publication,16 these authors employ a double-expo­
nential formula combined with standard Gauss quadratures in order to integrate the nearly 
singular kernels. These techniques, however, are expensive since they require the use of a high 
number of sampling points to produce acceptable results. In his interesting paper, Telles27 

presents a non-linear co-ordinate transformation which conveniently gathers the sampling points 
nearby the source point, thus giving great accuracy. This scheme is very attractive owing to the 
simplicity of the expressions developed, and it works well enough when evaluating the state of 
stresses at points placed very close to the boundary. 

In the case of singular kernels existing in the CPV sense (i.e. those in which the source point 
belongs to the interval of integration), one must proceed carefully when performing its evaluation. 
Some authors, such as Rank23,24 and Parreira,21 have employed analytical integration over 
straight boundary elements. In the p-adaptive BEM version, however, such a technique is 
inadvisable since it notably reduces the possibility of selecting curved macro-elements which must 
fit large regions of the boundary under consideration. 

The numerical quadratures developed by Kutt17 ,18 (finite-part quadratures) can also be used, 
but they need an element subdivision and are not applicable in the presence of singularities of 
order 0(log x). 

It is also possible to use the so-called 'bootstrap' techniques,22 recently applied to the BEM by 
Guiggiani and Casalini.13 These techniques remove the singularity in the following way: 
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where/(x) is a regular function in [a, b\ Xe{a, b) and now the integral is regular, so it becomes 
possible to integrate it by means of standard Gauss-Legendre quadratures, provided that no 
sampling point coincides with the singular point L Nevertheless, these techniques have the 
disadvantage of not being applicable in the presence of singularities 0(log x) and 0(1 /xa) with 
a > l . 

The aim of this paper is to develop a fully numerical procedure to evaluate both the singular 
kernels existing in the CPV sense and those containing singularities 0(log x) which normally arise 
in boundary methods. In what follows, a brief summary of the BEM basic formulae will be 
included. The proposed numerical method will then be developed in detail. Also, with the purpose 
of evaluating the accuracy and stability of the numerical procedure, some illustrative examples will 
be included and discussed. 

BRIEF SUMMARY OF BEM FORMULAE 

BEM 
Somigliana integral identity,4 which is written as (ignoring body forces) 

C(P)-u(P) + 
r 

T*(P, Q)' u ( 0 dr(<2) = U*(P, Q) • t(Q) dT(Q) (1) 



The above expression shows the reciprocity relationship between the present state of tractions 
t(Q) and displacements u(Q) at a point QEY and a fundamental solution defined by a unitary 
concentrated load tensor applied at a point PeT , whose mechanical state is reflected by both the 
tractions T*(P, Q) and the displacements U*^ , Q). C(P) is a matrix related to the local geometric 
properties of the surface around the source point P.14 

If the functions T*(P, Q) and U*(P, Q) are interpreted in the sense of weighting functions then it 
will be possible to interpolate u(Q) and t(Q) via the classical approach of well-known projective 
methods, in order to discretize the problem in a set of linear equations 

A X = F (2) 

where X collects the boundary unknowns and A and F are computed through numerical 
integration of the influence coefficients. The reader interested in the details of the formulae may 
see, for instance, References 4, 9 and 19. 

In the bi-dimensional elastostatics case, the vectorial functions T*(P, Q) and U*(P, Q) contain 
singularities of order 0(1 /x) and 0(log x), respectively. The former is hardly integrable in the CPV 
sense, while the integration of the second must be performed by splitting the singular kernel and 
then applying special quadratures with logarithmic weighting functions (see, e.g. Berthold-
Zaborowsky3). It is clear that the aforementioned procedure implies a certain number of added 
numerical and computational complications. 

On the other hand, the macro-elements selected to discretize the boundary geometry in the p-
adaptive version2,7*8 are chosen as large as possible and, of course, they must avoid incompatibil­
ities with both the geometry and the boundary conditions. So, one can understood the great 
significance when evaluating the integrals in (1) in order to obtain a reasonable enough accuracy. 
In addition, the calculation of the residual function requires the 'a-posteriorf computation of the 
variables inside the boundary elements by means of equation (1), upon which the numerical 
integration must be carefully performed. 

