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Abstract

In this paper, we propose a new Bi-Population QUasi-Affine TRansformation Evolution (BP-QUATRE) algorithm for

global optimization. The proposed BP-QUATRE algorithm divides the population into two subpopulations with sort

strategy, and each subpopulation adopts a different mutation strategy to keep the balance between the fast

convergence and population diversity. What is more, the proposed BP-QUATRE algorithm dynamically adjusts scale

factor with a linear decrease strategy to make a good balance between exploration and exploitation capability. We

compare the proposed algorithm with two QUATRE variants, PSO-IW, and DE algorithms on the CEC2013 test suite.

The experimental results demonstrate that the proposed BP-QUATRE algorithm outperforms the competing

algorithms. We also apply the proposed algorithm to dynamic deployment in wireless sensor networks. The

simulation results show that the proposed BP-QUATRE algorithm has better coverage rate than the other

competing algorithms.

Keywords: Differential evolution, Particle swarm optimization, Bi-population, QUATRE algorithm, Global

optimization, Dynamic deployment, Wireless sensor networks

1 Introduction
In the last few decades, there have been many optimization

demands arising not only from the scientific community

but also from various real-world applications. Generally,

the approach to solving these optimization problems often

begins with designing the objective function which can

model the objectives of optimization problems [1]. Many

optimization approaches have been proposed to meet these

demands aiming at finding optimal solutions. Some

Swarm-based intelligence optimization algorithms, such as

particle swarm optimization (PSO) [2], ant colony

optimization (ACO) [3], differential evolution (DE) [1],

artificial bee colony (ABC) optimization [4], and QUasi-

Affine TRansformation Evolution (QUATRE) algorithm [5],

and so on, have been developed to tackle these complex

optimization problems.

QUATRE algorithm was first presented by Meng et al.

in [5] that discussed the relationship between QUATRE

algorithm and the other two swarm-based intelligence

algorithms PSO and DE. In 1995, Kennedy and Eberhart

firstly introduced the PSO algorithm [2]. As PSO is

simple, powerful, and straightforward to implement,

many researchers have studied this technique and devel-

oped various improved variants [6–8]. DE was intro-

duced by Storn and Price [1] in 1995, which was

arguably one of the most powerful optimization

algorithms. As well, many DE variants have been

proposed to enhance the performance of DE algorithm

[9–11], and QUATRE algorithm is one of them proposed

to conquer representational or positional bias of DE
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algorithm [12]. QUATRE’s conventional notation is

“QUATRE/x/y” which denotes types of QUATRE vari-

ants. It is worth noting that the notation of QUATRE is

more general than the DE’s notation “DE/x/y/z” [13].

The canonical QUATRE algorithm and its variants can

be found in literatures [12–17]. The QUATRE has the ad-

vantages of simplicity, few control parameters to set, and

convenient to be used, but it has some weaknesses as the

DE algorithm such as it will be premature convergence,

and will search stagnation and may be easily trapped into

local optima. Population diversity plays important role in

alleviating these weaknesses. Therefore, it is important to

keep the balance between diversity and convergence. In

[16], S-QUATRE has been proposed which uses sort strat-

egy to improve the performance of QUATRE algorithm.

And S-QUATRE divides the population into the better and

the worse groups and evolves the individuals in the worse

group. The other algorithms which partition population

into two groups or several subpopulations to maintain

population diversity and to enhance the performance of al-

gorithms, such as CMA-ES, PSO, DE and CSO, can be

found in previous literature [18–22]. On the other hand,

both mutation strategies and control parameter scale factor

F have significant effects on the performance of QUATRE

variants. Different mutation strategies in QUATRE algo-

rithm have different performance over various optimization

problems [13] because different mutation strategy has dif-

ferent search ability and convergence rate. Usually, similar

to the DE algorithm, adopting larger F value in QUATRE

algorithm means the algorithm is more focused on explor-

ation, while a smaller F value means more exploitation [23].

Therefore, in this paper, in order to improve the perform-

ance of QUATRE algorithm, we propose a novel Bi-

Population QUATRE algorithm with a sort strategy and a

linear decrease scale factor F (BP-QUATRE), and each sub-

population has a different mutation strategy.

The remainder of the paper is arranged as follows. In

Section 2, we briefly review the QUATRE algorithm. Our

proposed Bi-Population QUasi-Affine TRansformation Evolu-

tion (BP-QUATRE) algorithm is given in Section 3. In Section

4, we apply the proposed algorithm to dynamic deployment

in wireless sensor networks. What is more, the experimental

analysis of our proposed algorithm under CEC2013 test suite

and simulation results in wireless sensor networks are pre-

sented in Section 4. Finally, Section 6 gives the conclusion.

