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Abstract
Despite over 15 years of research, the exact role, if any, played by estrogen receptor b (ERb) in

human breast cancer remains elusive. A large body of data both in vitro and in vivo supports

its role as an antiproliferative, pro-apoptotic factor especially when co-expressed with ERa.

However, there is a smaller body of data associating ERb with growth and survival in breast

cancer. In clinical studies and most often in cell culture studies, the pro-growth and pro-

survival activity of ERb occurs in ERa-negative breast cancer tissue and cells. This bi-faceted

role of ERb is discussed in this review.
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Introduction
The critical role of estrogen in human breast cancer is

undisputed. The practical consequences of the concept of

inhibiting the mitogenic action of estrogen on breast

cancer cells have been the successful establishment of the

endocrine therapies for treating breast cancer (Trialists’

1992, 1998) as well as providing options for preventing

breast cancer (Fisher et al. 2005). While the concept itself is

relatively simple, our understanding of the exact molecular

mechanisms by which estrogen is involved in these

processes continues to evolve and is more complex and

multifaceted than originally thought (Zwart et al. 2011). In

particular, one critical discovery has been the identification

of a second estrogen receptor (ER), called ERb (Kuiper et al.

1996), in contrast to the classical ERa, which can also

mediate estrogen action in target cells. The discovery of ERb

has led to a full reevaluation of estrogen action in all target

tissues, including human breast cancer (Fox et al. 2008).

However, despite over 15 years of research, the exact role, if

any, played by ERb in human breast cancer remains elusive

(Fox et al. 2008, Thomas & Gustafsson 2011, Murphy &

Leygue 2012). Several reviews have recently covered the

general topic of ERb and tumorigenesis (Fox et al. 2008,

Leygue & Murphy 2011, Thomas & Gustafsson 2011, Leung
et al. 2012, Murphy & Leygue 2012). However, emerging

data suggest that ERb may have a bi-faceted role in breast

cancer. We herein discuss the most recent data which

suggest that ERb plays a bi-faceted role in breast cancer.

Interestingly, a bi-faceted role of ERb in gynecological

cancer (ovarian vs endometrial) has also been suggested

(Haring et al. 2012).

ERb has several variant isoforms, and generally, it is

the ligand-binding form, ERb1, that is being referred to.

The variant ERb protein isoforms derive from alternatively

spliced transcripts that result in C-terminally truncated

proteins that cannot bind ligand. Often the antibodies

used for immunohistochemistry recognize epitopes that

are common to all variant proteins and cannot distinguish

among them. In this review, when this is the case, the

terminology used is total ERb or ERb-like proteins. When

an isoform-specific antibody is used, then the actual

isoform name, e.g. ERb1, is used.
What is meant by a bi-faceted role for ERb?

The majority of published data have concluded that ERb1

has both antiproliferative and pro-apoptotic activities,
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while a smaller number of studies suggest a proliferative

and survival role for ERb1. Therefore, the possibility of a

bi-faceted role for ERb1 in breast cancer development and

progression can be suggested. The following will review

both clinical and experimental data that support a

bi-faceted role for ERb1 in breast cancer.
Clinical correlation studies supporting the bi-faceted

role of ERb in breast cancer

There are several studies supporting a bi-faceted role of

ERb, in particular ERb1, obtained using retrospective

correlative biomarker analyses in cohorts of breast cancer

cases linked to clinical outcome information. We have

only considered studies in which ERb-like proteins have

been measured. Furthermore, these studies (except in one

case where western blotting was used) also used immuno-

histochemistry, such that ERb expression only in tumor

cells was measured. These studies have been recently

reviewed by us and others (Fox et al. 2008, Leygue &

Murphy 2011, Leung et al. 2012, Murphy & Leygue 2012)

in detail. A consistent finding is that, in contrast to ERa,

total ERb levels decline during breast tumorigenesis

(Leygue et al. 1998, Roger et al. 2001), a phenomenon

also observed in other cancers such as prostate (Prins &

Korach 2008), colon, ovary, and lung (Bardin et al. 2004)

but not endometrial cancer (Haring et al. 2012). This

supports a potential tumor-suppressor role. Generally,

higher levels of ERb-like expression were found associated

with the expression of good prognostic markers or better

clinical outcome, usually in patients who have sub-

sequently been treated with tamoxifen (Esslimani-Sahla

et al. 2004, Fleming et al. 2004, Gruvberger-Saal et al.