THE BI-CUBIC TRANSFORMATION 

Let the integral 
b x-xs 

/ = / -3-V*(x)/(x)dx (3) 
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where | denotes 'finite part integral',/(x) is any regular function differentiable enough in [a, b]9 

w(x) is an arbitrary weighting function also defined in [a, b] and xs is the singular point. Assume 
that/(x) #0, and if a = 2, then integral (3) exists in the CPV sense. In the case of a ̂  2, f(x) needs to 
meet some additional conditions17 20 in order to be considered a 'generalized principal value 
integral'. In the following discussion, we shall restrict ourselves to the case a = 2, although the 
proposed algorithm is also applicable even when a ^ 2 . 

Thus, integral (3) could be rewritten as 17 
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where the kernel g(x) now contains the singularity of order a, 

9(x) 
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x — x 

-w(x)f(x) (5) 

Integral (4) must be mapped into a domain */e[— 1, 1] in order to properly perform its 
numerical evaluation by means of standard Gauss-Legendre quadratures. So, expression (5) 
becomes 
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where now rjs is the image of the singularity xs. By assuming that w(x)= 1, it is possible to rewrite 
expression (5) as 
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where J(rj) is the Jacobian. 
The central idea of the numerical procedure proposed here is based on the following two 

requirements: 

(i) it is advisable to gather the sampling points nearby the singularity in order to improve the 
numerical representation of the high gradients; and 

(ii) it is necessary to obtain a sampling point distribution which essentially respects the 
demands of equation (6), i.e. the quantity e must be the same at both sides of the singularity 

A non-linear co-ordinate transformation which satisfies requirement (i) has been proposed in 
Reference 27. Such a transformation works well in the case where the singular point is centred on 
the interval of integration (>/s = 0) by reason of the symmetry of the standard Gauss-Legendre 
quadrature. However, when the singularity is not centred at the interval of integration (rjs ^0) the 
aforementioned transformation does not satisfy requirement (ii), thus leading to an inaccurate 
result. 

For the sake of clarity and with no loss of generality, consider the simplest case, i.e./(>/)= 1. 
Thus, expression (6) could be rewritten as 
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Figure 1 shows the behaviour of the singular kernel in equation (8). 
It is clearly understood that if requirement (ii) is not properly satisfied, the undesirable 

condition |ej # \sb\ will arise and unreliable results will be obtained. 
In the bi-cubic transformation proposed, the position of the sampling points is modified 

according to two cubic functions (hence the name bi-cubic) which are defined over both sides of 
the singularity. Thus, two polynomials are introduced: 

(9) 

(10) 

where the suffix 'a' now denotes the previous region (to the singularity) of the interval of 
integration, whereas suffix V denotes the latter region. The following boundary conditions are 
found to be necessary: 
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Figure 1. Singular kernel behaviour of the CPV integral 
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As can be seen, restraints (11), (12) and (15), (16) impose, respectively, the new integration 
bounds for both the previous and the latter region. Restriction (13) forces the image of the last 
point (f,) in the Gaussian quadrature used in the previous part (see Figure 2) to be placed at a 
distance e from the singular point. In the same way, the image of the first point (£f) in the Gaussian 
quadrature for the latter part is forced to be placed at a distance e from the singular point. As a 
consequence, the nearly infinite values which normally occur when evaluating the singular kernel 
at points f]s + s and t]s — s will display the same numerical value and opposite sign, thus being 
conveniently cancelled. Restraints (14) and (18) smooth out the singularity near the singular point 
and, therefore, even better accuracy is reached. Figure 2 shows the effect that transformations (9) 
and (10) produce over a standard Gauss-Legendre quadrature distribution of sampling points. 
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Figure 2. New distribution of sampling points produced by the bi-cubic transformation 

The applicatioji of the previous boundary conditions to equations (9) and (10) yields the 
following values for the polynomial coefficients: 

and, of course 
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Thus, if we have an integral of the form 

/ fin) &n (23) 
- 1 

containing a singular point r/se(—1, 1), its numerical evaluation by means of the bi-cubic 
transformation will be as follows: 
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where the £k and the wh are the abscissas and the weighting factors of the Gaussian quadrature20 of 
order NGP. The use of the same order of quadrature in both the previous and the latter regions of 
the interval of integration is implicit in equation (24). This particularity, even though it is not 
binding since it is perfectly possible to use different orders, has been shown to be highly efficient 
and simplifies the computational details. Also investigated and developed were other non-linear 
transformations of higher order (up to 5). Even though acceptable results were obtained, a certain 
loss of accuracy is observed due to the strong gradients displayed by these functions in the 
neighbourhood of the singularity, thus leading to a certain shifting of the new weighting factors 
from the desired nearly zero value. 