2 Canonical QUATRE algorithm
Meng et al. have proposed the QUATRE algorithm for

solving optimization problems [5]. QUATRE is an abbre-

viation of QUasi-Affine TRansformation Evolution, and

the reason the authors naming the algorithm QUATRE

is that individuals in QUATRE algorithm evolve by using

an affine transformation-like equation. The detailed evo-

lution equation of QUATRE is as follows.

X←M� XþM� B ð1Þ

where M is an evolution matrix and M is a binary inverted

matrix of M. The elements of them are either 0 or 1. The

binary invert operation means to invert the values of the

matrix. The reverse values of zero elements are ones,

while the reverse values of one elements are zeros. Equa-

tion 2 shows an example of binary inverse operation.
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M is transformed from an initial matrix Mini which is

initialized by a lower triangular matrix with the elements

equaling to ones. Transforming from Mini to M contains

two consecutive steps. In the first step, every element in

each row vector of Mini is randomly permuted. In the

second step, the sequence of the row vectors is ran-

domly permuted with all elements of each row vector

unchanged. An example of the transformation with ps =

D is given in Eq. 3. Usually, the population size ps is lar-

ger than the dimension, while the matrix Mini needs to

be extended according to population size ps. Equation 4

shows an example of ps = 2D + 2. Generally, when ps %

D = k, the first k rows of the D × D lower triangular

matrix are included in Mini and adaptively change M ac-

cording to Mini [12].
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X = [X1, G, X2, G, … , Xi, G, … , Xps, G]
Tis the population

matrix with ps individuals. Xi, G = [xi1, xi2, … , xiD] is the

ith row vector of the matrix X, which denotes the loca-

tion of ith individual of the Gth generation, and each in-

dividual Xi, G is a candidate solution for an optimization
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problem, and D denotes the dimension number of ob-

jective function, where i ∈ {1, 2, … , ps}. The operation

“⊗” stands for component-wise multiplication of the ele-

ments in each matrix, which is the same as “.*” operation

in Matlab software. B = [B1, G, B2, G,… , Bi, G, …, Bps, G]
T

is the donor matrix, and it has several different calcula-

tion schemes (mutation strategies) which are listed in

Eqs. (5)–(8) [7].

QUATRE=best=1 : B ¼ Xgbest;G þ F � Xr1;G‐Xr2;G

� �

ð5Þ

QUATRE= rand=1 : B ¼ Xr0;G þ F � Xr1;G‐Xr2;G

� �

ð6Þ

QUATRE=target=1 : B ¼ Xþ F � Xr1;G‐Xr2;G

� �

ð7Þ

QUATRE=target‐to‐best=1B
¼ Xþ F � Xgbest;G‐X

� �

þ F � Xr1;G‐Xr2;G

� �

ð8Þ

Xgbest, G = [Xgbest, G, Xgbest, G, … , Xgbest, G]
T
Xgbest,

G = [Xgbest, G, Xgbest, G, … , Xgbest, G]
T denotes a row

vector-duplicated matrix with each row vector equaling

to the global best individual Xgbest, G of the Gth gener-

ation. F can be considered as amplification factor, whose

value region is (0, 1] for most optimization problems. Xr1,

G, Xr2, G and Xr3, G are a set of random matrices which are

generated by randomly permutating the sequence of row

vectors in the matrix X of the Gth generation.

Fig. 1 The main framework of BP-QUATRE. The flowchart of BPQUATRE algorithm consists of population initialization, population division,

subpopulation evolution, subpopulation merging and approach of updating parameter scale factor F. Gen is the current generation number and

MaxGen is the maximum generation number. Better means the subpopulation with better fitness values (i.e., with the lower fitness values for a

minimization problem). Worse means the subpopulation with worse fitness values. The better subpopulation evolves by adopting mutation

strategy “QUATRE/best/1” to make good exploitation around the individuals with better fitness values and to have good convergence rate. The

better subpopulation evolves by adopting mutation strategy “QUATRE/best/1” to make good exploitation around the individuals with better

fitness values and to have good convergence rate. The worse subpopulation evolves by using mutation strategy “QUATRE/target-to-best/1” to

make a good exploration around the individuals with worse fitness values and to preserve population diversity
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3 Bi-population QUATRE algorithm with sort
strategy and linear decrease scale factor F
(BP-QUATRE)
In this section, we describe the main idea of our proposed

algorithm BP-QUATRE. As mentioned above, because eas-

ily trapping into local optima and premature convergence

is the weakness of QUATRE algorithm. In order to alleviate

the above weaknesses, BP-QUATRE consisting of popula-

tion initialization, population division, subpopulation evolu-

tion, subpopulation merging, and an approach to update

the parameter scale factor F, is proposed in this paper. The

main framework of BP-QUATRE is shown in Fig. 1.