2007). Other studies have, however, found that high vs

low expression of ERb-like proteins have either no

(Esslimani-Sahla et al. 2004, Miller et al. 2006, Skliris

et al. 2006, Honma et al. 2008, Shaaban et al. 2008) or poor

(Saji et al. 2002a,b, O’Neill et al. 2004, Novelli et al. 2008,

Shaaban et al. 2008) prognostic value in breast cancer.

Differences observed are potentially related to

whether or not ERb is expressed alone or co-expressed

with ERa. It should be remembered that ER status (positive

or negative) in human breast cancer is only defined by the

measurement of ERa (Hammond et al. 2010). Approxi-

mately, 59% of primary breast cancers show ERb

co-expressed with ERa (ERbC/ERaC) (Murphy et al.

2003) and w17% only express ERb (ERbC/ERaK)

(Murphy et al. 2003). Usually, only ERC patients are

treated with endocrine therapy and ERC status is itself

determined only by ERa. Therefore, most tumors being
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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assessed in the majority of previous studies would be those

co-expressing ERb1 or total ERb proteins with ERa.

Furthermore, in most but not in all these studies, higher

levels of ERb1 or total ERb proteins together with ERa are a

better predictor of endocrine responsiveness than ERa

alone. This supports the idea that nuclear ERb-like

proteins are having a restraining action on ERa-mediated

growth and survival activities. However, in three studies

where the cohorts studied were ERa negative and the

patients had been subsequently treated with tamoxifen,

high ERb1 levels were predictive of a good response to

tamoxifen therapy (Gruvberger-Saal et al. 2007, Honma

et al. 2008, Yan et al. 2013). One of these studies (Yan et al.

2013) was a randomized placebo-controlled clinical trial,

in which benefit was only found in the tamoxifen-treated

but not in the placebo arm; therefore providing evidence

that ERb expression was predictive for response to

tamoxifen inhibition of tumor growth and survival.

These correlative data, together with the previous obser-

vations of a positive correlation of ERb1 expression with

Ki67 (a marker of proliferation), support the idea that ERb1

is driving proliferation and/or survival in a subgroup of

patients whose tumors were ERa negative. This subgroup

seemed to be defined also by a high expression of a

potential modulator of ERb activity, called steroid receptor

RNA activator protein (Yan et al., 2013). This ER

co-regulator is encoded by a gene that in its own right is

also bi-faceted, as alternative splicing of its transcripts

results in a functional non-coding RNA and/or a protein

able to modulate transcription (Cooper et al. 2011).

Another important finding, in one (Honma et al.

2008) of the three studies referred to the above, is that

high expression of ERb1 in triple-negative breast cancer

cases was also significantly associated with good clinical

outcome in patients treated with tamoxifen. While this

may explain the historical observations that a small subset

of patients with apparently ERa-negative breast cancers

respond to tamoxifen treatment (von Maillot et al. 1980,

Stewart et al. 1982), an implication of these findings is that

ERb1 may be a viable treatment target in some triple-

negative breast cancers. Therefore, a group of patients

previously considered only for aggressive chemotherapies

would now be candidates for better tolerated hormonal-

like therapies.
Experimental studies supporting a bi-faceted role of ERb

In normal mammary tissue, ERb is the most widely

expressed ER and is expressed in both luminal and

myoepithelial cells as well as in some cells in the
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surrounding stroma. ERa, in contrast, is less frequently

expressed and generally its expression remains confined to

the luminal epithelial compartment (Speirs et al. 2002).

ERa, however, appears to play a more important role in the

normal mammary gland. Indeed, knockout Era mice do

not develop a functional mammary gland (Bocchinfuso &

Korach 1997, Feng et al. 2007), whereas knockout Erb

animals undergo an overall normal mammary gland

development. Subtle effects associated with decreased

differentiation and increased proliferation in the alveoli

of lactating mammary glands are sometimes observed in

these mice; these changes appear to be age related and are

only observed in some (Forster et al. 2002, Palmieri et al.

2002), but not all, Erb knockout mouse models (Couse &

Korach 1999, Antal et al. 2008). Furthermore, it has been

suggested that the effect on the development of the

mammary gland might be indirect due to a deficiency in

ovarian hormone synthesis rather than a direct result of

lack of ERb expression in breast epithelial cells (Antal et al.

