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Abstract
As one of the most complicated and challenging networks among healthcare systems, the organ transplant network necessi-
tates an effective supply chain network design. In this article, a bi-objective mixed integer nonlinear programming (MINLP) 
location-allocation model is proposed to design the organ transplant supply chain network, with the objectives of minimiz-
ing overall costs (including strategical and operational costs) and the number of unsatisfied demands under uncertainty. 
The developed model calculates the optimum number of facilities to be established and equipped for each organ, the flows 
between them, and the optimal allocation of cold chain vehicles, which is a combination of similar works in this context 
with cold chain and resource allocation as one of the novelties of this paper. Moreover, the preciousness of human life neces-
sitates a policy for allocating organs. Hence, in this study, high-risk recipients, who are more likely to die in case of unmet 
demand, are prioritized above low-risk ones to prevent mortality as much as possible. This article also takes transportation 
constraints into account in the effort to minimize carbon emissions, one of the most challenging environmental concerns of 
the present day. Numerical experiments demonstrate the applicability of the developed model, and a case study is presented 
to compute the optimal solutions of the proposed methodology. Finally, various sensitivity analyses are performed to provide 
managerial insights.

Keywords Organ transplant network · Healthcare management · Organ allocation priority · Multi-objective location-
allocation · Cold chain resource allocation

Introduction

Nowadays, technological and medical advances have made 
organ transplantation one of the most successful and popu-
lar treatment methods. The first successful kidney trans-
plant surgery was conducted by Joseph Murray in 1954 in 
the USA (Leppke et al., 2013). Transplantation surgery is 
regarded to be the only treatment for the end-stage failure 
of organs such as the liver, lung, and heart, and also the 
most low-cost way to treat kidney end-stage diseases (Bouw-
man, Lie, Bomhoff, & Friele, 2013). Based on the statistics, 
over 40,000 transplants were performed in 2021. However, 
unfortunately, 17 people die each day waiting for an organ 
transplant. Figure 1 shows the number of patients on the 
waiting list and the performed transplantations divided by 4 
major transplantable and other organs in 2021 (HRSA 2022).

According to a definition by Ahmadvand and Pishvaee 
(2018b), organ transplantation is a procedure in which a 
healthy organ is harvested from a living or deceased person 
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(a donor) and it is transferred into the body of an individual 
who has been diagnosed with organ failure (a recipient). The 
intrinsic fact in this matter is that there is always a greater 
demand for organs than their supply. Thus, as precious 
scarce national resources, it is essential to plan strategies 
and policies to manage organs efficiently through the supply 
network (Ahmadvand & Pishvaee, 2018a).

The supply chain management (SCM) concept refers to 
the efficient process of planning, implementing, and control-
ling supply chain operations (Hernández-Pérez & Ponce-
Ortega, 2021; Melo, Nickel, & Saldanha-Da-Gama, 2009; 
Mohammadnazari, Aghsami, & Rabbani, 2022; Abolfazli 
et al., 2022). Supply chain network design (SCND) decisions 
typically entail determining the facilities’ optimal location, 
allocation, and capacity in order to meet the demand at the 
lowest possible cost (Jabbarzadeh, Fahimnia, & Seuring, 
2014). A well-organized Organ Transplantation Network 
(OTN) provides efficient and collaborative management of 
all transplantation activities, including donation, procure-
ment, preservation, transportation, and organ transplants 
(Ahmadvand & Pishvaee, 2018a). In transplantation net-
works, the location of facilities plays a crucial role since 
poor locations can lead to a higher mortality rate (Daskin 
& Dean, 2005).

There are various types of facilities in an organ transplant 
network in every country. In a case by Rouhani and Amin 
(2022), it is described as follows: Organ transplant network 
is comprised of initial hospitals, Organ Procurement Unit 
(OPU), and Transplant Center (TC). The brain-dead donors 
are diagnosed at initial hospitals, as they make up the bulk 
of donor numbers. All activities associated with the procure-
ment of organs, from identifying the donor to harvesting his/
her organs, are done in an OPU. Ultimately, a center where 
the organs are transplanted to the recipient’s body is called 
a TC. In this study, the OTN is made up of donor hospi-
tals (H), TCs, recipient zones (Jabbarzadeh et al.; Sy et al., 
2021), and shipping agents (Sh.A). The donation operations 
take place in hospitals. The shipping agents are responsible 

for transporting blood samples and information of donors 
from hospitals to TCs, and then bringing back the results to 
the hospitals. The transplant centers are in charge of register-
ing the recipients and conducting analyses of donors’ blood 
samples. TCs are where the transplantation operations are 
carried out.

The organ transplantation process requires subtle man-
agement by virtue of its many constraints, such as time and 
perishability. For instance, Cold Ischemia Time (CIT) is the 
time period during which an organ is able to survive outside 
of the body without blood perfusion. It begins after the organ 
is harvested from a donor body and ends with the implan-
tation of the organ into a recipient body. Each organ has a 
maximum allowable CIT, and also it is preferable to mini-
mize it in order to optimize the post-transplant outcomes. 
Furthermore, because deceased donors are kept artificially 
alive, obviously, this condition cannot be sustained for a long 
time (Ahmadvand & Pishvaee, 2018b; Uehlinger, 2010).

A successful and on-time transplant cannot always be 
achieved if there is an availability of organs. There are fur-
ther problems, namely long transportation time to recipi-
ents and medical staff unavailability, that may bring about 
the waste of time and, finally, shortage of organs (Fuzzati, 
2005). Therefore, this increases the significance of deter-
mining the location of OTN’s facilities, applying efficient 
coordination among medical staff, and considering transpor-
tation matters. Equity and efficiency are the other substantial 
issues in the optimization of OTN which are construed to 
be the two opposing objectives of the allocation process. To 
clarify, equity is comprised of (1) equal access (avoiding 
biases based on age, sex, waiting time, etc.) and (2) maxi-
mum benefit (considering the length of recipient’s life after 
transplantation, the recipient’s urgency level, etc.) (Ahmad-
vand & Pishvaee, 2018b; Benjamin, 1988).

In the healthcare sector, optimal resource allocation and 
enhancing the quality of public health are crucial and have 
always been among controversial issues (Asante & Zwi, 
2009). Resource allocation requires a great deal of attention 

Fig. 1  Patients on the waiting 
list vs. transplants performed 
by organ in 2021 (HRSA 2022). 
*Other includes allograft 
transplants like face, hands, and 
abdominal wall
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in the context of organ transplantation due to the nature of 
body organs as scarce resources and the sensitivity of organ 
transplantation surgery for mortality possibilities. As men-
tioned before, the viability of organs out of the body depends 
on each type’s maximum allowable CIT. In response to this 
demand, the cold chain logistics infrastructure has needed 
a major overhaul, which may eventually be able to accom-
modate the transportation of organs as well. In this study, 
the vehicles for transporting the organs are refrigerated ones.

In this study, the locations of the network’s facilities, 
including hospitals, TCs, and shipping agents, are deter-
mined in some recipient zones with uncertainty due to this 
industry’s dynamic nature. Our novelties in this context are 
represented as below:

• We contribute to the literature by designing an OTN 
with the approach of location-allocation and resource-
allocation. The perishable nature of the organs neces-
sitates the employment of transportation methods that 
guarantee the organs’ requisite temperature restrictions. 
As a result, the cold chain problem arises. The cold chain 
logistic is regarded as involving refrigerated vehicles for 
transporting the organs as a resource, and their capacities 
are also taken into account. To the best of our knowledge, 
the combination of organ transplant network design and 
cold chain vehicle allocation has not been addressed so 
far.