3.1 Bi-population division and mutation strategies

Usually, as conventional evolutionary algorithms, the QUA-

TRE algorithm suffers from the problem of premature con-

vergence, i.e., the population is too early to lose diversity

and fall into local optima. Multi-population approach helps

to increase population diversity and alleviate premature

convergence [20]. Inspired by this, we use a Bi-population

approach to enhance the diversity of the population. In our

proposed algorithm, the individuals in the population are

firstly sorted after initialization according to the fitness

values, and then the entire population is equally divided

into two subpopulations based on the sorted sequence, say

popbetter and popworse, respectively. As we know, different

mutation strategy of QUATRE algorithm has different

search abilities. Mutation strategy “QUATRE/best/1” uses

the best individual to guide the population and has a fast

convergence rate and good local search ability around the

best individual. Therefore, the subpopulation popbetter
evolves by adopting mutation strategy “QUATRE/best/1” to

make good exploitation around the individuals with better

fitness values and to have good convergence rate. On the

other hand, mutation strategy “QUATRE/target-to-best/1”

is a strong exploration-biased strategy, because this strategy

generates donor individual using the best individual and

two random selected individuals. Thus, the subpopulation

popworse evolves by using mutation strategy “QUATRE/tar-

get-to-best/1” to make a good exploration around the indi-

viduals with worse fitness values and to preserve

population diversity. Therefore, this bi-population division

and different subpopulation having different mutation strat-

egy approach can make a trade-off between the population

diversity and convergence rate.

3.2 Linear decrease scale factor

Scale factor plays an essential role in balancing exploration

and exploitation ability of QUATRE algorithm during the

search phases. In [5], the authors illustrate the effect of differ-

ent scaling factor values on the performance of the QUATRE

algorithm. And there is no fixed parameter setting which can

achieve the best performance for all kinds of problems. It is

significant to find a good method to dynamically adjust the

scaling factor value. According to [6, 24] for most population-

based optimization algorithm, it is a good idea for the algo-

rithm to have more exploration ability in the early stages of

the search in order to sample diverse zones of the search

space. In the later stages of the search, the algorithm should

possess more exploitation ability to search the relatively small

space where the potential global optimum lies in. Namely, at

the beginning of the search, the scale factor of the algorithm

should be larger. While with the increment of generations,

the scale factor of algorithm should be decreased to increase

the exploitation ability. Hence, we use the linear decrease

strategy proposed in [6] to dynamically adjust the value of

scale factor which can be described as fellow.

F ¼ Fmax− Fmax−Fminð Þ � Gen=MaxGen ð9Þ

where Fmax and Fmin are the predetermined maximum

and minimum values of scale factor F. Gen is the current

generation number, and MaxGen is the maximum gen-

eration number.

The pseudo code of BP-QUATRE algorithm is shown

in Algorithm 1.

4 Apply the proposed BP-QUATRE algorithm to
dynamic deployment in wireless sensor networks
In this section, we apply the proposed BP-QUATRE al-

gorithm to dynamic deployment in wireless sensor net-

works (WSN). The WSN becomes a popular research

field [25–29] due to its great value in real-world

Liu et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:175 Page 4 of 12



applications such as environment monitoring, healthcare

applications, and forest fire detection. The WSN is com-

posed of a large number of battery-powered, multifunc-

tional, and resources-constrained sensor nodes. The

performance of the whole WSN depends on the pos-

ition of the sensors which affect the coverage, con-

nectivity, energy efficiency, and network lifetime. In

some applications, the locations of the sensors are

predetermined by static ways. However, in some cases

such as battlefield, underwater, and disaster-affected

regions where is difficult to predetermine the loca-

tions by static ways, only dynamic deployment strat-

egies can be adopted. In dynamic deployment, the

sensors are first randomly placed within the area of

interest and then sensors can relocate their locations

by using information from other sensor nodes. But

random initial deployment may not ensure effective

coverage. In order to enhance the coverage rate of

the whole WSN, a number of algorithms have been

developed for dynamic node deployment, including

virtual force [30], Voronoi diagram [31], and swarm

intelligence algorithms [33–36]. Many swarm

intelligence algorithms are employed in sensor deploy-

ment, such as the particle swarm optimization (PSO)

