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Abstract An efficient usage of available resources is a substantial require-
ment for the successful design of networked control systems. Recent results
indicate major benefits of event-based control compared to conventional de-
signs, when resources such as communication, energy, and computation, are
sparse. This paper considers multiple entities of heterogeneous control systems
whose feedback loops are coupled through a common communication medium.
The design of the decentralized event-triggering control system is formulated
as an average-cost problem that aims at the minimization of a social cost crite-
rion. A state aggregation technique is used to develop a bi-level design method,
which divides into a local average-cost problem within every subsystem and
a global resource allocation problem assigning optimal transmission rates to
every subsystem. Stability conditions are derived that guarantee stochastic
stability of the aggregate system. Under these conditions, it is shown that
the design approach is asymptotically optimal as the number of subsystems
increases.

Keywords Networked control systems · event-triggered control · stochastic
optimal control · resource allocation

1 Introduction

In recent years, networked control systems have become a very active field
of research. The main characteristic of such systems is the spatial distribu-
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tion of system components that communicate over a common digital network
to accomplish complex control tasks. An efficient usage of the computational
and communication resources is mandatory due to limitations in data band-
width, energy consumption, and computational power. This has stimulated
the research on alternative sampling strategies beyond the conventional pe-
riodic sampling scheme in order to utilize resources more efficiently Åström
and Bernhardsson (2002); Tabuada (2007); Heemels et al (2008); Henningsson
et al (2008); Cervin and Henningsson (2008); Lunze and Lehmann (2010); Rabi
et al (2012). These works suggest that the use of event-triggered control may
reduce the resource consumption significantly compared to periodic control,
while achieving the same level of control performance.

While the majority of results studies event-triggered sampling for single-
loop control systems, systems with multiple control loops over a shared net-
work have attained only little attention. Exceptions can be found in the works
Cervin and Henningsson (2008); Henningsson and Cervin (2010); Blind and
Allgöwer (2011a,b) that analyze event-triggered sampling in multi-loop con-
trol systems. Depending on the model that represents the resource-constrained
communication medium the authors draw different conclusions. Using carrier
sense multiple access schemes with priority or randomized arbitration as pro-
posed in Cervin and Henningsson (2008); Henningsson and Cervin (2010),
event-triggered sampling for data transmission enhances the control perfor-
mance significantly compared with periodic transmission schemes. On the
other hand, the results in Blind and Allgöwer (2011a,b) suggest that time-
triggered sampling outperforms event-triggered sampling for slotted and un-
slotted ALOHA transmission schemes. The work in Blind and Allgöwer (2011c)
analyzes different protocols with event-triggered sampling and it is shown that
event-triggered schemes outperform time-triggered schemes for certain proto-
cols. In contrast to the aforementioned work that focuses on the analysis of
event-triggered scheduling over a contention-based medium, the motivation of
this paper concerns with the optimal synthesis of decentralized control and
event-triggering laws. We consider N subsystems whose feedback loops are
closed over a contention-based network. The communication model is adopted
to the framework in Cervin and Henningsson (2008); Henningsson and Cervin
(2010) and assumes the presence of a random arbitration scheme to resolve
collisions. Contrary to the aforementioned work that only considers scalar in-
tegrator dynamics, the subsystems may be heterogeneous and are modelled
as stochastic linear discrete-time systems of arbitrary order. The synthesis of
the event-triggered control system is formulated as an average-cost problem,
where the cost function is the sum of the individual control costs within each
subsystem. By means of time-triggered sampling each subsystem can be con-
sidered as an isolated entity which facilitates further analysis. In contrast to
the time-triggered case, event-triggered control systems result in a complex
interaction between control and communication complicating the analysis and
the design of such systems.

The main contribution of this paper is to tackle this challenge by propos-
ing an approximative formulation of the average-cost problem that allows us
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to circumvent the consideration of the interaction of control and communica-
tion. In the approximative problem formulation, the communication network
is considered to be deterministic assigning each subsystem an average trans-
mission rate. By this approach, the optimization problem can be split into
two levels: a local optimal control problem that can be solved by dynamic
programming and a global resource allocation problem which is a convex op-
timization problem. Stability conditions are derived that guarantee stochastic
stability of the event-triggered control system. Under these conditions, it is
shown that the proposed bi-level approach is asymptotically optimal, when the
number of users approaches infinity. Numerical simulations indicate that the
performance of the event-triggered control system resulting from the bi-level
design approach deviates only slightly from that of the optimal solution for
a moderate number of subsystems. The theoretical contributions can be sum-
marizes as follows: (i) development of a numerically tractable design method
for the decentralized event-triggered control system, (ii) construction of sta-
bility conditions that are simple to verify, and (iii) derivation of an asymptotic
optimality property of the decentralized event-triggered control system. A pre-
liminary version of this work first appeared in the conference paper Molin and
Hirche (2011).