• Furthermore, global warming is one of the most critical 
topics that humanity faces today. As one of the primary 
contributors to global warming, the fuel consumption 
of various modes of transportation has prompted us to 
include carbon neutrality as one of the article’s objectives.

• One of the important issues in organ transplantation 
is the successful performance of the surgical process, 
the failure of which can be manifested in the death of 
the recipient or an unsuccessful surgery. To this end, in 
addition to minimizing the total costs, this study aims to 
minimize the total number of unsatisfied demands that 
some of which may cause death and others may not. In 
addition, we have considered a prioritization of unmet 
demands leading to death over the ones that do not.

• Most of the papers in this context have studied kidney 
and liver transplantation as the two most transplanted 
organs worldwide. Due to the possibility that pulmonary 
insufficiencies could grow in the future as a result of the 
COVID-19 outbreak, we felt it vital to include lung trans-
plantation as well.

The rest of this study is structured as follows. In the “Lit-
erature Review” section, a literature review of the research 
is provided. The problem description and research method-
ology are presented in the “Problem Description and For-
mulation” section. In the “Solution Approach” section, the 

solution approach of the previous section is presented. Seg-
ment “Numerical Examples” corresponds to test problems 
and model validation. In the “Case Study Implementation” 
section, a real case study is implemented. Some sensitiv-
ity analyses and their attained managerial insights are pro-
vided in sections “Sensitivity Analysis” and “Discussion and 
Managerial Insights,” respectively. Finally, the conclusion is 
presented in the “Conclusion” section.

Literature Review

In this section, the research literature is divided into two 
categories. Studies related to healthcare location-allocation 
are provided in the first category, and in the second one, a 
review of healthcare resource allocation is presented. Sub-
sequently, the contributions of this research are clarified.

Healthcare Location‑Allocation

Research in this area has presented different models for 
determining the location-allocation of healthcare facili-
ties. In the work by Zhang, Cao, Liu, and Huang (2016), a 
multi-objective genetic algorithm is used to achieve Pareto-
optimal solutions and trade-offs between conflicting objec-
tives. Shariff, Moin, and Omar (2012) applied a healthcare 
location-allocation model in Malaysia. The formulation was 
a capacitated maximal covering location problem aiming 
for maximization of the population assigned to a facility. 
A genetic algorithm was developed to solve the large-size 
problem. Salimian and Mousavi (2022) introduced a novel 
scenario-based MINLP model to design a transplant network 
considering climate change. The objectives of this research 
are maximization of blood-type compatibility and organ 
quality while minimizing the amount of time it takes to 
deliver organs following a disruption. A mixed-integer lin-
ear programming methodology is proposed by Devi, Patra, 
and Singh (2022) for the location-allocation of healthcare 
service networks. The study’s objective is to determine the 
quickest and most cost-effective ways to transport test sam-
ples from different locations to testing laboratories. Aghsami 
et al. (2023a) presented a location-allocation problem in the 
blood supply chain using queueing theory in the collection 
centers in order to minimize expected total costs and maxi-
mize donor satisfaction.

Due to controversy and questionability surrounding opti-
mal allocation methods and various policies, organ alloca-
tion methods and their associated policies have developed 
rapidly (Alagoz, Schaefer, & Roberts, 2009). Zahiri, Tavak-
koli-Moghaddam, and Pishvaee (2014a) proposed a robust 
possibilistic programming model for the location-alloca-
tion of organ transplantation supply chain in Iran under 
uncertainty. The objective function of the proposed MILP 
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model was to minimize the total costs. Zahiri, Tavakkoli-
Moghaddam, Mohammadi, and Jula (2014b) extended their 
earlier work by developing a multi-objective location-allo-
cation model for designing an organ transplant transporta-
tion network to minimize cost and delivery time, consider-
ing uncertainty. Bruni, Conforti, Sicilia, and Trotta (2006) 
developed a MILP optimization model to find the optimal 
location of OTN facilities based on equity. This was applied 
to an Italian case study. The possibilistic programming for 
liver allocation and transportation with a hybrid interactive 
fuzzy optimization model was proposed by Kargar, Pish-
vaee, Jahani, and Sheu (2020). In this study, trade-offs are 
made between equity and efficiency. Ahmadvand and Pish-
vaee (2018b) applied a model based on Data Envelopment 
Analysis (Daskin & Dean) for kidney allocation to evalu-
ate the efficiency of eligible patient-organ allocation pairs 
as way to prioritize candidates. Rouhani and Amin (2022) 
developed a multi-objective hierarchical location-allocation 
model with the goal of minimization of total costs and time, 
and maximization of geographical equality. Supply and 
demand uncertainty was taken into account. In a work by 
Beliën, De Boeck, Colpaert, Devesse, and Van den Boss-
che (2013), mixed-integer linear programming was used to 
optimize the location of TCs as one of the most important 
components of an OTN by minimizing total weighted time 
as the objective function.

Healthcare Resource Allocation

Almost every society in the world struggles with the availa-
bility and efficient allocation of healthcare resources. Health-
care service delivery gaps were investigated by Basu, Jana, 

Bardhan, and Bandyopadhyay (2017) using pinch analysis, a 
quantitative tool developed to optimize source-demand allo-
cation networks. Lai, Cheung, and Fu (2018) designed a new 
mechanism to optimize the allocation of public healthcare 
resources by utilizing a team-DEA model. Public health-
care was assumed as a public good, and the computations 
were applied to Chinese healthcare data. Another applica-
tion of healthcare resource allocation was studied by Ordu, 
Demir, Tofallis, and Gunal (2021) using the integration of 
the forecast-simulation-optimization method to find the opti-
mal number of beds and staff in a mid-size English hospital. 
Keshtkar, Salimifard, and Faghih (2015) worked on opti-
mizing waiting time by considering budget constraints and 
resource management by evaluating 3 KPIs and making a 
simulation model. In order to allocate the optimal number 
of nurses to the shifts, Kiani Nahand, Hamid, Bastan, and 
Mollajan (2019) proposed a novel multi-objective integer 
model that incorporates human errors.

In this direction, some papers have investigated uncer-
tainty in their research (Jalilvand, Karimi, Mohammadnaz-
ari, Aghsami, & Jolai, 2023). Yin and Büyüktahtakın (2021) 
developed a multi-stage stochastic epidemic-logistic model 
to minimize new infections, while equal resource allocation 
and uncertain disease growth are taken into account. Feng, 
Wu, and Chen (2017) proposed a multi-objective simulation 
optimization algorithm for resource allocation in emergency 
departments by assuming the service time and patient arrival 
as uncertain parameters. Two objectives, one social and one 
economic, have been taken into account by Hernández-Pérez 
and Ponce-Ortega (2021). Minimizing the number of unac-
cepted patients is a social objective since it improves the 
likelihood of saving lives while minimizing transportation 

Fig. 2  Organ transplant supply 
chain network
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and healthcare equipment (hospital beds and ICUs) expenses 
is an economic one. They have taken demand uncertainty 
into account. Considering the uncertainty of the disease’s 
spread speed, Eriskin, Karatas, and Zheng (2022) developed 
a multi-objective location-allocation model that combines 
strategic, tactical, and operational decisions into a single 
decision model employing across-scenario robust (ASR).