[32, 33], artificial bee colony algorithm (ABC) [34],

differential evolution (DE) [35], and so forth. In this

study, the proposed QUATRE algorithm is first ap-

plied to dynamic deployment in WSN with the aim

of improving the coverage rate. The proposed algo-

rithm is compared with PSO-based and DE-based dy-

namic deployment algorithm.

4.1 Sensor detection model

Without losing generality, this paper assumes that each

sensor node can move and has the same sensor radius and

communication range. There are two sensor detection

models in wireless sensor networks: binary detection

model and probability detection model [36]. In the binary

detection model, the detected possibility of the event con-

cerned is 1 within the sensing radius. Otherwise, the prob-

ability is 0. This model can be expressed by the Eq. 9 [37].

Cxy P; sið Þ ¼
1; d P; sið Þ < r

0; otherwise

�

ð10Þ

where r represents sensor radius and d(P, si) denotes the

Euclidean distance between point P and the sensor node

si. Although the binary sensor model is relatively simple,

the uncertainties in measurement are not taken into ac-

count. Generally, sensor detections are imprecise in

practical, so the detection probability Cxy(P, si) needs to

be presented in probabilistic terms. Therefore, we use

the probabilistic detection model in the paper, which

can be expressed by the Eq. 10 [38].

Cx;y P; sið Þ ¼

1; d P; sið Þ≤r−re

e −α1λ1
β1=λ2

β2þα2ð Þ; r−re < d P; sið Þ≤r þ re
0; d P; sið Þ > r þ re

8

<

:

ð11Þ

where re(0 < re < r) is the measure of uncertainty. α1, α2, β1,

and β2 are detection parameters related to the characteris-

tics of sensors. λ1 = re − r + d(P, si) and λ2 = re + r − d(P, si)

are the input parameters. In general, the detection probabil-

ity covered by sensor node may be less than 1. This means

that it is necessary to overlap the sensor detection area to

compensate for the potential low detection probability

[39]. And we assume that sensors observe independ-

ently. Considering a point P (x, y) in the overlap re-

gion of a set of sensors S, the joint detection

probability of point P can be calculated by the Eq. 11.

Cx;y Sð Þ ¼ 1−
Y

si∈S

1−Cx;y P; sið Þ
� �

ð12Þ

Let Cth is the threshold of predefined effective detec-

tion probability. This implies that the point P (x, y) can

be effectively covered if

min
x;y

Cx;y Sð Þ
� �

≥Cth ð13Þ

4.2 Dynamic deployment based on BP-QUATRE algorithm

The purpose of sensor deployment algorithm is to deter-

mine an optimal sensor distribution in the region of

interest, which is similar to the swarm intelligence

algorithm for solving complex optimization problems.

Therefore, it is possible to apply BP-QUATRE algorithm

to the dynamic deployment problem of WSN.

In the BP-QUATRE algorithm, the individual is com-

posed of the coordinate representing its position in the

solution space. In dynamic deployment, the individual

represents the deployment of the sensors in the sensed

area. Supposing the number of sensors is N, the dimen-

sion of the individual is set to 2 N and the individual en-

coding is expressed as Xi ¼ ½x1i1; x
2
i1; x

1
i2; x

2
i2;…; x1iN; x2iN� .

The elements represent the x and y coordinates of sen-

sors from 1 to N in turn.

The fitness function of the BP-QUATRE corresponds

to the coverage rate of the network. Coverage rate is an

Table 1 Parameters settings

Algorithm Parameters settings

BP-QUATRE Fmax = 0.9, Fmin = 0.4

QUATRE variants F = 0.7

PSO-IW Wmax = 0.9, Wmin = 0.4, c1 = 2, c2 = 2

DE F = 0.7, Cr = 0.1
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important aspect to measure the performance of WSN.

Let each sensor can cover an area Ci and A is the total

size of the region of interest. Then, the coverage rate CR

is calculated by the Eq. 13.

CR ¼
⋃Ci

A
i∈N ð14Þ

However, it is too complicated to calculate the cover-

age rate of randomly deployed sensor networks by Eq.