The remainder of the paper is structured as follows. Section 2 describes the
considered system model and defines the problem statement. The design of the
event-triggered control system and its properties are presented in section 3.
Section 4 illustrates the results by numerical simulations.

Notation. In this paper, ATis the transpose of a matrix A and tr[A] is the
trace operator. The Euclidean vector norm and its induced matrix norm are
denoted by ‖ · ‖2. The truncated sequence up to time K of a signal xk, k ≥ 0,
is denoted by XK , i.e., XK = [x0, . . . , xK ]. If not otherwise stated, a variable
with superscript i indicates that it belongs to subsystem i. The measure P

denotes the probability measure on the abstract sample space denoted by Ω.
The expression F,P−a.s. denotes that the event F occurs almost surely w.r.t.
probability measure P. The expectation operator is denoted by E[·] and the
conditional expectation is denoted by E[·|·]. The relation x ∼ N (0, C) denotes
a Gaussian random variable with zero-mean and covariance matrix C. The
expression 1{·} denotes the indicator function.

2 Problem formulation

Figure 1 shows the structure of the considered networked control system. It
comprises of N independent subsystems whose feedback loops are closed over
a shared communication network. The ith subsystem consists of a process P i,
a controller Ci, which is implemented at the actuator, and a sensor Si. The
process P i is described by the following difference equation.

xik+1 = Aixik +Biuik + wi
k (1)
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zi
k

xi
kui

k

qik−1

shared communication network

Fig. 1 System model of the networked control system with N control systems closed over
a shared communication network with processes P1, . . . ,PN , sensors S1, . . . ,SN and con-
trollers C1, . . . , CN .

with Ai ∈ R
ni×ni , Bi ∈ R

ni×di . The state xik and the control input uik are tak-
ing values in R

ni and in R
di , respectively. The noise process wi

k takes values
in R

ni and is independent and identically distributed with wi
k ∼ N (0, Ci). The

initial state, xi0, i ∈ {1, . . . , N} is a random variable with a symmetric distri-
bution around its mean and has a finite second order moment. The statistics
of the random variables and the system parameters within a subsystem are
known to the controller as well as to sensor station.

At any time k the scheduler Si situated at the sensor decides, whether a
transmission slot should be requested to transmit the current state of subsys-
tem i to the controller Ci. Therefore, an event occurs within a subsystem i
at time k when a transmission slot is requested. Further, it is assumed that
control inputs may not be constant in between of successful transmissions and
the controller Ci may adjust the control inputs based on past updates. Due
to bandwidth limitations the number of transmission slots denoted by Nslot

is constrained and event-triggers must be designed at the sensors that judge
the importance of transmitting an update to the corresponding controller. If
there are more requests than available transmission slots at time k, then the
arbitration mechanism within the communication system selects Nslot subsys-
tems that may transmit information. All other subsystems are blocked and are
informed instantaneously that their request has been rejected. The arbitration
mechanism does not prioritize subsystems, i.e., in case of arbitration, the sub-
systems are chosen with identical probability. The request for a transmission
of the ith subsystem at time k is defined by the variable δik which takes the
following values.

δik =

{

1 request for transmission

0 idle
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We represent the arbitration mechanism by the random variable qik taking
values

qik =

{

1 allow transmission

0 block transmission

The probability distribution of [q1k, . . . , q
N
k ] conditioned on the requests δik

with i ∈ {1, . . . , N} is time-invariant and has the following property.

P[qik = 1|δik, i ∈ {1, . . . , N}] =

{

1
∑N

i=1 δ
i
k ≤ Nslot

Nslot∑
N
i=1

δi
k

otherwise
(2)

for subsystem i with δik = 1 and

q1k(ω) + · · ·+ qNk (ω) = Nslot

for all sample paths ω ∈ Ω for which δ1k + · · ·+ δNk ≥ Nslot. The received data
at the controller Ci at time k is denoted by zik and is defined by

zik =

{

xik, δik = 1 ∧ qik = 1

∅, otherwise
(3)

Every subsystem i, i ∈ {1, . . . , N}, possesses an individual cost function J i

which is given by the average-cost

J i = lim sup
T→∞

1

T
E

[

T−1
∑

k=0

xi,Tk Qi
xx

i
k + ui,Tk Qi

uu
i
k

]

. (4)

The weighting matrix Qi
x is positive definite and Qi

u is positive semi-definite
for each i ∈ {1, . . . , N}. We assume that the pair (Ai, Bi) is stabilizable and

the pair (Ai, Q
i, 1

2

x ) is detectable with Qi
x = (Q

i, 1
2

x )TQ
i, 1

2

x .
The design objective is to design control and scheduling laws that minimize

the social cost V that is given by the average of the individual costs , i.e.,

V =
1

N

N
∑

i=1

J i. (5)

The control law γi = {γi0, γ
i
1, . . .} that reflects the behavior of the controller Ci

at subsystem i is described by the mappings γik, k ∈ {0, 1, . . .}. Admissible laws
are measurable, causal maps of the available observations until time time k
denoted by Zi

k, i.e.,

uik = γik(Z
i
k).