2008). Data generated in vitro, on rodent or human

mammary epithelial cells (nontumorigenic as well as

neoplastic) in culture, showed that shutting down

ERb expression leads to an increased ligand-dependent

and -independent growth (Helguero et al. 2005, Treeck

et al. 2010). These results are consistent with the observed

increased proliferation of cells in in vivo models following

knockdown of ERb expression (Weihua et al. 2000, Forster

et al. 2002, Paruthiyil et al. 2004).

In apparent contrast to the common conclusion that

ERb1 is an inhibitor of proliferation, treatment of

ovariectomized mice for 48 h with a selective agonist of

ERb1 called BAG has led, in the mammary epithelial cells

of treated mice, to increased bromodeoxyuridine labeling

(Cheng et al. 2004a). Interestingly, this incorporation, a

marker of renewed DNA synthesis, was similar to that

observed when mice were treated with 17b-estradiol (E2)

and tamoxifen but was not observed in uterine cells

(Cheng et al. 2004a). As such, ERb appeared to mediate cell

proliferation in a tissue-specific way. Colocalization of

Ki67 and ERb in w47% of mammary epithelial cells in

primates has also been reported (Cheng et al. 2005). Such

colocalization (Saji et al. 2000, Cheng et al. 2005)

suggested that ERb1 has a role, although not essential, in

proliferation of some normal mammary epithelial cells. Or

at least under specific circumstances, ERb does not inhibit

proliferation.

In most but not all studies where ERb1 has been

overexpressed in cell lines, antiproliferative and pro-

apoptotic (Lazennec et al. 2001, Cheng et al. 2004b)

activity was observed (Paruthiyil et al. 2004; Table 1).
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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And intestinal tumorigenesis is enhanced in mice

resulting from crosses between Apc (min) mice and ERb-

deficient mice (Giroux et al. 2008, Cleveland et al. 2009).

ERb1 can inhibit epithelial to mesenchymal transition in

cancer cells (Mak et al. 2010, Thomas et al. 2012),

consistent with a role in epithelial differentiation. More

insight into the molecular mechanisms by which this

occurs has recently been published using immortalized

prostate epithelial and prostate cancer cell line models

(Mak et al. 2013). Furthermore, it was also shown that

these effects were mediated by a selective androgen-

derived ligand for ERb 5a-androstane, 3b, 17b-diol, and

not estrogen (Mak et al. 2013). Altogether, these data

support a role for ERb as an anti-growth, pro-apoptotic,

and pro-differentiation factor.

Interestingly, the development of a few breast cancer

cell line models, where increased ERb1 expression was

associated with increased proliferation and survival,

supported the idea that under some circumstances ERb1

can associate with proliferation instead of apoptosis. These

findings, however, may be due to alternative posttrans-

lational modifications, i.e. short vs long (N-terminal)

forms of ERb1, a distinct cellular circuitry background

associated with ERa negativity, clonal selection artifacts,

and/or an insertional mutagenesis phenomenon of the

transfected construct. The p53 status of cells may also

affect ERb1 activity (Choi & Pinto 2005, Lewandowski et al.

2005, Skliris et al. 2007) as might the microenvironment,

and whether or not the cells are grown in a 2D vs 3D

structure. Such differences alone or in combination could

contribute to the bi-faceted nature of ERb. Cotrim et al.

2012) recently published results, where they found that

ERb agonists as well as ERa selective ligands induced

mammary gland hyperplasia and increase tumor growth

of mice in which MC4-L2 mammary tumor cells had been

implanted. This was in stark contrast to the MC4-L2

mouse mammary tumor cell model when grown under 2D

cell culture conditions. MC4-L2 cells endogenously

express both ERa and ERb1. Under 2D culture conditions,

selective ligands for ERa stimulate proliferation whereas

selective ligands for ERb have little effect on proliferation

but instead increase apoptosis, increase p53 expression,

and decrease cell numbers. However, when the cells are

grown in Matrigel 3D culture, the ERb agonists exert a

slight but significant increase in cell numbers, which was

inhibited by co-incubation with the MEK inhibitor U0126.

It was hypothesized that activation of erk1/2 MAPK

signaling by Matrigel, a surrogate for basement mem-

brane, fully blocked the growth-inhibitory effects resulting

from ERb1 activation by agonist ligands (Cotrim et al.
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Table 1 Cell line models of human ERb overexpression.