One of the most important issues in some healthcare sub-
categories is the matter of temperature. Since some health-
care stuff like vaccines or organs must be frozen to prevent 
spoilage, the cold chain gains significance in this context. 
Ashok, Brison, and LeTallec (2017) have investigated cold 
chain systems’ challenges and solutions like inadequate cold 
chain capacity, absence of cutting-edge or optimal equip-
ment, and insufficient inspection and maintenance systems 
for temperature. Another paper studies a cold chain logistics 
vehicle routing optimization problem considering customer 
satisfaction and carbon emissions (Fereidouni, Mehdizadeh 
Somarin, Mohammadnazari, Aghsami, & Jolai, 2022; Qin, 
Tao, & Li, 2019). In our article, cold chain vehicles are uti-
lized as resources to transport organs from hospitals to TCs, 
in order to prevent organ wastage as much as possible.

Research Gaps, Motivation, and Contributions

There is a gap in the current literature addressing the integra-
tion of designing organ transplantation location-allocation 
and resource-allocation. To the best of our knowledge, cold 
chain vehicles have not been considered as resources in this 
context. Another issue that has not been considered in pre-
vious studies is the external cost of carbon emission during 
transportation. Also, a large number of publications discuss-
ing organ transplantation issues have focused on kidney and 
liver transplants as the two most transplanted organs in the 
world. Another existing gap is that minimization of unsatis-
fied demand has not been regarded yet.

Due to the different nature of each organ type, they have 
various maximum allowable CIT. Therefore, assigning a 
specific refrigerated vehicle to each organ is essential to 
ensure it will not perish and lead to organ wastage. With the 
increasing rise of global warming, it is crucial to pay atten-
tion to carbon neutrality and bestow on our environment 
as much as we are able to. Hence, involving green logistic 
techniques may reduce these emissions. With the epidemy 
of COVID-19, many people will suffer from lung diseases in 
the future, and it is estimated that the demand for lung trans-
plantation will increase. That is our motivation to involve 
this type of organ in this study, as well as the heart and kid-
ney. Organ transplantation unsatisfied demand requires sub-
stantial attention since it directly deals with humans’ lives.

This paper’s multi-period location-allocation model’s 
goal is to find the optimal locations of hospitals, TCs, and 
shipping agents under uncertain environments. Furthermore, 

the optimal interrelationship between these facilities will be 
obtained in order to design a cost-efficient organ transplant 
network. We propose two objective functions, including 
minimization of total costs and the number of unsatisfied 
demands, which the second one is one of our contributions. 
Furthermore, we have interfered with recipient prioritizing 
by dividing them into high-risk and low-risk recipients into 
two categories. The organ supply first satisfies the demand 
of high-risk recipients in order to prevent mortality as much 
as possible. The remainder is then allocated to low-risk cli-
ents. To address the aforementioned gap, we have assumed 
cold chain vehicles as resources to be allocated for organ 
transportation from hospitals to TCs, and their capacity 
constraints are regarded. The movement of vehicles is also 
restricted by the determined amount of carbon emission 
allowed by the government.

Problem Description and Formulation

Organ transplant candidates are increasing daily as medical 
technology advances. Transplantation is divided into two 
distinct phases: procurement and surgery. OTN’s logistics 
management and design are centered on the procurement 
phase, with the surgery phase focusing exclusively on medi-
cine. The procurement step is further subdivided into three 
stages: matchmaking, transportation route planning, and 
scheduling of medical teams.

From a planning perspective, organ transplantation arti-
cles are divided into two broad categories: (1) those address-
ing long-term (strategic) decision problems and (2) those 
addressing short-term (operational) decision problems. 
The first category entails long-term considerations such as 
network facility location-allocation and regional configura-
tion design of hierarchical allocation systems in order to 
maximize societal benefit while lowering overall network 
expenses. Given that the allocation of organs is the most 
critical component of short-term organ transplantation deci-
sions, the second category and majority of operational plan-
ning research is devoted to studying organ allocation and 
distribution challenges, particularly kidney and liver alloca-
tion problems. This study’s scope is limited to the first cat-
egory. Given the potential sites, a long-term decision about 
finding the optimal facilities’ locations will be made. The 
details of the problem will be enlightened in the following 
paragraphs.

In general, there are two categories of challenges in sup-
ply chain management: incoming and outbound problems. 
Inventory and collection planning are examples of inbound 
challenges, whereas supply, distribution, and scheduling are 
examples of outbound problems. Once the supply is ready, 
the next step is to distribute the organ to the appropriate 
recipient while balancing efficiency and equality, as well as 
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expanding donor pools. The incoming dilemma concerns the 
placement and distribution of organs to ensure a successful 
transplant. All actions involving the coordination and net-
working of transplant centers in receiving and transplanting 
patients with the appropriate centers must be efficient and 
successful in terms of event planning.

An organ transplant supply chain network that is modeled 
in this study is depicted in Fig. 2, illustrating the interac-
tions among the constituent facilities. The first stage is once 
a donor decides to donate an organ to the hospital (1). In 
order to test the blood and perform the required analyses, a 
shipping team will be sent to the hospital (2), and then from 
the hospital to TC transporting the required information and 
the donor’s blood sample (3). Afterward, the transporter will 
turn back to the hospital (4). The process of allocating the 
most appropriate recipient and TC begins at this point. In 
the event of an operation, the organ harvest procedure will 
take place in the hospital and the organ/organs will be trans-
ported to the TC for transplantation (5). During this time, 
the accepted recipient is informed and has to attend the TC 
as soon as possible to undergo the operation (6). It is worth 
noting that arrows (3) and (4) are depicted with dashes dem-
onstrating the information flows.

The hospital receives direct referrals from brain-dead 
patients or donors. The TC’s responsibility is to register the 
recipient, sample their blood, and perform the transplanta-
tion surgery. To avoid arrow congestion in Fig. 2, two TCs 
are illustrated. However, they are not different practically.

In this paper, the demand has been studied separately for 
high-risk and low-risk recipients. In order to have the low-
est mortality as possible, the recipients are divided into two 
groups: The first group includes the recipients who the organ 
shortage will lead them to mortality (high-risk recipients), 
and the second one consists of people the deficiency may 
not bring about death for them (low-risk recipients). Conse-
quently, this study works on prioritizing the patients as well.

Fuzzy programming, rather than being crisp/probabil-
istic in the traditional sense, is an optimization approach 
for dealing with issues involving imprecisely described 
model parameter sets. It covers the modeling compo-
nents of optimization challenges with imprecisely speci-
fied model parameters in the decision context. Triangular 
fuzzy numbers are commonly used to evaluate and present 
fuzzy information, and they are particularly well suited to 
small datasets or data with poor precision. As a result, in 
this article, we assume that transportation costs and total 
demand (including high-risk and low-risk recipients) are 
uncertain, and we seek to ensure that the amount of the 
items provided to the consumer is likewise uncertain in 
triangular fuzzy numbers.

In this section, we propose a bi-objective multi-period 
location-allocation model to design an efficient organ 

transplantation network, taking uncertainties into account. 
As previously discussed, there are three types of facili-
ties namely hospitals, shipping agents, and TCs. Due to 
the given potential sites for facilities and demands for 
different organs in varying recipient zones, this problem 
is concerned with issues like finding the optimal sites of 
the aforementioned facilities, the optimal flows between 
them, allocating refrigerated vehicles to transportation, 
monitoring excess carbon emission, and prioritizing the 
recipients. The model aims to minimize total costs and 
the unsatisfied demands leading to both mortality and 
survival.