On the other hand, our experience has shown that a numerical value of the parameter £ (see 
equations (19) and (20)) approximately equal to one thousandth the size of the interval of 
integration gives results accurate enough for practical applications in p-adaptive BIEM. 

Another subject that should be mentioned deals with the new position of the sampling points 
Y\(£) once the transformation has been done. It should be noted that the parameter e directly affects 
coefficients (19) and (20) and, therefore, the behaviour of the transformation itself. As shown in 
Figure 3, for certain values of £ and high orders of Gaussian quadrature it may happen that some 
new sampling points lie outside the interval of integration. 

Nevertheless, this fact does not create any limitation since it is assumed that/(^) is analytically 
defined. This particularity of the bi-cubic transformation necessarily implies that some new 
weighting factors may also be negative, which agrees with the well-known theories of orthogonal 
polynomials18 20 from which, if the weighting functions are positively defined over the whole 
interval, all the integration points must lie inside the region of integration. However, 4no theorem 
is yet known which forces the sampling points to be contained inside the interval of integration'.18 

Moreover, if the weighting function is not positively defined over the whole interval, then the roots 
of the orthogonal polynomials may even be complex. Such cases, either roots lying outside the 
interval or complex roots, can be seen in Kutt's quadratures for orders 1,4/3, 3/2,. . . and 2 ,4 , . . . , 
respectively. 

Figure 3. Particular case of new sampling points lying outside the interval of integration: e = 0-003; NGP = 6 
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Figure 4. Particular case of negative new weighting factors: £ = 0-003; NGP = 6 

Thus, Figure 4 illustrates a particular situation in which some new weighting factors produced 
by the bi-cubic transformation are negative, in correspondence with the case of some sampling 
points lying outside the interval of integration (see Figure 3). 

The source point coincides with one end of the element 

As is well known, inaccurate results are obtained if two boundary elements of very different sizes 
are defined meeting a common source point and if no special precautions are taken regarding the 
integration procedure. 

In Figure 5(a) it can be noted that if we do not appropriately satisfy the condition \dk 

very strong numerical contribution will normally exist at source point P which will lead to 
unstable results. However, the bi-cubic transformation can also be used in such a case, since it is 
represented by a CPV integral extended over two boundary elements. Thus, when dealing with 
these situations either equation (9) or equation (10) should be applied, depending upon the 
position of the singular point T/S, i.e.: 

\dj\, a 

if t] 

if r\ 
1 

1 
then use expression (10) 
then use expression (9) 

In order to get the same ^-values (see Figure 5(b)) around the source point P, the following 
procedure is suggested. 

1. Compute an sk related to the smallest element meeting the source point (usually sk = Lfc/1000). 
2. Compute another £ • related to the largest element meeting the source point, in such a way to 

ensure that d \dj\ in the real space. 

These operations are rather trivial on a computer and can also be added quickly to any existing 
BEM code. In the same way, expressions (9) and (10) can be easily embodied into operative 

Figure 5. Boundary elements of different sizes meeting a common source point 



numerical integration routines. The increment in computer time is negligible when compared with 
traditional schemes based upon standard Gauss-Legendre quadratures. 

On the other hand, the bi-cubic transformation could be used in integration contexts other than 
BEM by simply adjusting the parameter s and/or by using proper orders of integration in 
Gaussian quadratures. 

NUMERICAL EXAMPLES 

Some numerical examples, which include singularities of order 0(log x), 0(1 /xa) and of practical 
application in p-adaptive BEM are included herein in order to show the great accuracy obtained 
by using the proposed transformation. 

n 
(i) / log | y/ —0-8|d»7 (25) 

- 1 

This simple example contains a singularity 0(log x) at ?/ = 0-8. Table I collects the evolution of 
both the numerical results as well as the errors produced (in absolute values) when using standard 
Gauss-Legendre quadrature, the method of Reference 27 and the bi-cubic transformation. The 
results are given as a function of the Gaussian quadrature order NGP. 