Cell line ERb isoform

Constitutive vs

inducible

ERa

expression Phenotype Reference

Growth inhibition
MCF7 ERb1 Constitutive

(adenoviral
transient)

Yes Reduced E2 growth in cells in
culture and xenograft

Paruthiyil et al. (2004)

Tet-off-T47D ERb1 Inducible Yes Reduced E2-induced growth Strom et al. (2004)
MCF7 ERb1 Constitutive

(adenoviral
transient)

Yes Ligand-independent cell cycle
arrest

Paruthiyil et al. (2011)

Tet-on MCF7 ERb1 Inducible Yes Reduced E2 growth Increase
sensitivity to tamoxifen

Murphy et al. (2005)

Tet-off MCF7 ERb2/cx Inducible Yes Reduced E2 transcription,
reduced PR, and growth ND

Saji et al. (2002b) and
Zhao et al. (2007)

Tet-off MCF7 ERb1 Inducible Yes Reduced E2 growth Increase
sensitivity to antiestrogens

Hodges-Gallagher et al.
(2008)

Tet-on HEK293 ERb2/cx Inducible No Reduced E2 transcription,
growth ND

Zhao et al. (2007)

Tet-off MCF7 ERb1 Inducible Yes Reduced basal and E2-induced
growth

Liu et al. (2008)

MDA-MB-231 ERb1 Constitutive No Growth inhibition – ligand
independent

Lazennec et al. (2001)

Hs578T ERb1 Tet-on inducible No Reduced E2-induced growth Secreto et al. (2007)
Hs578T ERb2/cx Tet-on inducible No No effect on growth Secreto et al. (2007)
Hs578T ERb1 Tet-on inducible No Reduced E2-induced growth Shanle et al. (2011)
No effect on growth
MDA-MB-231 ERb1 Constitutive No No effect alone, but sensitized

to RA inhibition
Rousseau et al. (2004)

Tet-on-MDAMB231 ERb1 Inducible No No effect on proliferation Murphyb

Tet-on-MDA-MB-231 ERb2/cx Inducible No No effect on proliferation Murphyb

MCF-7 ERb1 Constitutive Yes No effect on E2-induced
growth. Increases sensitivity
to endoxifen

Wu et al. (2011)

Growth stimulation
MDA-MB-231 Short ERb1 Constitutive No Proliferation Tonetti et al. (2003)
MDA-MB-435a ERb1 Constitutive No Increased proliferation and

invasion
Hou et al. (2004)

RA, retinoic acid; ND, not determined.
aThis is now known to be a melanoma-derived cell line (Rae et al. 2007).
bMurphy LC, Ung K & Peng B 2005, unpublished observations.
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(2012). The authors also went on to show that when

mammary epithelial cells, either normal-like or neoplas-

tic, were grown in 2D culture in the presence of EGF

(which activated erk1/2), ERb agonists increased cell

numbers. In a background of activated erk1/2, further

experiments also implicated a role for activated PI3K/Akt

signaling in this ERb-driven proliferation. As ERb phos-

phorylation was enhanced under conditions of growth

stimulation, it was speculated that this posttranslational

alteration may also play a role in ERb-induced

proliferation.

The results described earlier are the basis for

suggesting a bi-faceted role of ERb in breast cancer

growth and survival. Furthermore, they also provide
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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some insight into the potential mechanisms underlying

a bi-faceted role.
What are possible mechanisms of the
bi-faceted activity of ERb?

To assess the potential processes underlying this bi-faceted

aspect of ERb’s personality, it is helpful to outline briefly

what is known about the structure and mechanism of

action of this ligand-regulated transcription factor. ERa

and ERb belong to the thyroid/steroid receptor super-

family. As shown in Fig. 1, these receptors share the same

structural and functional composition: an N-terminal

functional domain (AF1), able to activate transcription
Published by Bioscientifica Ltd.
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Figure 1

RNA and protein structure of ERb. Exonic structure of ERb messenger is

indicated in blue boxes. The protein shares the classical structure of other

steroid receptors with structural domains A–F shaded in various shades of

pink. The positions of the functional domains, activation function 1 (AF-1),

DNA-binding domain (DBD), activation function 2 (AF2), and ligand-

binding domain (LBD) are indicated in red.
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in the absence of ligand, a DNA-binding domain (DBD),

consisting of a classical zinc-fingers motif, and a

C-terminal functional domain (AF2), activated by the

binding of estrogen on the ligand-binding domain (LBD).

Several excellent reviews have described how these
Figure 2

Simplified representation of three potential ERb mechanisms of action.