The set of admissible laws is denoted by Γ . The policy of the scheduler is given
by πi = {πi

1, π
i
2, . . .}. The map πi

k is defined as

δik = πi
k(X

i
k, Q

i
k−1),
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where πi
k is measurable with respect to the past observations X i

k, Q
i
k−1. The

set of admissible scheduling laws is denoted by ΠET. The scheduling laws in
ΠET are only using local information X i

k, Q
i
k−1 in order to determine whether

a slot for transmission is to be requested. Time-triggered schedulers constitute
a special case within ΠET, as the map πi

k is independent of X i
k, Q

i
k−1 for any

k, i.e., time-triggered schedulers are elements of {0, 1}∞. Therefore, the set of
admissible time-triggered scheduling laws denoted by ΠTT can be considered
as a subset of ΠET.

On the other hand, by allowing that the decisions of the schedulers may de-
pend on all measurements {X1

k , Q
1
k−1, . . . , X

N
k , Q

N
k−1}, we obtain a centralized

scheduling structure. Let ΠCEN denote the set of admissible centralized sched-
ulers. It can be observed that the decentralized event-trigger policies in ΠET

is also contained in ΠCEN. Hence, we obtain the following relationship among
the three scheduling structures.

ΠTT ⊂ ΠET ⊂ ΠCEN.

It implies that the cost V of the optimal decentralized event-triggered law
in ΠET is lower bounded by the optimal centralized scheduler and upper
bounded by the minimal costs of the optimal time-triggered scheduler. In
the following, we focus on the design of the decentralized scheduler πi and
controller γi with the corresponding control law given by

inf
γi ∈ Γ

πi ∈ ΠET

i ∈ {1, . . . , N}

V. (6)

The optimal time-triggered and centralized scheduling laws are considered
again in section 4.

3 Event-triggered control design

In the following, the aim is to to develop a design method for the decen-
tralized event-triggered controller minimizing (6). This section is divided into
several subsections. In subsection 3.1, the approximative bi-level formulation
of the original optimization problem is addressed. The structural properties
of the solution of such problem are studied in subsection 3.2. The resulting
closed-loop behavior is discussed in the remaining subsections by giving sta-
bility conditions in subsection 3.3 and an asymptotic optimality property in
subsection 3.4. In subsection 3.5, the issue of computational complexity of the
approximative bi-level approach is addressed.

3.1 Approximative bi-level formulation

Although the coupling between subsystems is solely caused by the resource
limitation, determining the optimal event-based control system that solves (6)
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is a hard problem. The reason for this is secondarily given by the fact that the
number of subsystems might be large, but is rather due to the distributed in-
formation pattern. It is shown in Witsenhausen (1968) that optimal stochastic
control problems with distributed information pattern are generally hard to
solve, even if linear dynamics and quadratic cost functions are considered.

Besides the distributed information pattern, the impact of the bandwidth
limitation is another complicating factor. In contrast to time-triggered schedul-
ing schemes, it is in general not possible to guarantee that a transmission
request will be approved or not for decentralized event-triggered schedul-
ing with resource constraints. Despite of the non-determinism due to the
contention-based communication network, we will observe a significant per-
formance improvement of the event-triggered scheme compared with a time-
triggered scheme in section 4.

However, in order to still obtain a systematic approach to find the event-
triggered controllers that minimize V in (6), we introduce the following ap-
proximation. Thereby, the hard constraint that Nslot transmissions are allowed
at maximum at each time k is weakened and we require merely that the av-
erage number of transmissions per time step is upper bounded by Nslot. We
define the individual average transmission rate of the ith subsystem by

ri = lim sup
T→∞

1

T
E[

T−1
∑

k=0

δik].

Then, the average rate constraint can be stated as

N
∑

i=1

ri ≤ Nslot.

With this rate constraint, the approximative optimization problem can be
stated as a bi-level optimization problem. Both levels are coupled through
the average transmission rates ri, i ∈ {1, . . . , N}. After assigning an upper
bound, r̄i, on the transmission rate to each subsystem i, the first level of the
optimization problem is given by

J i,∗(r̄i) = inf
γi ∈ Γ

πi ∈ ΠET

ri ≤ r̄i

J i(γi, πi) (7)

where xik is the state evolving by (1) and it is assumed that in contrast to (3)
every request is permitted, i.e.,

zik =

{

xik, δik = 1

∅, otherwise

It should be noted that above optimization problem can be solved locally
in each subsystem for a given r̄i, i.e., assuming a given rate distribution, the
optimization problems in (7) for i ∈ {1, . . . , N} are completely decoupled from
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each other. The second level of the optimization problem determines finally
the optimal transmission rate distribution among the subsystems and is given
by

V̄ ∗ = inf
r̄1, . . . , r̄N

∑
N

i=1
r̄i ≤ Nslot

1

N

N
∑

i=1

J i,∗(r̄i) (8)

Thus, the resulting bi-level approach has a hierarchical structure, where the
second level can be considered as the global coordinating layer assigning re-
sources to the first layer, where the optimization problem is solved locally in
each subsystem.