13. Therefore, this paper uses the grid scanning method

[37] to evaluate the coverage rate. According to [37], CR

is evaluated as the Eq. 14.

CR ¼
m

n
ð15Þ

5 Experimental results and discussion
A set of experiments was conducted to evaluate the per-

formance of the proposed algorithm BP-QUATRE and

its application to dynamic deployment in WSN.

5.1 Experimental results for BP-QUATRE

In this subsection, we evaluate the performance of the

proposed BP-QUATRE algorithm on CEC2013 [40] test

Table 2 Performance for BP-QUATRE, QUATRE/target-to-best/1, and QUATRE/best/1

30D QUATRE/target-to-best/1 QUATRE/best/1 BP-QUATRE

Best Mean Std Best Mean Std Best Mean Std

1 0.0000E+ 00 4.5475E-15 3.2155E-14 0.0000E+ 00 2.2737E-14 6.8905E-14 0.0000E+ 00 5.9117E-14 1.0075E-13

2 3.4918E+ 04 2.0307E+ 05 9.1401E+ 04 6.5779E+ 04 3.2526E+ 05 1.7428E+ 05 8.0342E+ 04 3.2499E+ 05 1.8932E+ 05

3 3.3344E-08 1.2152E+ 04 4.2407E+ 04 6.4313E-02 1.1505E+ 06 3.0040E+ 06 4.0302E-05 6.8721E+ 05 2.9931E+ 06

4 1.3712E+ 00 9.6559E+ 00 7.2335E+ 00 4.1346E+ 00 2.1215E+ 01 1.5656E+ 01 6.7090E+ 00 3.8516E+ 01 2.5066E+ 01

5 0.0000E+ 00 1.0914E-13 2.2504E-14 0.0000E+ 00 1.0914E-13 2.2504E-14 0.0000E+ 00 1.1369E-13 2.2968E-14

6 2.8398E-09 1.8153E+ 00 6.2792E+ 00 2.9877E-04 7.3092E+ 00 1.0870E+ 01 4.5328E-03 1.0260E+ 01 8.0606E+ 00

7 1.9057E-01 3.8445E+ 00 4.0489E+ 00 1.1364E+ 00 2.1349E+ 01 1.7591E+ 01 7.2738E-02 4.9636E+ 00 3.9591E+ 00

8 2.0749E+ 01 2.0933E+ 01 5.1788E-02 2.0849E+ 01 2.1004E+ 01 5.8828E-02 2.0827E+ 01 2.0953E+ 01 4.7373E-02

9 1.0130E+ 01 2.6120E+ 01 6.0410E+ 00 5.8076E+ 00 1.6079E+ 01 5.5873E+ 00 9.7462E+ 00 2.2635E+ 01 5.7088E+ 00

10 5.6843E-14 2.7047E-02 1.5235E-02 0.0000E+ 00 2.3154E-02 1.5496E-02 7.3960E-03 2.0791E-02 1.1579E-02

11 2.3082E+ 01 2.7925E+ 01 2.5361E+ 00 1.3929E+ 01 2.6411E+ 01 8.3326E+ 00 1.7053E-13 4.4972E+ 00 1.8006E+ 00

12 9.0630E+ 01 1.1724E+ 02 1.3886E+ 01 3.9359E+ 01 7.5733E+ 01 1.8919E+ 01 1.9899E+ 01 5.3234E+ 01 1.5281E+ 01

13 1.0132E+ 02 1.3263E+ 02 1.5255E+ 01 5.2197E+ 01 1.1252E+ 02 3.2964E+ 01 5.8213E+ 01 1.0634E+ 02 2.4064E+ 01

14 9.9796E+ 02 1.3914E+ 03 1.9533E+ 02 1.0081E+ 02 8.1082E+ 02 2.6067E+ 02 1.0878E+ 01 1.9290E+ 02 1.2680E+ 02

15 5.3901E+ 03 6.3005E+ 03 3.4954E+ 02 3.3512E+ 03 5.1268E+ 03 7.7891E+ 02 2.7376E+ 03 4.0668E+ 03 5.3740E+ 02

16 1.8510E+ 00 2.3565E+ 00 2.4224E-01 1.3247E+ 00 2.4246E+ 00 4.5226E-01 9.4808E-01 1.8071E+ 00 4.0821E-01

17 5.5094E+ 01 6.1017E+ 01 2.5301E+ 00 2.1370E+ 01 5.5165E+ 01 1.1812E+ 01 1.7609E+ 00 3.0571E+ 01 7.3126E+ 00