‘Classical’ mechanism (lower part of the diagram): activation of ERb1 occurs

in four steps. First, the ligand penetrates passively in the target cells

through the plasma membrane and binds to the receptor, inducing the

release from a cytoplasmic chaperone complex (pink). This release is

followed by a cascade of posttranslational modifications (indicated by dots

on the surface of the receptor) and the targeting of the receptor to the

nucleus. The receptor is then able to form dimers (homodimers or

heterodimers with ERa), which binds specific enhancer regions (estrogen-

responsive element, ERE) upstream or downstream of target genes.

http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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receptors can act (McKenna et al. 1999, Lonard et al.

2007, Kumar & McEwan 2012). Briefly, several mecha-

nisms of action have been described. The first one, referred

to as ‘classical’, is simplistically described in Fig. 2. In this

model, the ligand enters passively into the target cells,

binds to the receptor, and initiates a cascade of well-

characterized events. The receptor is first released from a

cytoplasmic chaperone complex containing several

proteins including heat-shock proteins 70 and 90. The

freed receptor, subjected to subsequent posttranslational

events including multiple phosphorylations (Le Romancer

et al. 2011), enters the nucleus, dimerizes, and binds to

defined genomic enhancer regions, containing specific

motifs known as estrogen-responsive elements (EREs).

This binding is followed by the recruitment of cofactors,

positive (coactivators) or negative (corepressors),

the balance of which leads to either the activation or

the repression of the expression of involved genes.
Depending on the ligand involved and the overall conformation of the

receptors recruited, dimers will then interact with positive (coactivator,

green) or negative (corepressors, red) regulators, leading to the activation

or the repression of specific target genes. Tethering mechanism (middle

part of the diagram): activated receptor can bind to transcription factors

(such as AP-1) and modulate, positively or negatively, the activity of these

factors. Unliganded activation (top part of the diagram): the receptor can

be activated by posttranslational modification; phosphorylations resulting

from EGFR signaling cascade, for example. Activated receptor can then act

through ERE or tethering mechanism.
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This estrogenic action has been found to be cell-, gene-, and

context specific. As outlined in previous reviews (McKenna

et al. 1999, Lonard et al. 2007, Zwart et al. 2011, Kumar &

McEwan 2012), the resulting effect on gene transcription

is a dynamic process, involving multiple protein com-

plexes, which contain chromatin-modifying molecules

such as histone deacetylases, protein degradation units

involving proteasome and ubiquitin ligase, as well as

splicing regulatory units. Nonclassical mechanisms of

action have also been described for steroid receptors:

these include activation by EGF signaling through ligand-

independentphosphorylations of the receptor; tetheringof

the receptor with other transcription factors, such as Sp1

and AP1 (Hall et al. 2001; Fig. 2); and non-genomic action

involving receptors located on the cell membrane

(Hammes & Levin 2011). Overall, the action of the ERb

will mechanistically depend on many parameters includ-

ing but not limited to cyclical interactions between

regulatory molecules (ligand, cofactors, ubiquitin, or

histone deacetylases), cell context, specific protein

degradation (proteasome involvement), and the exact

gene considered (McKenna et al. 1999, Lonard et al. 2007,

Kumar & McEwan 2012). Most of all, as with all other

biological processes, the specific observation of a

particular ERb effect will depend on what endpoint is

looked at and most importantly how it is observed. With

that in mind, the bi-faceted aspect of ERb action detailed

earlier could result from differential modification and/or

regulation of any of the steps involved in the mechanisms

outlined earlier.
Ligand-dependent and -independent activity

First, the endogenous ligands able to bind and potentially

regulate ERb1 action are multiple (Kuiper et al. 1998,

Guerini et al. 2005, Michael Miller et al. 2012) and their

respective effects, in a tissue-specific context, remain to be

fully characterized (Thomas & Gustafsson 2011). Even if

ERb1 is ‘officially’ defined as being an estrogen-binding

protein, reports also indicate that compounds such as

phytoestrogens (Shanle & Xu 2010, Shanle et al. 2011)

DHEA (Michael Miller et al. 2012) and oxysterols (DuSell &

McDonnell 2008) can also modulate the activity of this

receptor. Importantly, some of these different ligands

preferentially activate ERb compared to ERa (Shanle & Xu

2010) and may alter the ER homo- and heterodimerization

profiles (Powell et al. 2012). As such, one can easily see that

such ligands can interfere with the ‘normal or classical’

pathway this receptor is otherwise directed toward.
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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ERb variations

Alternatively spliced variants ERb variant isoforms

can be an important factor (Herynk & Fuqua 2004).