3.2 Structural properties

The local optimization problem formulated in (8) still has a distributed infor-
mation pattern because the observations at the controller and at the sensor
station may differ. Therefore, standard solution algorithms can not be applied
for the constrained optimal control problem in the first level. But instead,
existing literature has shown that the optimal solution of (8) exhibits certain
structural properties Molin and Hirche (2009); Molin et al (2011); Lipsa and
Martins (2011); Xu and Hespanha (2004). These properties allow an efficient
calculation of the optimal event-triggered controller in each subsystem. The
subsequent theorem sheds light on the form of the optimal control law γi,∗.

Theorem 1 (Certainty equivalence of γi,∗, Molin and Hirche (2009))

Let (Ai, Bi) be stabilizable and (Ai, Q
i, 1

2

x ) detectable. Then, the form of the
optimal control law γi,∗ for optimization problem (7) is given by

uik = γi,∗k (Zi
k) = −Li

E[xik|Z
i
k], (9)

where the linear gain Li can be calculated by the algebraic Riccati equation

Li = (Bi,TP iBi +Qi
u)

−1Bi,TP iAi,

P i = Ai,T(P i − P iBi(Bi,TP iBi +Qi
u)

−1Bi,TP i)Ai +Qi
x.

⊓⊔

An optimal controller is said to be certainty equivalent when it results from
the solution of the corresponding deterministic optimal control problem by
substituting all noise variables by its means and by replacing the state xik by
its least squares estimate E[xik|Z

i
k].

Theorem 1 enables a number of further simplifications. When taking into
account that the distributions of the noise variables are symmetric, then it is
shown in Lipsa and Martins (2011) for first-order systems that the optimal
scheduling law πi,∗ is a symmetric threshold function of the estimation error.
Subsequently, it is conjectured that this is also valid for higher-order systems.



A bi-level approach for the design of event-triggered control systems 9

Then, the optimal estimator can be stated similarly to Molin and Hirche (2009)
as

E[xik|Z
i
k] =

{

xik δik = 1

(Ai −BiLi)E[xik−1|Z
i
k] otherwise

(10)

with E[xi0|Z
i
0] = 0 for zi0 = ∅. The first condition in above distinction of cases

is extended to δik = 1 ∧ qik = 1 for the original communication network.

By defining the estimation error eik by

eik = xik − E[xik|Z
i
k−1],

the determination of the optimal scheduling law can be regarded as a con-
strained Markov decision process Altman (1999). The Markov state ek ∈ R

ni

evolves by the time-invariant difference equation

eik+1 = gi(eik, δ
i
k, w

i
k) = (1 − δik)A

ieik + wi
k (11)

with initial condition ei0 = xi0−E[xi0]. Substituting the optimal control law γi,∗

of Theorem 1 into the costs J i, we obtain the following stochastic optimal
control problem.

inf
πi ∈ ΠM

ri ≤ r̄i

J i,S (12)

with

J i,S = lim
T→∞

1

T
E

[

T−1
∑

k=0

(1− δik)e
i,T
k Qi

ee
i
k

]

where Qi
e = Li,T(Qi

u+B
i,TP iBi)Li. The set ΠM denotes the set of all Markov

policies, which is defined as the set of all measurable maps from R
ni to {0, 1}.

Considering the optimal control law γi,∗ with the optimal estimator given
by (10), we have the following relationship between the original optimization
problem (7).

J i(γi,∗, ·) = J i,S(·) + tr[P iCi].

The expression tr[P iCi] is constant and can therefore be omitted in the opti-
mization problem (12).

In order to simplify the analysis of solving (12), we introduce the following
technical assumption.

Assumption 1 The scheduling policy of subsystem i is πi
k(δ

i
k = 1|eik) = 1

for ‖eik‖2 > M i for some arbitrary M i, i ∈ {1, . . . , N}. ⊓⊔
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Assumption 1 does not impose a severe restriction on the scheduling laws,
as M i can be chosen arbitrarily large for each subsystem. On the one hand,
it follows from above assumption that the running cost (1 − δik)e

i,T
k Qi

ee
i
k is

uniformly bounded. On the other hand, it has been shown in Xu and Hespanha
(2004) that the resulting Markov chain is ergodic, when using an arbitrary
Markov policy in ΠM that satisfies Assumption 1. The constrained Markov
decision process (12) under Assumption 1 is formulated as an optimization
problem without constraints by taking a Lagrangian approach that results in

inf
πi∈ΠM

J i,S + λri. (13)

The non-negative weight λ can be regarded as the Lagrange multiplier of the
constrained Markov decision process (12), Altman (1999). If λ is fixed, the opti-
mization problem (13) becomes a standard stochastic optimal control problem
that can be solved by value iteration as for example shown in Bertsekas (2007).
The resulting optimal scheduling policy is a threshold policy of the estimation
error eik. Due to the boundedness of the running cost and due to ergodicity that
are guaranteed by Assumption 1, the value iteration converges to the optimal
solution as shown in Bertsekas (2007). Instead of the direct determination of
the optimal solution together with the optimal Lagrange multiplier, we regard
above optimization problem as the scalarization approach as in Boyd and Van-
denberghe (2004) of the corresponding multi-objective optimization problem
with cost vector [J i,S , ri].