Notations

The notations used for the mathematical formulation are 
presented separately, sorted by sets, parameters, and deci-
sion variables as follows. The uncertain ones are indicated 
with a tilde.

Sets

I set of potential hospital locations, i ∈ I
J set of potential TC locations, j ∈ J
R set of recipient zones, r ∈ R
O set of organ types, o ∈ O
SA set of shipping agent locations, sa ∈ SA
V set of refrigerated vehicles, v ∈ V
V′ set of shipping agent vehicles, v′ ∈ V′

T set of time periods, t ∈ T

Parameters

ci fixed cost of establishing a hospital at potential location i
cj fixed cost of establishing a TC at potential location j
cio cost of harvest process of organ o at hospital i
cjo cost of equipping TC j for organ type o
N

t

i
number of donors at hospital i at time period t

Bt

io
number of organ o harvested from a single body at 

hospital i at time period t
P total number of available shipping agents at each time 

period
∼

D
t

ro

total demand of high-risk recipients in recipient zone r 
for organ o at time period t

∼

D�t
ro

total demand of low-risk recipients recipient zone r for 
organ o at time period t

∼

c
i→j

ij

cost of transporting samples and needed information 
from hospital i to TC j

∼

c�
i→j

ij
cost of transporting an organ from hospital i to TC j

c
r→j

rj
cost of transporting an individual from recipient zone r 

to TC j

c
(SA→i)

SAi
cost of contract between hospital i and shipping agent sa



715Process Integration and Optimization for Sustainability (2023) 7:709–727 

1 3

Parameters

tt
ijo

traveling time of organ o from hospital i to TC j at time 
period t

Qo organ o cold ischemia time (CIT)
λ importance weight of the strategic level costs
disij the distance between hospital i and TC j
dissai the distance between hospital i and shipping agent sa
et amount of  CO2 emission per distance unit in period t
Lt maximum allowable amount of carbon emission in 

period t determined by the government
capv capacity of refrigerated vehicle v
capv′ capacity of shipping agent vehicle v′

W1 importance weight of high-risk recipient unsatisfied 
demands

W2 importance weight of low-risk recipient unsatisfied 
demands

φ importance weight of total cost objective function in 
weighted sum method

1 − φ importance weight of unsatisfied demand objective func-
tion in weighted sum method

PC penalty cost for each unsatisfied demand

Decision variables

xi
{

1 if a hospital is established at location i

0 otherwise

xj
{

1 if a TC is established at location j

0 otherwise

yio ⎧
⎪
⎨
⎪
⎩

1 if a hospital is established at location i and equipped

for donation of organ o0 otherwise

yjo ⎧
⎪
⎨
⎪
⎩

1 if a TC is established at location j and equipped

for transplantation of organ o0 otherwise

zt
sa

⎧
⎪
⎨
⎪
⎩

1 if shipping agent sa is hired at

time period t 0 otherwise

z
(sa→i)t

sai

⎧
⎪
⎨
⎪
⎩

1 if a hospital at location i is served by

shipping agent sa, at time period t 0 otherwise

zov ⎧
⎪
⎨
⎪
⎩

1 if organ o is assigned to

vehicle v 0 otherwise

d ⎧
⎪
⎨
⎪
⎩

0 if

∼

D�
t

ro <

∑I
i=1

∑J
j=1

F�
(i→j)t

ijo
−
∼
D
t

ro

1 otherwise

d′ �
0 if

∼

D
t

ro
<
∑I

i=1

∑J

j=1
F�(i→j)t

ijo

1 otherwise

F
(i→j)t

ijo
flow of information and samples of 

organ o from hospital to TC j at 
time period t

́

F

(i→j)t

ijov

flow of organ o from hospital i to 
TC j at time period t by vehicle v

F
(r→j)t

rjo
flow of recipients moving from 

their region r to TC j for trans-
plantation at time period t

Decision variables

At
io

donor-sourced number of organ 
o available at hospital i at time 
period t

It
io

Inventory level supply of organ o 
at hospital i at time period t

Ut
ro

Number of unsatisfied demands 
in region r leading to mortality 
(high-risk recipients)

U′t
ro

Number of unsatisfied demands in 
region r not leading to mortality 
(low-risk recipients)

Assumptions

• Each organ has a specific maximum allowable CIT.
• Due to the scarcity and perishability of organs’ nature, 

their transportation requires special consideration. Hence, 
this affair is not done by shipping agents, and the hospitals 
are responsible for that with a special type of vehicle.

• The defined set of vehicles v are exploited for transferring 
organs to TCs, and they are refrigerated vehicles.

• The defined set of vehicles v′ are exploited for transport-
ing samples and information from hospitals to TCs and 
vice versa, and they belong to shipping agents.

• Each vehicle has a particular capacity.
• The potential locations for settling the facilities are avail-

able and suggested by the experts.

Mathematical Formulation

s.t:

(1)

Min Z1 = 𝜆

(
I∑

i

cixi +

J∑

j

cjxj +

O∑

o

J∑

j

cjoyjo

)

+

T∑

t

O∑

o

J∑

j

I∑

i

cioF
(i→j)t

ijo
+

T∑

t

I∑

i

SA∑

sa

c
(SA→i)

sai
z
(SA→i)t

SAi

+

T∑

t=1

O∑

o=1

J∑

j=1

I∑

i=1

c̃
i→j

ij
F
(i→j)t

ijo
+

T∑

t=1

O∑

o=1

J∑

j=1

I∑

i=1

V∑

v=1

∼
c�

i→j

ij
F� (i→j)t

ijov

+

T∑

t

O∑

o

J∑

j

R∑

r

c
(r→j)

rj
F
(r→j)t

rjo

(2)Min Z
2
=

R∑

r

O∑

o

T∑

t

W
1
Ut

ro
+

R∑

r

O∑

o

T∑

t

W
2
U�t

ro

(3)yio ≤ xi∀i, o

(4)yjo ≤ xj∀j, o

(5)
I∑

i=1

yio ≥ 1∀o
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(6)
J∑

j=1

yjo ≥ 1∀o

(7)
SA∑

sa=1

zt
sa
= P∀t

(8)z
(sa→i)t

sai
≤ zt

sa
∀i, sa, t

(9)yt
io
≤

SA∑

sa=1

z
(sa→i)t

sai
∀i, o, t

(10)zt
sa
≤

I∑

i=1

z
(sa→i)t

sai
∀sa, t

(11)
SA∑

sa=1

z
(sa→i)t

sai
≤ 1∀i, t

(12)
J∑

j=1

F
(i→j)t

ijo
= At

io
yio∀i, o, t

(13)F
(i→j)t

ijo
≤ At

io
yjo∀i, j, o, t

(14)F�
(i→j)t

ijov
= 0 ∣ tt

ijo
> Qo∀i, j, o, t, v

(15)
V∑

v=1

F�
(i→j)t

ijov
≤ At

io
yjo∀i, j, o, t

(16)
J∑

j=1

V∑

v=1

F�
(i→j)t

ijov
≤ At

io
yio∀i, o, t

(17)At
io
= Nt

i
Bt
io
∀i, o, t

(18)