Indeed, as previously emphasized, immunodetection

implies the recognition of a specific epitope within a

protein. Therefore, only a portion of the molecule is

recognized, independently of the integrity of the whole

protein. The characterization of multiple variants, mainly

generated through alternative splicing (Figs 3 and 4),

increases the complexity of interpreting the information

gathered using one antibody for immunodetection of ERb

expression. Indeed, an antibody raised against the

N-terminal extremity of the ERb receptor will not

differentiate between the full-length ligand-binding ERb1

and a variant encoded by a well-characterized RNA, called

ERb2/cx. ERb2/cx has an alternate exon 8 and encodes a

protein missing the LBD. As such detecting the expression

of this molecule, unable to bind ligand, but also able to

heterodimerize with wild-type ERb1 and ERa, could lead to

erroneous interpretation (Murphy & Watson 2006).

Five major variants (ERb1–5), resulting from alterna-

tive splicing events involving exons 7 and 8, have been

identified (Fig. 3). ERb1 (the first described), 2/cx, 3, and 4

variants contain exons 1–7 of the human ERb gene

followed by one of the several alternative exon 8. ERb5

variant contains an extended exon 7 and its exon 8 results

from the splicing of an intron containing atypical CC and

CA donor and acceptor sites.

The exact function of the alternatively spliced ERb

variants remains unclear and contradictory results con-

cerning potential function have been published (Ogawa

et al. 1998, Peng et al. 2003, Leung et al. 2006). For

example, transient expression studies show that ERb2/cx

cannot bind ligand and when overexpressed can inhibit

ERa transcriptional activity (Ogawa et al. 1998, Peng et al.

2003), with little effect on ERb1 activity. However,

subsequent studies have shown that ERb2/cx as well as

the other C-terminally truncated variants, ERb3, 4, and 5,

all of which cannot bind ligand and are missing the

coactivator recruiting helix 12 (Fig. 4), can heterodimerize

with ERb1 and enhance its estrogen-mediated transcrip-

tional activity (Leung et al. 2006). The differences in

published results may be in part due to the different cell

lines used to undertake these transient expression studies

as well as different levels of expression and relative

expression achieved. An overarching conclusion,

however, is that the variant ERb isoforms can modify

both ERa and ERb1 activity when co-expressed. Therefore,

differential expression of the ERb variants may play a role
Published by Bioscientifica Ltd.
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Figure 3

Schematic representation of alternative splicing events resulting in the

production of multiple ERb isoforms. (A) The use of alternative acceptor

sites leads to the production of ERb1, -2/cx, -3, and b4 mRNAs. Indeed, these

isoforms share a common exon 7 (exon 7 b1-4, dark green) but differ in

their alternative exon 8 (purple, dark blue, light blue, and orange

respectively). The combined use of alternative donor and acceptor sites

produces ERb mRNA, which contains an extended exon 7 (light green) and

a shorter exon 8 (red). (B) Schematic representation of resulting common

exon 7 (green) and additional coding sequences brought by the respective

exon 8: purple, dark blue, light blue, and orange for exon 8 of ERb1, -b2/cx,

-b3, and -b4 respectively. The length of additional respective coding

sequence is indicated on the right.
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in altered and bi-faceted ERb action and sensitivity to

antiestrogens during breast tumorigenesis and breast

cancer progression.

ERb1, -2/cx, -3, and -5 mRNAs have been detected in

breast cancer tissues and cell lines. Using a specific assay

allowing the co-amplification of ERb1, 2/cx and 5, we

found that not only breast cancer cell lines expressed

different relative levels of these variants but also an

increase in ERb 2/cx and 5 RNA isoforms relative to the

ERb1 RNA isoform occurs during breast tumorigenesis

(Leygue et al. 1999).
Figure 4

Alignment of the C-terminal extremities of ERb-1, -2/cx, -3, -4, and b-5

proteins. These isoforms are identical in their first 468 amino acids (aa) but

differ in the sequence corresponding to the end of the ligand binding of

http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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Co-expression with ERa The heterodimerization of

ERb1, as well as the proteins encoded by its known splicing

variants, with ERa, further increases the complexity of

the potential effect these ERb-like proteins have on the

estrogen-signaling pathway. Multiple articles have shown

that homo- or heterodimers involving ERb and ERa had

significantly different gene targets (Monroe et al. 2005,

Chang et al. 2006, Liu et al. 2008, Powell et al. 2012). The

ability of ERb variants to modify the activity of ERa is,

per se, sufficient to drastically interfere with the expected

mitogenic effect of estrogen on ER-positive cells as well as
ERb1. The total length of the resulting protein is shown on the right side.