For any λ ∈ [0,∞), we obtain a Pareto optimal point in the J i,S -ri-plane. It
is easy to show that the coordinates [J i,S,∗, ri,∗] are monotone in λ, i.e., J i,S,∗

is monotonically increasing in λ and ri,∗ is monotonically decreasing in λ.
From the continuity of the difference value function in λ that follows from

chapter 3.5 in Hernández-Lerma (1989), and the absolute continuity of the
stationary distribution of the πi-controlled Markov chain we can conclude that
[J i,S,∗, ri,∗] is continuous in λ. Therefore, the scalarization approach in (13)
yields the desired function J i,∗(r̄i) that results from the set of Pareto optimal
points. The function J i,∗(r̄i) is convex and monotonically decreasing in r̄i.
This implies that the global optimization problem in the second level defined
by (8) is a convex resource allocation problem, for which many efficient solution
algorithms exist, such as in Shakkottai and Srikant (2007).

Figure 2 summarizes the structural properties of the optimal event-triggered
controller of the ith subsystem solving optimization problem (8).

3.3 Stochastic stability

The approach developed in the previous subsections ignores that at most
Nslot transmissions are admitted at each time step. Therefore, it is at first
not guaranteed whether the aggregated system with the actual communica-
tion constraint will be stochastically stable by using the approximative design
approach.
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Pi

shared communication network

πi,∗

zi
k

xi
k

zi
k−1

δik

eik

T i

E[xi
k|Z

i
k]

E[xi
k|Z

i
k−1

]

ui
k

Li

qik−1

Fig. 2 Block diagram of the optimal decentralized event-triggered control system for sub-
system i. Functional block T i reconstructs the received signal, zi

k−1
, at the controller.

In this paper, a Markov chain is said to be stochastically stable, when it
is ergodic, and the corresponding stationary distribution has a finite second-
order moment.

When there exists a unique stationary distribution to which the Markov
chain converges for k → ∞ for any initial condition, then the Markov chain is
said to be ergodic.

The following theorem states conditions that guarantee stochastic stability
for the aggregated system.

Theorem 2 Let γi,∗ be the control law given by (9) and let πi ∈ ΓM be a
scheduling law which satisfies Assumption 1. If

Nslot

N
> 1−

1

‖Ai‖22
(14)

is satisfied for all i ∈ {1, . . . , N}, then the Markov chain representing the
aggregated system is stochastically stable. ⊓⊔

Proof The Markov state of the complete system is given by the aggregation
of the augmented state variable [xik, e

i
k] of the subsystems i ∈ {1, . . . , N}

assuming that the control law γi,∗ and scheduling law πi are used.
The evolution of the estimation error eik that has been described in (11)

must be extended in order to incorporate the occurrence of a refused request.
Therefore, we obtain the following difference equation

eik+1 = (1− qikπ
i(eik))A

ieik + wi
k (15)

with initial condition ei0 = xi0 − E[xi0] and the conditioned distribution of qik
defined by (2). The evolution of the process state, xik, can be rewritten as

xik+1 = (Ai −BiLi)xik + (1− qikπ
i(eik))B

iLieik + wi
k. (16)
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It can be observed from (15) and (16) that the state dynamics [xik, e
i
k] within

each subsystem i ∈ {1, . . . , N} has a triangular structure, i.e., the process
state xik does not affect the evolution of the estimation error eik.

Furthermore, the evolution defined by (16) can be considered as a stable
linear system with additive noise given by (1− qikπ

i(eik))B
iLieik + wi

k.
Hence, showing that the process ζk = [e1k, . . . , e

N
k ] is ergodic and has a finite

second-order moment implies that the aggregated system state is stochastically
stable.

In the following, we study the asymptotic behavior of the Markov chain
given by ζk = [e1k, . . . , e

N
k ] which is described by (11). The stability analysis

is based on drift conditions based on Meyn and Tweedie (1996) developed for
Markov chains with uncountable state spaces. The drift operator ∆ is defined
as

∆h(ζk) = E[h(ζk+1)|ζk]− h(ζk), ζk ∈ R
n1+···+nN .

where h is a map from R
n1+···+nN to R.

We consider the following Lyapunov candidate

h(ζk) =

N
∑

i=1

‖eik‖
2
2. (17)

It follows immediately that the drift for this choice of h is bounded within any
compact set. Further, we define the compact set

M = {ζ = [e1, . . . , eN ] ∈ R
n1+···+nN |‖ei‖2 ≤M i, i ∈ {1, . . . , N}}.