R∑

r=1

J∑

j=1

F
(r→j)t

rjo
=

I∑

i=1

J∑

j=1

V∑

v=1

F�
(i→j)t

ijov
+

R∑

r=1

Ut
ro
+

R∑

r=1

U�t
ro
∀o, t

(19)
R∑

r=1

Ut
ro
=

(
R∑

r=1

∼

D
t

ro
−

I∑

i=1

J∑

j=1

V∑

v=1

F�(i→j)t

ijov

)

× d�∀o, t

(20)
R∑

r=1

U�t
ro
=

[
R∑

r=1

∼

D�

t

ro
−

(
I∑

i=1

J∑

j=1

V∑

v=1

F� (i→j)t

ijov
−

R∑

r=1

∼

D
t

ro

)
(
1 − d�

)
]

× d∀o, t

The objective function (1) minimizes the weighted total 
costs. It comprises fixed opening costs (including costs of 
setting up and equipping hospitals and TCs), harvesting 
process costs, and transportation costs. The last term in 
this equation refers to the carbon emission costs. Objective 
function (2) aims to minimize the number of unsatisfied 
demands considering the importance of mortality and sur-
vival weights. According to constraint set (3), a hospital 
can only serve a special organ donation if it is established. 
Constraint set (4) does the same for each TC, as well. In 
constraint sets (5) and (6), it is guaranteed that at least 
one hospital and one TC must be set up for each organ. 
Constraint set (7) indicates the total number of shipping 
agents available to each time period. Constraint set (8) 
points out that no hospital can be in the service domain of 
a shipping agent unless that agent is selected. Constraint 
set (9) ensures that at least one shipping agent covers each 
hospital. In constraint set (10), we ensure that a shipping 
agent can only be selected if assigned to at least one hospi-
tal to avoid unutilized shipping agents. Constraint set (11) 
assures that each hospital is covered by no more than one 
shipping agent. Constraint sets (12) and (13) are associ-
ated with the flows of information and samples between 
hospitals and TCs. These flows are possible if and only if 
these facilities are established. Constraint set (14) asserts 
that the flow of an organ from hospital to TC will be zero 
if the delivery time exceeds the maximum available CIT 
of that organ. Constraint sets (15) and (16) state that the 
flow of organs from hospitals to TCs depends on whether 
these facilities are settled, and also there is a limitation 
on the amount of flow due to the availability of organs 
in the hospital. Based on the constraint set (17), we esti-
mate how many organs of each type were supplied at each 
hospital and each time period. Constraint set (18) shows 

(21)It
io
= It−1

io
+ At

io
−

V∑

v=1

J∑

j=1

F�(i→j)t

ijov
∀i, o, t ∣ I0

io
= 0

(22)
2et

�
∑J

j

∑I

i

F�
(i→j)t

ijov

capv
disij +

∑J

j

∑I

i

F
(i→j)t

ijo

cap
v�

�
disij + dissai

�
�

≤ Lt∀sa, o, t, v, v�

(23)F�
(i→j)t

ijov
≤ capvzov∀i, j, o, t, v

(24)xi, xj, yio, yjo, z
t
sa
, zt

sai
, zov, d, d

� ∈ {0, 1}∀i, j, o, t, sa

(25)F
(i→j)t

ijo
,F�

(i→j)t

ijov
,F

(r→j)t

rjo
≥ 0, Integer∀i, j, o, r, t

(26)At
io

,P ≥ 0, Integer∀i, o, t
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the equation of total flows from recipient zones to TCs 
and total flows from hospitals to TCs plus the unsatis-
fied demand at each time period. At each time period and 
for each organ, constraint sets (19) and (20) calculate the 
unsatisfied demand of high-risk and low-risk recipients, 
respectively. Constraint set (20) is associated with the 
inventory level of each organ type in each hospital and 
over each period of time. Constraint set (21) restricts the 
number of vehicle movements between hospitals and TCs 
through the maximum allowable amount of carbon emis-
sion in period t determined by the government. Constraint 
set (22) assures that if a vehicle is assigned to an organ 
at a time period, the capacity of the vehicle should not be 
violated. Lastly, constraint sets (24–26) identify the type 
of decision variables.

Solution Approach

The proposed methodology for each small, medium, and 
large size is straightforward. Therefore, the exact solution 
can be obtained by employing exact methods and using the 
Generalized Algebraic Modelling system (GAMS) software 
in a reasonable time. In the following subsections, we are 
going to defuzzify the model by Jiménez method, first. Then 
a weighted sum multi-objective approach is presented in 
order to solve the problem.

Jiménez Method

Due to the nature of the data in real-world situations, a num-
ber of parameters are uncertain. In this research, we, there-
fore, consider total demand (including high-risk and low-risk 
recipients) and transportation costs to be possibilistic data 
represented by triangular fuzzy numbers as shown below:

The literature has presented a number of strategies for 
comparing or ranking fuzzy numbers, although ranking tech-
niques are not necessarily consistent with one another (Wang 

(27)
∼

D
t

ro
=

(
Dt

ro(1)
,Dt

ro(2)
,Dt

ro(3)

)

(28)
∼

D�
t

ro
=

(
D�t

ro(1)
,D�t

ro(2)
,D�t

ro(3)

)

(29)c̃
(i→j)

ij
=

(
c
(i→j)

ij(1)
, c

(i→j)

ij(2)
, c

(i→j)

ij(3)

(30)
∼

c�
(i→j)

ij
=

(
c
(i→j)

ij(1)
, c

(i→j)

ij(2)
, c

(i→j)

ij(3)

)

& Kerre, 1996). Numerous factors, including distinguish-
ability (Bortolan & Degani, 1985), rationality (Nakamura & 
Hanafusa, 1986), fuzzy or linguistic presentation, and robust-
ness, have been used to support ranking algorithms. In this 
study, we employ a technique (Jiménez) that confirms all the 
aforementioned characteristics and, in addition, is computa-
tionally effective for solving an LP problem because it main-
tains linearity.

The Jiménez approach is presented in this section to 
solve the proposed mixed-integer programming model. 
This method is one of the most efficient methods of possi-
bility planning that uses the concept of the expected value 
of fuzzy numbers in ranking numbers. In this method, 
there is no limit to the possibility of distributing fuzzy 
values and triangular and trapezoidal distributions can 
be used (Jiménez, Arenas, Bilbao, & Rodrı, 2007). We 
now turn to this definition of the two concepts of expected 
interval and expected value. The expected interval of a 
fuzzy number such as 

∼
a is defined as follows:

And the concept of expected value for the fuzzy number 
∼
a is written as follows:

For fuzzy numbers of triangular type with parameters 
(a1, a2, a3), the expected value and expected interval are 
calculated as follows (Shahedi et al., 2021):

In the Jimenez method, the ranking method is used to 
de-fuzzy the constraints of a possibility model. Accord-
ing to this method, for any pair of fuzzy numbers 

∼
a and 

∼

b , 
the degree of more significance or equality of 

∼
a relative to 

fuzzy number 
∼

b is defined as follows:

If �M

(
∼
a,

∼

b

)
≥ � and β ∈ [0, 1] is established, 

∼
a is at 

least greater than or equal to 
∼

b with a β rating. Then:

(31)EI
(
∼
a
)
=

[
Ea
1,
Ea
2

]
=

[

∫
1

0

f −1
a

(r)dr,∫
1

0

g−1
a
(r)dr

]