As can be observed, satisfactory results are obtained by employing only six integration points 
(three in the previous region to the singularity and three in the latter one). 

ri 

(ii) J 
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to-0-3 
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where sgn means 'sign of. As in the previous case, integral (26) was evaluated by using standard 
Gauss-Legendre quadrature, the method of Reference 27 and the bi-cubic transformation. Table 
II contains both the numerical results as well as the error produced (in absolute values), as 
functions of the order of Gaussian quadrature NGP. 

Once again, the stability and accuracy of the bi-cubic transformation can be observed. As can be 
seen, the method of Reference 27, that worked very well in the previous example, produces 
completely unacceptable results here. This kind of behaviour was the main reason to try to 
improve it, as discussed above, by imposing a total symmetry of the two integration points 
neighbouring the singular one. In this way, we enforce a numerical intepretation of the definition 
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Table I. Numerical evaluation of singularity O(log x) 

Gauss-
Legendre 

00 

00 
00 

Gauss-Leg/ 
Analytical 

+ 0-9625 
10802E + 00 +0-8547 
1-791 IE+ 00 +1-4171 

+ 0-9053 
+ 0-9904 

1-2283E + 00 +0-9719 
11964E + 00 +0-9466 

Ref. 27 
Ref. 27/ 

Analytical 

00 
00 
00 
00 
00 
00 
00 

+ 0-9042 
+ 0-9973 
+1 0097 
+10028 
+ 0-9968 
+ 0-9988 
+ 10010 

Bi-cubic 

4275E + 00 
2757E + 00 
2646E + 00 
2637E + 00 
2638E + 00 
2638E + 00 
2639E + 00 

Bi-cubic/ 
Analytical 

+ 1-1295 
+1 0094 
+1 0006 
+ 0-9999 
+ 0-9999 
+ 10000 
+ 10000 

Analytical value 1-2638715857E +000 



Table II. Numerical evaluation of singularity 0(l/x) 

NGP 
Gauss-

Legendre 
Gauss-Leg/ 
Analytical Ref. 27 

Ref. 27/ 
Analytical Bi-cubic 

Bi-cubic/ 
Analytical 

4 
6 
8 

10 
12 
14 
16 

+ 1-5613E + 01 + 25-221 00 
7-7365E + 00 +12-498 +6-8693E + 00 

-2-5327E + 0O 
-4-2589E-01 
+ 1-8709E + 00 

1-0182E + 01 

+ 4091 +10711E + 01 
+ 0-688 +1-7129E + 01 
+ 3022 +3-1865E + 01 

+ 16-448 

+ 6-662 
+ 11097 
+ 17-302 
+ 27-670 
+ 51-475 

+ 9-8459E + 00 +15-905 +1-2227E + 02 +197-509 
7-3087E + 01 +118-065 

Analytical value 6-1903920841E-001 

8-5274E + 00 
1-4164E + 00 
7-3959E-01 
6-5170E-01 
6-3081E-01 
6-2402E-01 
6-2138E-01 

+ 13-775 
+ 2-288 
+ 1195 
+ 1-053 
+ 1019 
+1 008 
+ 1-004 

of the singularity in the CPV sense, while in the method of Reference 27 no attention is paid to the 
relative position of the integration points around the singularity. 

(iii) / 

sgnfa 
- i \rj ~0-2\ 

-j^- expfa) dri (27) 

The integral shown above displays a singularity of order a = 1-2 at t] = 0-2 and it is included 
herein in order to assess the applicability of the proposed numerical procedure even when a > 1. 
Table III contains both the numerical results and the errors (in absolute values) obtained by using 
the aforementioned methods, as functions of the order of Gaussian quadrature NGP. 

As expected, numerical results show the accuracy of the bi-cubic transformation even in the 
presence of singularities 0(\/xa) with a > l . Relative errors of approximately 1 per cent were 
obtained by employing only 10 Gauss integration points for the whole interval. 

(iv) Displacement calculation on a square plate subjected to in-plane loads. 
Figure 6 shows a square plate subjected to a parabolic variation of the boundary tractions. The 

dimensions of the domain are 100 x 100 cm2, its thickness is t = 1 cm, while the Young's modulus 
was taken as £ = 21 x 106 kgf/cm2 and Poisson's ratio as v = 0. This problem was analysed 
through the p-adaptive BEM version.5'7 Its aim is to evaluate the displacement tensor at 
boundary points inside the elements in order to further calculate the residual function. 