Due to absolute continuity of the distribution of wi
k, the Markov chain is ψ-

irreducible and aperiodic. Based on these facts, we rely on the following drift
condition proposed in Meyn and Tweedie (1996). If the condition

∆h(ζk) ≤ −ǫh(ζk), ζk ∈ R
n1+···+nN\O, (18)

where ǫ > 0 and O is a compact set, is satisfied, then the Markov chain of the
aggregate system with state ζk is stochastically stable.

In the following, we define the drift of a subsystem as

∆ih(ζk) = E[‖eik‖
2
2|ζk]− ‖eik‖

2
2

Due to linearity of the conditional expectation, the definition implies that

∆h(ζk) =

N
∑

i=1

∆ih(ζk)

Consider two cases for calculating an upper bound on ∆ih(ζk). First, let
‖eik‖

2
2 > M i. The statistical independence of wi

k with respect to qik and eik
and the fact that wi

k ∼ N (0, Ci) allows the following simplification.

∆ih(ζk) = E[1− qik|ζk]‖A
ieik‖

2
2 + tr[Ci]− ‖eik‖

2
2,
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The expression E[1 − qik|ζk] describes the average probability that a request
of subsystem i is blocked and is upper bounded by 1 − Nslot

N
because of (2).

Therefore, the drift can be upper bounded in the first case by

∆ih(ζk) ≤ ((1 −
Nslot

N
)‖Ai‖22 − 1)‖eik‖

2
2 + tr[Ci]. (19)

In the case of ‖eik‖
2
2 ≤M i, we have the following uniform bound

∆ih(ζk) ≤ |‖Ai‖22 − 1|(M i)2 + tr[Ci].

By choosing O ⊃ M, we ensure that at least one of the subsystems tries to
send information over the communication network. This implies that there is at
least one subsystem for which we have a ∆i satisfiying the upper bound given
above for the first case. Selecting O accordingly, we can also guarantee that
the ith subsystem with the maximal ‖eik‖2 is greater than M i and therefore
the bound of the first case applies for this subsystem for all ζ /∈ O. Together
with supi ‖e

i
k‖

2
2 ≥ 1

N
‖ζk‖22, the condition in (14) guarantees that we can find

an appropriate ǫ and an appropriate compact set O such that the condition
in (18) is satisfied for all ζ /∈ O. ⊓⊔

It shall be noted that the stability condition in Theorem 2 can be es-
tablished separately for each subsystem and does not put constraints on the
scheduling behavior of the other subsystems. This implies that stochastic sta-
bility can still be guaranteed, even if a malicious subsystem is continuously
requesting for transmission.

3.4 Asymptotic optimality

In the following, we focus on the analysis of the approximative bi-level ap-
proach developed in subsection 3.1, when the number of subsystems, N , ap-
proaches infinity. A design approach is said to be asymptotically optimal, when
the costs of the solution approaches the optimal costs arbitrarily close for a
sufficiently large N . The relevant system parameters of subsystem i are sum-
marized in the 4-tuple Ki = {Ai, Bi, Qi

x, Q
i
u}. In order to compare the control

performance between the aggregated systems with increasing N , we scale the
communication network accordingly such that the ratio Nslot/N stays con-
stant. It is also assumed that there is a finite number of subsystem classes
denoted by N̄ , i.e., Ki ∈ {K1, . . .KN̄} for all i ∈ {1, . . . , N}. The number of
subsystems in a subsystem class is scaled with increasing N , such that their
ratio between each other remains constant. This assumption implies that it
suffices to consider subsystems of a subsystem class Kj separately with a fixed
slot assignment of N j

slot ≤ Nslot.
We also assume that we have chaoticity in equilibrium Graham (2000)

which corresponds to the exchange of the limits of time and the number of
subsystems, i.e., limk→∞ limN→∞ = limN→∞ limk→∞. To prove above as-
sumption for the underlying system is out of the scope of this work and shall
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be considered in future work. In the following analysis, we therefore consider
that the system is in its stationary regime and consider the limit when N ap-
proaches ∞. The subsequent theorem gives a statement about the optimality
properties of the approximative design approach.

Theorem 3 If Assumption 1 and the stability condition in (14) are satisfied,
then the solution of the bi-level optimization problem defined by (7) and (8) is
asymptotically optimal with respect to the optimization problem given by (6).

Proof First, note that the optimal cost V̄ ∗ resulting from the second level op-
timization given by (8) are a lower bound of the original optimization problem.
This is because the hard rate constraint to be satisfied at each time step is
relaxed by merely restraining the average total transmission rate. In the fol-
lowing, we show that the deviation from the optimal cost V̄ ∗ because of the
actual hard rate constraint becomes arbitrarily small for sufficiently large N .
As already mentioned above, it suffices to restrict ourselves to a networked con-
trol system composed of identical subsystems. It follows from the convexity
of the function J i,∗(r̄i) resulting from (7) that the assigned individual aver-
age transmission rates are identical. Therefore, the transmission rate is given
by ri = Nslot/N for each subsystem i, N ∈ {1, . . . , N}.