(32)EV(I) =
Ea
1

+ Ea
2

2

(33)
lEI

(
∼
a

)
=

[
E
a

1,
E
a

2

]
=

[
1

2

(
a
1
+ a

2

)
,
1

2

(
a
2
+ a

3

)]
,

EV

∼

(a) =
1

4

(
a
1
+ 2a

2
+ a

3

)

Degree

(
∼
a ≥ ∼

b

)
= �M

(
∼
a,

∼

b

)
= degree of preference of

∼
a over

∼

b

(34)

𝜇M

�
∼
a,

∼

b

�
=

⎧
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⎨
⎪
⎩

0 if Ea
2
< Eb

1
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2
−Eb

1

Ea
2
+Eb

2
−Ea

1
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1
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1
− Eb

2
< 0,Ea

2
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1
> 0

1 if Ea
1
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In equal constraints, de-fuzzy is performed as follows:

And to de-fuzzy the objective function, we will do as follows:

(35)

∼
ax ≥ ∼

b
Ea
2
−Eb

1

Ea
2
+Eb

2
−Ea

1
−Eb

1
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�
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(37)
Min Z =

∼
cx

MinZ = EV
(
∼
c
)
.x

Accordingly, the proposed defuzzification approach for 
the studied problem can be formulated as follows:

The first objective function will be constituted with Equa-
tion (38).

(38)
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Constraint sets (19) and (20) are first linearized and 
defuzzied as follows:

(39)
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Multi‑objective Approach

In order to convert two objective functions into one, the 
weighted sum method presented by Marler and Arora 
(2010) is utilized. This method is also the simplest 
method and probably the most widely used classical 
method for multi-objective models, which normalizes 
the set of objectives into a single objective by multi-
plying each of them with a user-supplied weight (Rab-
bani et al., 2018). Using the weighted sum approach to 
solve the given problem requires the selection of scalar 
weights φi and the minimization of the following com-
posite objective function:

In our problem, the first objective function is in the scale 
of cost and the second one represents the number of short-
ages. Thus, to implement the weighted sum approach, we 
have considered a penalty cost (determined as PC in for-
mulation) for each unsatisfied demand due to the opinion 
of decision makers. Consequently, the scale of the second 
objective function will also be converted to cost, and the 
weighted sum method can be executed. The composite 
objective function would be as follows:

Numerical Examples

Computational Experiments

In order to validate the effectiveness of the proposed meth-
odology and solution strategy, two numerical examples of 
small and medium sizes are generated at first. A real case 

(47)

F =
k∑

i=1

�iFi(x)

s.t.
k∑

i=1

�i = 1

�i ≥ 0

(48)

Min Z = �

�
�

� ∑I

i
cixi +

∑J

j
cjxj +

∑O

o

∑J

j
cjoyjo

�

+
T∑
t

O∑
o

J∑

j

I∑

i

cioF
(i→j)t

ijo
+

T∑
t

I∑

i

SA∑
sa

c
(SA→i)

sai
z
(SA→i)t

SAi

+
T∑
t

O∑
o

J∑

j

I∑

i

�
c
(i→j)

ij(1)
+2c

(i→j)

ij(2)
+c

(i→j)

ij(3)

4

�

F
(i→j)t

ijo

+
T∑
t

O∑
o

J∑

j

I∑

i

V∑

v=1

�
c�
(i→j)

ij(1)
+2c�

(i→j)

ij(2)
+c�

(i→j)

ij(3)

4

�

F� (i→j)t

ijov

+
T∑
t

O∑
o

J∑

j

R∑
r

c
(r→j)

rj
F
(r→j)t

rjo

�
+ PC × (1 − �)

�
R∑
r

O∑
o

T∑
t

W
1
Ut

ro
+

R∑
r

O∑
o

T∑
t

W
2
U�t

ro

�

study problem is then applied to demonstrate the applicabil-
ity and utility of the provided mathematical model in the 
“Case Study Implementation” section. It is noteworthy that 
all findings are obtained using GAMS 25.1.2 software with 
the BARON solver on a core i5 PC with 8 GB of RAM. The 
aforementioned test problems are presented in the “Results 
and Model Validation” section, and Table 1 displays the 
parameter values. The sizes of hospitals, TCs, recipient 
zones, organs, shipping agents, hospital vehicles, shipping 
agents vehicles, and time periods are different in each test 
problem.

Results and Model Validation

In this section, the values of each of the first and second 
objective functions and the overall one for small and medium 
sizes are presented in Table 2. The first and second row cor-
responds to the small and medium sizes, respectively. As 
shown in Table 2, increasing the magnitude of the problem 
will increase CPU execution time and the weighted-sum 
objective function value (value of Z). The results of the com-
putations conducted on a small scale will then be provided.

In order to validate the proposed approach, a small-scale test 
problem (i × j × r × o × sa × v × v′ × t = 6 × 5 × 5 × 2 × 9 × 8 × 9 × 3) is 
constructed, and the optimal solution is presented in Fig. 3. The 
parameter values are shown in Table 1. As illustrated in Fig. 3, 
the nodes determined using i, j, and r correspond to selected hos-
pitals, selected TCs, and the recipient zones. The results are 
shown for organ type 2 (o = 2). The hatched hospitals and TCs 
are equipped to process this type of organ. The arrows and associ-
ated number of each depict the flows of organs from hospitals to 
TCs ( F�(i→j)t

ijov
 ) and the flows of recipients from recipient zones to 

TCs ( F(r→j)t

rjo
 ), in order to have a transplant surgery done. Regard-

ing the number of flows, it is approved that the demand for organs 
exceeds the supply. As long as the model prioritizes high-risk 
recipients above low-risk receivers, the demand of high-risk 
recipients is met first, and the remaining organs are distributed to 
low-risk recipients. For instance, the unsatisfied demand of recip-
ient zone 2 can be shown as follows:

The matter of CIT is the reason why Ut
ro

 is not equal to 
zero, which indicates that the organ has decomposed before 
it reaches the recipient.

3∑

t=1

Ut
22

= 3 and

3∑

t=1

U�t
22

= 9
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Case Study Implementation

In real-world applications, a large number of network design 
issues have been addressed. Strategic location presents a 
unique challenge in developing nations since site decisions 
are frequently determined by local officials, which can result 
in the placement of facilities that may not be cost-effective. 
On the other hand, what considerably matters is the issue of 
humans’ lives besides minimizing the costs. Consequently, 
location-allocation decisions should be made such that organ 
shortages are kept to a minimum.

This paper considers as an application of the problem 
at hand the design of an organ transplantation network at 
the lowest possible cost and the unsatisfied demand simul-
taneously for one of the most populated provinces of Iran, 
Khorasan Razavi. This province has 19 main cities desig-
nated as recipient zones, 14 hospitals where donors can be 
accommodated, 8 TCs, and 7 shipping agents. All of them 
are labeled on the map depicted in Fig. 4. Some facilities 
are not available in some cities due to the lack of resources. 
For instance, in the province’s most populated and facili-
tated city, Mashhad, there are three potential locations for 
TCs. The recipients from cities like Kashmar should travel 
to undergo the transplant surgery anyway.

In order to apply the proposed model to the province of 
Khorasan Razavi, a portion of the generated parameters are 
determined by subject matter experts, while the remaining 
parameters are derived from historical data. For instance, 
the number and candidate locations of facilities are selected 
based on the recommendations of specialists. The remaining 
essential information regarding organ supply and demand 
has been gathered from the official transplantation organiza-
tions in Iran. All costs are estimated in light of previous data. 
In addition, transportation expenses are computed using the 
data of a number of transportation service providers. The 
distances and travel times between different cities within 
the province have been extracted from google Maps. The 
proposed model is implemented for the heart (o = 1), liver 
(o = 2), and lung (o = 3) in three time periods, each of 
which corresponds to 4 months of the planning horizon. The 
average CIT (given in hours) for each organ is displayed in 
Table 3. The costs are stated on the scale of million Tomans.