Underlined in ERb1 sequence are the amino acid sequences involved in the

ligand-binding domain of the receptor.
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to affect the sensitivity of the cells to antiestrogenic agents

(Murphy et al. 2005, Wu et al. 2011).

Posttranslational modifications ERs are subject to

multiple posttranslational modifications that may influ-

ence function (Le Romancer et al. 2011). It is well

acknowledged that the presence of ERa is important in

terms of diagnosis and prediction of response to endocrine

therapy such as tamoxifen. More recently, it was shown

that the specific phosphorylation profile of ERa, i.e. the

specific detection of multiple phosphorylated residues

(Skliris et al. 2010), might be a more accurate way to assess

its prognostic and predictive value. It is easy to extrapolate

that the same will happen regarding specific ERb

phosphorylation (Hamilton-Burke et al. 2010). Other

posttranslational modifications of ERb have recently

been reviewed (Le Romancer et al. 2011) and another

ERb variant, an N-terminally truncated short form of ERb1

generated posttranslationally by proteolysis (Savinov et al.

2006), has also been identified. The shorter ERb1 protein

may be more stable than the long form as it is potentially

missing the binding site for the ubiquitin ligase, carboxyl

terminus of HSC70-interacting protein (CHIP), required

for inducing ERb1 proteasomal degradation (Tateishi et al.

2006). Functional differences between the long and

short forms of ERb1 have been described, in particular

associated with anti-inflammatory activities of ERb1 (Bhat

et al. 1998, Tateishi et al. 2006, Cvoro et al. 2008, Saijo et al.

2011). Furthermore, it has been shown that Pescadillo

ribosomal biogenesis factor 1 (PES1) differentially affects

ERb1 and ERa at a posttranslational level and may, in part,

be responsible for the altered ratios of ERa/ERb seen

consistently during breast tumorigenesis (Cheng et al.

2012, Thomas & Gustafsson 2012). The short form of ERb1

may not be regulated by PES1 in the same way as the

long form.

Therefore, differential posttranslational modifications

may affect ERb1 function including specific degradation

pathways (Sanchez et al. 2010, 2012, Cheng et al. 2012,

Picard et al. 2012) and kinetics of turnover, involving

particular heterodimers for example, and contribute to a

bi-faceted mechanism of action.

Nuclear vs non-nuclear activity The similarities

and differences of ERb1 and ERa with respect to structure

of the full-length ligand-binding forms and their respec-

tive variant isoforms have recently been reviewed

(Thomas & Gustafsson 2011, Murphy & Leygue 2012).

The similarity of ERb1 to ERa has led to a focus on

its mechanism of action as a transcription factor and
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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therefore on its localization to the nucleus. However, an

extranuclear localization of ERb has been reported in some

cells and tissues including breast cancer (Hamilton-Burke

et al. 2010, Leung et al. 2012, Razandi et al. 2012). The

functions and potential mechanisms of action at the

extranuclear sites are being explored. They are, however,

less well described than the function and mechanisms

of action of nuclear ERb.

Similar to ERa, and other steroid hormone receptors,

ERb1 can homodimerize and directly bind to DNA

sequences known as EREs, both distal and proximal, in

target genes and regulate transcription. Four publications

to date document genome binding (cistrome) studies of

overexpressed ERb1 in MCF7 breast cancer cells in culture

(Liu et al. 2008, Charn et al. 2010, Zhao et al. 2010, Grober

et al. 2011). These studies differ somewhat in their

conclusions, although a common finding is that a

reasonable degree of overlap exists between the cistrome

of ERb1 and ERa at least in MCF7 cells. Some differences

were, however, noted, depending on the treatment

conditions used. However, the transcriptional outcome

of ERb1 promoter binding compared to ERa often differs

significantly as shown by transcriptome analyses (Chang

et al. 2006, Vivar et al. 2010). Analysis of the ERb1 target

sequences within the genome identified ERE or half ERE

binding sites as generally enriched, but each of the studies

identifies distinct enrichment of other motifs not ERE

related. The reasons for the differences, in these as well as

those studies looking only at gene expression changes,

may be due to the different experimental design: for

example, in some cases, stable inducible overexpression of

ERb1 in MCF7 (Liu et al. 2008, Zhao et al. 2010) or T47D

(Williams et al. 2008) cells was used, another used stable

overexpression of ERb1 in MCF7 cells (Grober et al. 2011)