Next, we observe that the event of a request of a subsystem relatively to its
most recent successful transmission can be regarded as a renewal process. This
process is identical with a system without hard rate constraint as the blocking
behavior of the arbitration mechanism is removed. Due to Theorem 2, it fol-
lows from Assumption 1 and condition (14) that the resulting Markov chain
characterizing the aggregate behavior is ergodic for any N . That means that
there exists a stationary distribution of the Markov state which implies that
the renewal process is aperiodic and recurrent. As all subsystems are identical,
the stationary distribution is symmetric with respect to the subsystems.

Therefore, we have

Pst[δ
i
k = 1|last transmission successful] = ri =

Nslot

N
.

Moreover, we define the probability of requesting transmission assuming the
last transmission were not successful as

β = Pst[δ
i
k = 1|last transmission not successful].

Further, we assume that β > ri, which means that it is more likely to transmit
when the last transmission has not been successful. This can be easily proved
for scalar systems and is also conjectured for higher-order systems.

We define the µN
k to be the fraction of the subsystems whose most recent

transmission has been successful, i.e.,

µN
k =

1

N

N
∑

i=1

1last transmission successful of ith subsystem
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Consider the deterministic process

µ∞
k+1 = µ∞

k − µ∞
k ri +min(

Nslot

N
, β(1− µ∞

k ) + µ∞
k ri).

Due to the law of large numbers, the µN
k converges weakly to above process in

the stationary regime. We are interested in the fixed points of above process,
as we are assuming the process evolving is stationary. It is easy to see that
the only fixed point is given by µ∞

k = 1. Hence, the fraction of the subsystems
whose most recent transmission has been successful converges weakly to 1.
Therefore, we converge to the optimal cost V̄ ∗ resulting from (8). This implies
that the design method described by (7) and (8) is asymptotically optimal.

⊓⊔

3.5 Computational complexity

For the calculation of the Pareto frontier in the first level of the bi-level ap-
proach, we need to solve a dynamic program for different values of λ. This
can be accomplished by a sequence of value iterations for subsystems with a
moderate state dimension. For higher-order systems, there exist approxima-
tive methods, e.g., as developed in Cogill (2009) that reduces the problem to a
sequence of semidefinite programs. The solution of the algebraic Riccati equa-
tion for the optimal control law in (9) can be computed in polynomial-time.
Therefore, it does not represent a computational burden for higher-dimensional
systems. It should be noted that the Pareto frontier can be determined offline
for each subsystem without having to take the system parameters of the com-
munication network into account.

The solution of the global resource allocation problem with N design pa-
rameter in the second level is a convex optimization problem, which can be
solved efficiently. Hence, the optimal solution can also be computed for a large
number of subsystems.

In contrast to the centralized and time-triggered approach, the event-
triggered approach is more flexible with respect to changes during runtime.
When subsystems are attached to or detached from the current contention-
based communication system, we only have to solve the optimization problem
within the second level to adjust the transmission rates.

4 Numerical simulations

In this section, the proposed event-triggered approach is evaluated and com-
pared with the time-triggered and the centralized approach. In order to facil-
itate the presentation, we restrict our attention to scalar subsystems.

First, suppose we have identical subsystems with parameters

Ki = K = (1, 1, 1, 0).
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Fig. 3 Pareto frontier of a subsystem and system parameters K = (1, 1, 1, 0). The vertical
line indicates the rate constraint.

The communication network has a ratio between available transmission slots
and the number of subsystems of Nslot/N = 0.2. The Pareto optimal cost re-
gion [J i, ri] for a subsystem with parameters K including the rate constraint is
drawn in Fig. 3. We observe that J i is a decreasing and convex function with
respect to ri. For identical subsystems, there is a substantial simplification in
the global resource allocation problem performed in the second level as all sub-
systems attain the same transmission rate, i.e., the optimal transmission rate is
given by ri,∗ = 0.2. The optimal cost point is attained at [J i,∗, ri,∗] = [1.54, 0.2]
by an event-triggered scheduling policy πi,∗ that is given by δik = 1{|ei

k
|>1.7}.

The optimal control law gain Li is given by 1.