This section analyzes the model to provide some manage-
rial insights. When faced with multiple solutions to a multi-
objective problem, decision-makers should evaluate the 
options and select the optimal one. For this purpose, to assist 
the decision-makers in finding the best possible choice, Fig. 5 
illustrates one of the solutions. Evidently, it is optimal to equip 
some of the potential facilities with organ processing capabili-
ties. The figure demonstrates, for instance, that among all 14 
candidate hospitals, hospital 1 is equipped to receive organ 
donors of types 1 and 3. Additionally, hospital 9 should be 
equipped to process all three types of organs. It is not opti-
mum to facilitate other potential hospitals in this respect. 
Moreover, TCs 3, 4, and 7 are equipped for harvest operation 
of all three organ types, while TCs 1 and 6 can recite recipi-
ents with the demand of organ types 3 and 1, respectively. 
Additionally, in Fig. 5, arrows indicate the optimal organ 
flows from hospitals to transplant centers ( F�(i→j)t

ijov
 ) and the 

flows of recipients from their zone to the TCs ( F(r→j)t

rjo
).

In multi-objective problems, the table of Pareto solu-
tions is one of the most crucial tools for decision-makers. 
In this regard, Table 4 displays the Pareto solutions of 
the proposed weighted sum model and the hospitals and 
TCs to be equipped by a change in the weighted relevance 
of each objective function (φ). In order to place the two 
objective functions on the same scale, a penalty cost of 
15 has been considered (PC = 15) and multiplied by the 
second objective function. As is common knowledge, the 

Table 1  Parameter ranges for test problems

Parameters Random distribution

λ 0.8
ci ~uniform(2000, 4000)
cj ~uniform(3000, 5000)
cio ~uniform(3, 6)
cjo ~uniform(50, 80)
∼

c
(i→j)

ij

~uniform(1.5,6.5)

∼

c�
(i→j)

ij
~uniform(2, 7)

c
(sa→i)

sai
~uniform(1, 5)

c
(r→j)

ri
~uniform(0.8,2)

Nt
i

~uniform(10, 30)

Bt

io
~uniform(1, 2)

∼

D
t

ro

~uniform(10, 40)

∼

D�t
ro

~uniform(10, 40)

capv,capv′ ~uniform(100,130)
disij ~uniform(50,200)
dissai ~uniform(20,100)
tt
ijo

~uniform(2, 15)
et ~normal(50, 15)
Lt ~uniform(10000, 40000)
φ 0.4
PC 70

Table 2  Values of objective functions for each test problem size

Test problem size
i × j × r × o × sa × v × v′ × t

Z1 Z2 Z CPU run-
ning time
(s)

6 × 5 × 5 × 2 × 9 × 8 × 9 × 3 33481 519 35195 76
7 × 6 × 8 × 2 × 8 × 10 × 8 × 3 39206 1004 57978 152
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two present objective functions (cost and unmet demand) 
are in conflict with each other. In other words, if we want 
to reduce unmet demand, we must utilize more facilities, 
such as equipping more transplant centers and hospi-
tals, entering into contracts with more shipping agents, 
and utilizing more refrigerated vehicles. In this scenario, 
the cost objective function (Z1) will grow if we place a 
greater emphasis on reducing unmet demand (Z2) and, sub-
sequently, mortality and transplant rejection. To clarify 
more, increasing φ concentrates the weighted sum objec-
tive function on minimizing Z1. Whereas decreasing φ that 
leads to the value of 1 − φ having more value than φ, Z2 
receives a higher minimization priority.

In addition, according to Table  4, the change in φ 
affects the quantity and position of the hospitals and TCs 
to be equipped. For instance, if the importance weight of 
the cost function is increased, the number of these facili-
ties will decrease, or the ones with the lowest equipping 
costs will be opened. The scenario is the opposite when 
the unsatisfied demand function’s importance weight sur-
passes the one for cost functions. In this situation, the 
facilities should be equipped that simplify the access of 
recipients to TCs, before the organs perish. Hence, the 
decision-makers should make up their mind on choosing 
the best importance weight (φ) which best fits their priori-
ties and limitations.

Sensitivity Analysis

In this section, the effect of different parameters such as 
number of donors (N), total demand of high-risk recipients 
(D), and total demand of low-risk recipients (D′) on the 
objective functions, namely total cost objective function 

(Z1) and the number of unsatisfied demand objective 
function (Z2), will be investigated to analyze the model’s 
behavior. It is noteworthy that the second objective func-
tion has been multiplied by a penalty cost coefficient with 
a value of 15 to show the results on the diagram more 
clearly, and in the figures of this section, it is written as 
“Normalized second objective function value.” It is worth 
noting that the term change percentage in this section’s 
figures refers to the percentage of increase and decrease 
in the parameters’ values.

First, we would like to examine the impact of the number 
of donors (N) on the first and second objective functions. 
The value of N in this analysis has been modified slightly 
to account for the reality that organ transplantation supply 
can never exceed demand. As depicted in Fig. 6, the total 
number of unsatisfied demands reduces with the increase 
in the number of donors. In this context, however, unmet 
demand will always exist because there are always fewer 
donors than recipients, and some organs are already lost 
owing to organ perishability and variations in travel times.

In order to analyze the effect of high-risk recipients’ total 
demand (D) on the objective functions, Fig. 7 is presented. 
As mentioned in previous sections, in this methodology, 
the priority is on the high-risk recipients. If their demand 
decrease, the remaining organs will be allocated to the low-
risk ones. Therefore, a shortage of organs does not lead to 
fewer transplantation costs. However, the slight change in 
the cost objective function is due to the different transporta-
tion costs and different types of surgeries. The same conclu-
sion can be drawn for the increase in this type of demand. 
Moreover, the second objective function is directly related 
to every type of demand, no matter high-risk or low-risk.

Figure 8 depicts the impact of low-risk recipients total 
demand (D′) on objective functions. Even with a 20% decrease 

Fig. 3  Optimal solution of 
small-size test problem
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in this type of demand, there are still low-risk recipients whose 
organ demand cannot be met due to the organ shortage. There-
fore, due to the reduction in transport costs between recipient 
zones and TCs, the value of the cost objective function reduces 
marginally. With a 70% reduction in this parameter, the supply 
exceeds the demand, and certain transportation and transplant 
operation expenses fall, leading to more reduction in the first 
objective function than the case of 20% decrease. However, the 
total unsatisfied demand function does not equal zero. This is 
due to the fact that some organs have passed their CIT and per-
ished in route to the recipient. In addition, since the majority of 
operational costs correspond to transplant surgery costs, which 
do not deviate from the 0% change in D′ due to the current lack 
of supply, the increase in this parameter marginally raises the 
total cost. This shift is primarily motivated by the transportation 
costs between recipient zones and TCs. Obviously, the total 
unmet demand function emerges as a result of grow in low-risk 
recipient demands.