1-2 

NGP 

2 
4 
6 
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10 
12 
14 

Table III. Numerical evaluation of singularity 0(1/xlz) 

Gauss-
Legendre 

Gauss-Leg 
Finite-part 

+ 4-9770E + 00 
+ 9-9416E +00 

+ 2-034 
+ 4064 

+ 3-0617E + 01 +12-515 
-5-7760E + 01 +23-610 
-9-3260E + 00 
-2-5264E + 00 
+ 8.4627E-01 

Ref. 27 
Ref. 27/ 

Finite-part Bi-cubic 

+ 2-703 
+ 5-117 
+ 8-798 

+14-065 
+ 3-812 +5-3121E + 01 +21-714 
+ 1-033 +8-1585E + 01 +33-349 
+ 0-346 +1-2830E + 02 +52-444 

+ 6-6120E + 00 
+ 1-2518E + 01 
+ 2-1524E + 01 
+ 3-4409E + 01 

-1-1447E + 02 
-3-6379E + 00 
+ 1-8527E + 00 
+ 2-3340E + 00 
+ 2-4161E + 00 
+ 2-4381E + 00 
+ 2-4463E + 00 

Finite-part (Kutt, 1975) + 000 

Bi-cubic/ 
Finite-part 

+ 46-792 
+ 1-487 
+ 0-757 
+ 0-954 
+ 0-988 
+ 0-997 
+ 1-000 
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Figure 6. Square plate subjected to in-plane loads: boundary mesh and tractions (element numbers are encircled) 

Table IV. Normalized displacements at point P. Square plate subjected to in-plane loads 

NGP Gauss-Legendre Ref. 27 Bi-cubic T1/T3 T2/T3 

6 

8 

10 

12 

14 

16 

u2 

" i 

u2 

u2 

u2 

u2 

1-0874 
0-6503 

1-0874 
0-6503 

1-0874 
0-6503 

1-0874 
0-6503 

1-0874 
0-6503 

1-0874 
0-6503 

2-8576 
6-4416 

37-8201 
146-2905 

10982 
9-3885 

0-1223 
4-5103 

0-5905 
2-6389 

0-8975 
1-4109 

0-9579 
1-2923 

0-9927 
10315 

0-9978 
10106 

0-9992 
10051 

0-9997 
10031 

10001 
10019 

110 

106 

106 

107 

1-07 

1-07 

104 

100 

100 

100 

100 

100 

u u COMP/. .THEORY U 
„COMP 
"2 / « 

THEORY 

Number of Gauss points used on element 1 

i -

NGP 
Tl =Time for standard Gauss-Legendre 
T2 = Time for method of Ref. 27 
T3 = Time for bi-cubic transformation 

Table IV contains the displacement normalized with regards to the theoretical value at point P 
in element 1, as a function of the Gaussian quadrature order. Also shown is a comparison of the 
computer time employed by the three methods. The values obtained with the bi-cubic trans­
formation by using 8 sampling points on element 1 and 6 sampling points on all the others (26 
points for the whole boundary) are accurate enough for practical purposes in the p-adaptive BEM. 
The computer time is slightly less than that which corresponds to standard Gaussian quadrature, 
since in the latter scheme it is necessary to split the singular kernel, depending upon the type of the 
singularity, whereas in the bi-cubic transformation it is not. 

CONCLUDING REMARKS 

A new numerical procedure for the evaluation of CPV integrals and those which contain other 
types of singularities has been presented. 



The mapping proposed herein gathers the sampling points in the neighbourhood of the 
singularity in order to catch the high gradients around it as in Reference 27, but uses two different 
third order mappings around the singularity in order to properly enforce the total symmetry of the 
two integration points neighbouring the singularity in the real space. As shown by the examples, 
that symmetry is essential for the success of the procedure. 

Numerical examples have shown that the proposed method is stable and gives results accurate 
enough for practical applications in /^-adaptive BEM. The formulae are rather simple. They make 
use of standard Gauss-Legendre quadratures and can also be quickly embodied into already 
existing integration routines. 

On the other hand, it is not necessary to split the singular kernels which contain singularities of 
different orders, which notably simplifies the usual numerical procedures employed in BEM. 
Moreover, the formulae are capable of accurately integrating those singular functions displaying 
singularities of order 0{\/xa\ with a> 1. 
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