18 1.6116E+ 02 1.8968E+ 02 9.6887E+ 00 1.0816E+ 02 1.6029E+ 02 2.5169E+ 01 5.2189E+ 01 1.0584E+ 02 2.3166E+ 01

19 2.7404E+ 00 4.6348E+ 00 4.7267E-01 1.6863E+ 00 3.6567E+ 00 7.7921E-01 1.0161E+ 00 1.7223E+ 00 3.4349E-01

20 1.0903E+ 01 1.1871E+ 01 3.6616E-01 1.0342E+ 01 1.2062E+ 01 6.4629E-01 1.0035E+ 01 1.1254E+ 01 4.9221E-01

21 2.0000E+ 02 3.0384E+ 02 7.7553E+ 01 2.0000E+ 02 3.1932E+ 02 8.3201E+ 01 2.0000E+ 02 3.0271E+ 02 8.2769E+ 01

22 1.0740E+ 03 1.4937E+ 03 1.9286E+ 02 4.5570E+ 02 8.3787E+ 02 2.5055E+ 02 6.2475E+ 01 2.4699E+ 02 1.0913E+ 02

23 4.5981E+ 03 6.0880E+ 03 5.3171E+ 02 3.7200E+ 03 5.3213E+ 03 8.4120E+ 02 2.6820E+ 03 4.0320E+ 03 7.2841E+ 02

24 2.0017E+ 02 2.1733E+ 02 1.4867E+ 01 2.1116E+ 02 2.3769E+ 02 1.1610E+ 01 2.0020E+ 02 2.3468E+ 02 1.6071E+ 01

25 2.3653E+ 02 2.5235E+ 02 8.2988E+ 00 2.4178E+ 02 2.5758E+ 02 8.0331E+ 00 2.4144E+ 02 2.5694E+ 02 1.2474E+ 01

26 2.0001E+ 02 2.4606E+ 02 6.6115E+ 01 2.0001E+ 02 2.4558E+ 02 6.4221E+ 01 2.0001E+ 02 2.1684E+ 02 4.6111E+ 01

27 3.2346E+ 02 6.1723E+ 02 1.7389E+ 02 5.5559E+ 02 6.9637E+ 02 9.3585E+ 01 4.1966E+ 02 7.5219E+ 02 1.5375E+ 02

28 1.0000E+ 02 3.5818E+ 02 2.5128E+ 02 1.0000E+ 02 3.7948E+ 02 2.8873E+ 02 3.0000E+ 02 3.0000E+ 02 2.9792E-13

win 9 10 14 3 1 4 12 16 9

lose 15 17 13 21 26 23 13 12 19

draw 4 1 1 4 1 1 3 0 0
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suite for real-parameter optimization, which includes

unimodal functions (f1-f5), multimodal functions (f6-

f20), and composition functions (f21-f28). The names

and search ranges of this 28 benchmark functions can

be found in [40], and they are shifted to the same global

best location O{o1, o2, … , od}.

Firstly, we compare the BP-QUATRE with the two

QUATRE variants “QUATRE/target-to-best/1” and

“QUATRE/best/1” as BP-QUATRE employs these two

mutation strategies. Then, we compare the BP-QUATRE

with inertia weight PSO and standard DE due to the

relationship among them as described in ref [5]. The

parameter settings of the algorithms are shown in

Table 1. The dimensions of all functions are set to

30. The population size ps is set to 100 for each algo-

rithm, and the maximal number of function evalu-

ation (NFE) is 3,000,000. We run each algorithm on

each benchmark function 50 times independently.

The best, mean, and standard deviation of the func-

tion error are collected in Table 2 and Table 3. The

simulation results of some benchmark functions are

shown in Fig. 2.