Discussion and Managerial Insights

Some papers, such as Zahiri, Tavakkoli-Moghaddam, and 
Pishvaee (2014b) and Ahmadvand and Pishvaee (2018a), 
have addressed the issue of organ transplant network design 

with the single objective of reducing the total costs, includ-
ing the cost of establishing and equipping the network’s 
facilities, surgery operations, and transportation. Unlike our 
approach, none of the aforementioned articles covers the 
selection of cold chain vehicles. In this study, transportation 
restrictions are also based on the government’s carbon emis-
sion allowance. Also, in a later work by Zahiri, Tavakkoli-
Moghaddam, Mohammadi, et al. (2014a), the prior model is 
expanded by adding a second objective function of minimiz-
ing total time, which includes operation time in hospitals, 
transport time between facilities, and waiting time at TCs. 
However, the second objective function in the current paper 
is the minimization of unmet demand. The implementation 
of the priority mechanism in the work of Zahiri, Tavakkoli-
Moghaddam, Mohammadi, et al. (2014a) is the waiting 
time, whereas the purpose of this paper is to give high-risk 
recipients precedence over low-risk recipients. Hence, in 
order to prevent the risk of mortality in recipients as much 
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Table 3  The average CIT for 
each organ

Organ CIT (hour)

1) Heart 5
2) Liver 10
3) Lung 7
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as possible, significant consideration has been given to the 
precious life of humans in this context.

The proposed methodology helps organ transplant supply 
chain managers allocate an optimal number of cold chain 
vehicles to transport the organs between hospitals and 
TCs. Furthermore, the number of these transportations is 
restricted by the amount of allowed carbon emission deter-
mined by the government. Therefore, the suggested OTN is 
environmentally friendly besides being cost-efficient. More-
over, there has always been a deficiency in this context. The 
reason is that recipients always outnumber donors, and some 
organs will perish if their traveling time to the transplant 
center exceeds their CIT. In the present study, the demand 
has been evaluated individually for high-risk and low-risk 
recipients, and a mechanism of prioritization has been estab-
lished to prevent the mortality of high-risk recipients. Fol-
lowing this strategy, organs will be distributed to high-risk 
patients first, with the balance going to low-risk recipients. 
However, there have been some debates on the equity of 
the clients, in this paper, we have focused on the recipient’s 
urgency level in the category of maximum benefit.

In the “Sensitivity Analysis” section, a good com-
prehension of the behavior of objective functions was 
achieved by modifying the parameters. In light of the 
findings and conclusions of the analyses, this section pro-
vides some practical and managerial insights. According 
to Fig. 6, hospital managers should increase the number 
of cold chain vehicles by spending more money to reduce 

unmet demand. Through this effort, fewer organs will be 
delivered from hospitals to TCs outside of their Cold 
Ischemia Times (CITs). Therefore, organ wastage and 
consequently unsatisfied demand will diminish. Figures 6 
and 7 show that the number of unsatisfied demands will 
grow as the demands of high-risk recipients increase. In 
this case, managers can increase the number of vehicles 
based on Fig. 6 in order to lessen the increasing slope of 
unmet demand.

Conclusion

Organ transplantation is the main approach for treating dis-
eases in their last development stage. In recent years, despite 
the significant advances in medical science in the field of 
organ transplantation, a significant percentage of patients die 
while waiting to receive an organ due to the demand exceed-
ing the supply and the scarcity of organs. Considering the 
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Table 4  Pareto optimal solutions

φ Z1 Z2 Equipped hospital Equipped TC

1 0.2 60072 2685 1, 5, 9 1, 3, 4, 5, 6, 8
2 0.4 58693 2951 1, 9 1, 3, 4, 6, 7
3 0.6 57224 3462 1, 6 3, 4, 6
4 0.8 55981 3837 9 1, 6, 8
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importance of this issue and the direct effect of organ trans-
plantation on patients’ survival, it is necessary to find the 
most effective means to receive the organ on time and pre-
vent the death of patients. Therefore, designing an efficient 
organ transplant supply chain network as one of the main 

subgroups of health care management is vital in balancing 
demand and supply, choosing the appropriate location of 
involved facilities, and distributing involved flows between 
them, and timely transfer of organs to patients. In addition 
to the above, another challenge in the design of the organ 

Fig. 6  Sensitivity analysis of 
number of donors on objective 
functions

Fig. 7  Sensitivity analysis of total 
demand of high-risk recipients on 
objective functions
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transplant network is the time limit for transporting organs 
from hospitals to transplant centers, and if it exceeds the CIT 
determined based on the nature of the organ, consequences 
such as organ corruption, an increase in the waiting time of 
the patients will lead to the possibility of their death and, as 
a result, an increase in the costs of the system. Therefore, 
it is necessary to determine the mechanism of maintenance 
and transportation of organs.

In this paper, a bi-objective mixed integer nonlinear pro-
gramming (MINLP) location-allocation model is proposed 
to address the design of the organ transplant supply chain 
network, minimizing the total strategic and operational 
costs and the number of unmet demands. Due to the impre-
cise structure of the studied network, the model has been 
assessed as uncertain. In addition, the organ demand and 
some transportation costs have been considered triangular 
fuzzy numbers due to their uncertain nature and lack of his-
torical data, and the approach Jiménez is also used to deal 
with uncertainty. Some test problems were done to validate 
the model. In the following, a real case study was conducted 
in one of Iran’s most populous and prominent provinces. 
The studied organs were the heart, liver, and lung. Then, 
several sensitivity analyses were performed on some effec-
tive parameters to evaluate their influence on the objective 
function’s values.

Despite advancements in medical, pharmaceutical, and 
surgical treatments, there are some limitations in this con-
text. For instance, organ shortage is a global issue that 
must be addressed at the highest possible international 

level. With the occurrence of crises and natural disas-
ters beyond human control, the demand for organs also 
increases with the increase of injured people. In addi-
tion, depending on the severity of occurrence, these inci-
dents can lead to damage to facilities or their destruction. 
Therefore, the development of a mathematical model in 
the conditions of uncertainty to reduce the costs of trans-
portation and the shortage of organs, choosing the loca-
tion of the construction of hospitals and transplant centers 
from among the situations with the highest safety factor, 
examining the shortest routes for transporting essential 
items to the injured, taking into account CIT, can be a 
field for future research. Furthermore, considering differ-
ent modes of organ transportation, such as air and water 
transportation in different parts of the network, can be a 
field for future research. In this type of issue, a trade-off 
is made between cost and time, and the best option can 
be chosen depending on the budget limit, the nature of 
the organ, CIT, and the priority of the goals in the issues. 
As another limitation of organ transplantation, there has 
been no consensus over the prioritization of recipients. 
As previously indicated, this study has divided recipients 
into two groups: those whose organ deficiency causes their 
death and those whose organ deficiency does not. Hence, 
in future studies, the model can be improved by involving 
other factors such as waiting time. However, some ethical 
issues can be taken into consideration, such as avoiding 
biases based on age, life expectancy, and sex. Utilizing 
other methods of dealing with uncertainty, extending the 

Fig. 8  Sensitivity analysis of total 
demand of low-risk recipients on 
objective functions
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model to larger scales, and using meta-heuristic algorithms 
suitable for solving can also be defined as the other sub-
jects of future research. Also, modeling the inventory level 
of organ types using ABO/Rh rules as a continues time 
Markov chain (CTMC) and queueing-inventory models 
similar to Aghsami et al. (2023b) could be interesting work 
for future research.

Data Availability Due to the nature of this research, data is available 
within the text.
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