Figure 4 compares the cost of the decentralized event-triggered scheme with
the optimal time-triggered scheme and the optimal centralized scheduling. It
shows the cost per subsystem for various numbers of identical subsystems N
with Nslot/N = 0.2. The costs for N ∈ {5, 25, 100, 250, 500} are determined
by Monte Carlo simulations with a time horizon of T = 10 000. The optimal
control law for both the optimal time-triggered scheme and the optimal cen-
tralized scheme are given by uik = −Li

E[xik|Z
i
k] with Li = 1. In the optimal

time-triggered scheme, time slots for transmission are assigned successively.
Subsystems transmit information periodically with transmission period N

Nslot

,
where we assume that N is a multiple of 5. In the case of identical subsystems,
the optimal centralized scheduler selects at each time step k the Nslot subsys-
tems with maximum magnitude |ek| whose feedback loop are then closed. Such
kind of protocol can be realized by prioritize the medium access through |ek|
which has also been done in Walsh et al (2002). It should be noted that this
scheduler can be regarded as a lower bound on the performance that can be
achieved over the communication networks. In the case of heterogeneous mul-
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tidimensional systems, it remains an open problem how to realize centralized
schedulers without gathering the state information of all subsystems.

We observe in Fig. 4 that the cost of the optimal decentralized scheduling
algorithm approximates this lower bound very closely and outperforms the
optimal time-triggered scheme significantly. On the other hand, it can be seen
that the costs converge to the asymptotic costs for N → ∞ very rapidly.
Already for N = 100, the performance gap is less than 10%.
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Fig. 4 Numerical comparison of time-triggered (TT), event-triggered (ET) and centralized
schemes for a networked control system with homogeneous subsystems K = (1, 1, 1, 0)
and Nslot/N = 0.2.

Next, we consider a heterogeneous system, where we have two different
kinds of subsystems occurring at the same amount. The system parameters
are K1 = (1.25, 1, 1, 0) and K2 = (0.75, 1, 1, 0) and the communication network
has a ratio of Nslot/N = 0.5. We note that the stability condition (14) in
Theorem 2 is satisfied for the underlying subsystems.

Having obtained the Pareto curves from the first level optimization for both
subsystems sketched in Fig. 5, the resource allocation problem given by (8)
determines the optimal rate pair. The dashed line in Fig. 5 depicts the mean
cost per subsystem V as a function of r1 for N = 2 without collisions. It can
be seen that the total cost V is convex with respect to r1 and it is minimized
at the rate pair [r1, r2] = [0.6, 0.4] taking a value of 1.07. The optimal control
gain is given by Li = Ai for both subsystems and the scheduling laws are
threshold policies, where δ1k = 1{|ek|>0.5} for K1 and δ2k = 1{|e2

k
|>0.95} for K2.

Concerning the performance in the presence of the shared network, we
consider the mean costs V depicted in Fig. 6 for N ∈ {2, 10, 50, 100, 250, 500}.
The optimal time-triggered scheme involves a brute-force search over all pos-
sible combinations of transmission times. To keep this combinatorial problem
numerically tractable, we restricted the admissible transmission scheme to be
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Fig. 5 Solid lines: Pareto frontiers of two different subsystems with system parameters K1 =
(1.25, 1, 1, 0) and K2 = (0.75, 1, 1, 0). Dashed line: Total cost V (r1) = 1

2
(J1(r1) + J2(r2))

and constraint 1

N
(r1 + r2) ≤ 0.5. The optimal rate pair is given at [r1, r2] = [0.6, 0.4] with

total cost V = 1.07 for the two subsystems without collisions.

periodical for subsystems K2. The optimal periodical transmission scheme is
then given by [δ10 , δ

1
1 , δ

1
2 , . . .] = [1, 1, 0, . . .] and [δ20 , δ

2
1 , δ

2
2 , . . .] = [0, 0, 1, . . .] with

period 3. A lower bound is given by V = 1 assuming no communication con-
straints on the feedback channels. It should be noted that the lower bound is
certainly not tight for the optimal event-triggered scheme and therefore there
will always be a gap between the proposed scheme and this bound even in the
limiting case N → ∞. As can be regarded from Fig. 6, this lower bound is ap-
proached with a gap of less than 10% for increasing N and the time-triggered
scheme is outperformed for every N .

5 Conclusion

This paper shows that decentralized event-triggered control constitutes an
attractive design approach for resource constrained networked control sys-
tems. The proposed design method manages to establish a compromise be-
tween computational complexity and overall performance that circumvents to
take the complex behavior of the contention-based network into account. De-
spite the decreased predictability and a close interaction between control and
communication in contrast to time-triggered control schemes, the gain from
the proposed event-triggered control scheme is an increased level of flexibility,
robustness, and an significant improvement on the control performance for the
shown examples.

The major issues to be addressed in future research is the investigation on
the online adjustment of the event-trigger according to the network traffic that
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Fig. 6 Numerical comparison of time-triggered (TT) and event-triggered (ET) schemes
for a networked control system with heterogeneous subsystems of two classes K1 and K2

and Nslot/N = 0.5.

also leads to a decentralization of the global resource allocation problem as
well as the study of more complicated models for the communication network.
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Blind R, Allgöwer F (2011a) Analysis of Networked Event-Based Control with a Shared
Communication Medium: Part I - Pure ALOHA. In: IFAC World Congress, pp 10,092–
10,097
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