Table 3 Performance for BP-QUATRE, PSO-IW, and DE algorithms

30D PSO-IW DE/best/1/bin BP-QUATRE

Best Mean Std Best Mean Std Best Mean Std

1 1.8516E-02 2.0880E+ 03 2.3796E+ 03 2.2737E-13 2.2737E-13 0.0000E+ 00 0.0000E+ 00 5.9117E-14 1.0075E-13

2 9.2004E+ 05 2.9077E+ 07 4.8633E+ 07 1.4886E+ 07 2.6850E+ 07 7.1628E+ 06 8.0342E+ 04 3.2499E+ 05 1.8932E+ 05

3 7.5454E+ 08 9.3345E+ 10 1.8679E+ 11 1.8850E+ 08 6.7124E+ 08 2.5438E+ 08 4.0302E-05 6.8721E+ 05 2.9931E+ 06

4 1.4853E+ 03 5.8973E+ 03 5.1338E+ 03 2.3767E+ 04 3.7255E+ 04 6.3675E+ 03 6.7090E+ 00 3.8516E+ 01 2.5066E+ 01

5 8.1621E-01 1.2112E+ 03 1.2376E+ 03 1.1369E-13 1.3642E-13 4.5936E-14 0.0000E+ 00 1.1369E-13 2.2968E-14

6 3.8139E+ 01 2.4618E+ 02 2.6320E+ 02 1.6157E+ 01 2.4642E+ 01 1.1567E+ 01 4.5328E-03 1.0260E+ 01 8.0606E+ 00

7 7.4531E+ 01 2.3039E+ 02 1.4010E+ 02 4.5255E+ 01 5.8459E+ 01 7.7884E+ 00 7.2738E-02 4.9636E+ 00 3.9591E+ 00

8 2.0758E+ 01 2.0918E+ 01 5.8419E-02 2.0778E+ 01 2.0945E+ 01 4.7712E-02 2.0827E+ 01 2.0953E+ 01 4.7373E-02

9 2.2437E+ 01 2.9920E+ 01 3.3769E+ 00 2.3097E+ 01 2.9119E+ 01 1.8981E+ 00 9.7462E+ 00 2.2635E+ 01 5.7088E+ 00

10 1.4411E+ 00 5.7765E+ 02 4.3368E+ 02 6.7846E+ 00 1.5520E+ 01 4.3221E+ 00 7.3960E-03 2.0791E-02 1.1579E-02

11 7.2539E+ 01 1.6044E+ 02 3.8346E+ 01 5.6843E-14 6.9647E-01 1.0101E+ 00 1.7053E-13 4.4972E+ 00 1.8006E+ 00

12 9.8398E+ 01 1.8126E+ 02 6.7573E+ 01 1.1538E+ 02 1.5072E+ 02 1.5277E+ 01 1.9899E+ 01 5.3234E+ 01 1.5281E+ 01

13 1.5549E+ 02 2.4254E+ 02 4.7152E+ 01 1.2579E+ 02 1.6918E+ 02 1.3208E+ 01 5.8213E+ 01 1.0634E+ 02 2.4064E+ 01

14 2.1910E+ 03 3.6743E+ 03 8.1801E+ 02 1.3049E+ 00 2.6590E+ 01 5.0098E+ 01 1.0878E+ 01 1.9290E+ 02 1.2680E+ 02

15 3.0712E+ 03 4.6861E+ 03 8.3189E+ 02 5.1246E+ 03 6.1285E+ 03 3.9430E+ 02 2.7376E+ 03 4.0668E+ 03 5.3740E+ 02

16 5.2554E-01 1.2755E+ 00 3.6444E-01 1.5328E+ 00 2.3124E+ 00 3.2555E-01 9.4808E-01 1.8071E+ 00 4.0821E-01

17 1.1866E+ 02 1.7987E+ 02 3.7182E+ 01 2.6033E+ 01 3.1227E+ 01 9.1319E-01 1.7609E+ 00 3.0571E+ 01 7.3126E+ 00

18 1.1506E+ 02 1.6382E+ 02 2.8799E+ 01 1.9757E+ 02 2.2046E+ 02 1.1380E+ 01 5.2189E+ 01 1.0584E+ 02 2.3166E+ 01

19 6.9242E+ 00 2.8457E+ 03 6.4680E+ 03 2.7883E+ 00 3.8670E+ 00 3.9209E-01 1.0161E+ 00 1.7223E+ 00 3.4349E-01

20 1.0638E+ 01 1.2595E+ 01 7.4314E-01 1.2114E+ 01 1.2813E+ 01 2.5585E-01 1.0035E+ 01 1.1254E+ 01 4.9221E-01

21 2.0438E+ 02 3.9378E+ 02 1.9091E+ 02 2.0000E+ 02 2.9010E+ 02 7.6842E+ 01 2.0000E+ 02 3.0271E+ 02 8.2769E+ 01

22 2.4780E+ 03 3.8977E+ 03 7.9507E+ 02 1.1651E+ 02 2.5046E+ 02 1.8276E+ 02 6.2475E+ 01 2.4699E+ 02 1.0913E+ 02

23 2.9470E+ 03 5.0143E+ 03 9.3015E+ 02 5.5175E+ 03 6.5088E+ 03 4.1567E+ 02 2.6820E+ 03 4.0320E+ 03 7.2841E+ 02

24 2.8274E+ 02 2.9936E+ 02 1.0622E+ 01 2.5730E+ 02 2.7222E+ 02 6.3487E+ 00 2.0020E+ 02 2.3468E+ 02 1.6071E+ 01

25 2.8413E+ 02 3.0698E+ 02 9.4788E+ 00 2.7937E+ 02 2.8866E+ 02 4.6272E+ 00 2.4144E+ 02 2.5694E+ 02 1.2474E+ 01

26 2.0007E+ 02 3.6095E+ 02 5.3876E+ 01 2.0112E+ 02 2.0202E+ 02 5.0229E-01 2.0001E+ 02 2.1684E+ 02 4.6111E+ 01

27 1.0119E+ 03 1.1676E+ 03 7.9394E+ 01 9.4887E+ 02 1.0521E+ 03 4.0959E+ 01 4.1966E+ 02 7.5219E+ 02 1.5375E+ 02

28 1.1640E+ 02 1.9266E+ 03 7.1657E+ 02 3.0000E+ 02 3.2379E+ 02 1.6825E+ 02 3.0000E+ 02 3.0000E+ 02 2.9792E-13

win 3 2 0 2 4 17 22 22 11

lose 25 26 28 25 24 11 5 6 17

draw 0 0 0 1 0 0 1 0 0