and others used transient adenoviral mediated ERb1

overexpression (Paruthiyil et al. 2004, Chang et al. 2006,

Charn et al. 2010). Furthermore, the resulting levels of

ERb1 overexpression may differ significantly among the

studies. One study in particular found that when using a

ChIP-on-chip approach to map ERb1 genome-wide bind-

ing in MCF7 cells overexpressing ERb1, around 60% of the

identified genomic binding sites contained AP-1-like

binding regions associated with ERE-like sites (Zhao et al.

2010). Differential signaling through AP-1 by ERb and

ERa has been reported (Paech et al. 1997). It is known that

alterations in signaling pathways that impact directly on

the ER and/or alternative transcription factor binding

partners can also significantly alter the genome-wide

binding of ER and estrogen signaling (Bhat-Nakshatri

et al. 2008). As well other nuclear receptors, such as
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androgen, ER-related, and progesterone receptors, can be

expressed variably in the different cell line models used

(Muscat et al. 2013). Recently, it has been suggested that

there may be overlapping transcriptomes and possibly

cistromes for some of these receptors and ERa (Ni et al.

2011, Hickey et al. 2012, Deblois & Giguere 2013).

Therefore, altered genome-wide binding resulting in

altered transcriptomes due to altered signaling cascades

or differential backgrounds of other nuclear receptors may

also underlie a bi-faceted activity of ERb in specific cells.

More recently, accumulating data have brought into

focus the possible role(s) of ER proteins outside of the

nucleus in breast cancer (Levin 2012, Welsh et al. 2012).

Rapid, non-genomic activities of estrogen are thought to

be mediated by ERs localized to the plasma membrane

on some target cells (Levin & Pietras 2008). With respect

to differential subcellular localization of ERb-like proteins,

extranuclear vs nuclear localization has been reported

to provide differential prognostic information at least in

breast cancer in vivo (Shaaban et al. 2008, Yan et al. 2011).

It is likely that ERb located in mitochondria and identified

to interact with several mitochondrial proteins (Nassa

et al. 2011) may have a dual role in mediating tamoxifen-

induced apoptosis through increased ROS (Razandi et al.

2012). This effect, seen in tamoxifen-sensitive breast

cancer cell lines, did not occur in tamoxifen-resistant

cells. In contrast, other studies found an association

between mitochondrial ERb expression and protection

against radiation and UV-induced cell death (Harrington

et al. 2003, Pedram et al. 2006). Such data also support a

potential bi-faceted role of mitochondrial ERb-like

proteins in apoptosis. In the first case, a pro-apoptotic

role is likely, whereas in the latter cases, a protective role

against cell death could be hypothesized. Differential

localization of ERb within the target cells may therefore

also underlie altered function of ERb as well as its variants.
Summary/conclusions

The importance of ER signaling pathways in breast cancer

has been well established, with over 30 years of both basic

and clinical research. Excitement surrounded the discov-

ery of a second ER, ERb, in 1996, mainly due to a rising

hope that elucidating its function and mechanism would

shed light and bring answers to some of the major

discrepancies seen between clinical observations and the

established molecular understanding of estrogen signaling

based upon the existence of only one receptor, ERa. This

excitement has now faded and stalled to some extent.

There is no doubt significantly related to the dearth of cell
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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model systems that naturally express detectable ERb1

and/or its isoforms, as well as the use of less than well-

characterized antibodies to detect a protein that is

significantly downregulated in most types of immorta-

lized or neoplastic cells.

However, the variability of results can also be

explained in part, by the high degree of complexity that

is emerging associated with the existence of ERb-like

proteins. The discussion above also highlights some of the

issues raised clinically by what we have called the

bi-faceted role played by ERb in breast cancer. Impor-

tantly, there are some mechanistic data currently emer-

ging that shed light on the mechanisms involved and to

support how this may occur.

The potentially profound impact of ERb1 being a

target for therapy in some ER-negative breast cancers

where only few options apart from aggressive chemothera-

pies are available, as well as emerging new concepts for

selectively delivering ligands to specific tissues (Finan et al.

2012), supports a continued focus on understanding the

molecular mechanisms for the bi-faceted role of ERb.
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