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From Table 2, we can see that BP-QUATRE has

significantly better performance than the other two

QUATRE variants over 28 benchmark functions. The

BP-QUATRE finds 12 best values and 16 mean values of

CEC2013 benchmark functions in comparison QUATRE

variants. This is because the BP-QUATRE can take ad-

vantage of different mutation strategies to maintain

population diversity, and its linear decrease scale factor

control strategy is helpful to balance exploration and

exploitation ability. For the standard deviation, the

“QUATRE/target-to-best/1” has better performance than

“QUATRE/best/1” and BP-QUATRE algorithms, and BP-

QUATRE algorithm has better performance than “QUA-

TRE/best/1.” In addition, we can observe that QUATRE

variants with different mutation strategies have different

performance. The “QUATRE/target-to-best/1” performs

Fig. 2 Fitness errors vs. number of function evaluations of functions f8, f12, f15, and f24. The figure presents the fitness error and the

convergence speed comparison by employing the best value of 50 runs obtained by each competing algorithm on 30-D optimization. The

functions f8, f12, f15, and f24 figures are presented here. NFE means number of function evaluations
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better on unimodal and composition functions than

“QUATRE/best/1,”, while the “QUATRE/best/1” performs

better on multimodal functions than “QUATRE/target-to-

best/1.”

From Table 3, we can see that, for the best value, the

PSO-IW algorithm finds 3 minimum values of 28

benchmark functions. The DE algorithm finds 2 mini-

mum values of 28 benchmark functions. While our pro-

posed BP-QUATRE algorithm finds 22 minimum values

of 28 benchmark functions in comparison with PSO-

IW and DE algorithms, and thus, it has overall better

performance than the contrasted algorithms. For the

mean, our proposed algorithm also has significantly

better performance than the competing algorithms. For

the standard deviation, the DE algorithm has better

performance than PSO-IW and BP-QUATRE algo-

rithms, and BP-QUATRE algorithm has better perform-

ance than PSO-IW algorithm. Overall, our proposed

Fig. 3 Initial random deployment and final sensor positions based on each algorithm. The figure presents Initial random deployment and the

final deployment of 100 sensor nodes in the monitored target area based on each competing algorithm (i.e., PSO-IW, DE, QUATRE/best/1,

QUATRE/target-to-best/1, and BP-QUATRE). The black dots represent the final positions of the sensor nodes, and the circles represent the relative

monitoring areas of the sensor nodes. The coverage rates obtained by PSO-IW, DE, QUATRE/best/1, QUATRE/target-to-best/1, and BP-QUATRE are

88.73%, 91.83%, 93.67%, 93.05%, and 93.89%, respectively
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BP-QUATRE algorithm has better performance than

the other two competing algorithms.

5.2 Simulation results for dynamic deployment in WSN

Simulations are conducted to evaluate the performance

of BP-QUATRE algorithm in the dynamic deployment of

WSN. The simulation results of the proposed algorithm

are compared with the results of the PSO-IW, DE, and

two QUATRE variants.

To make the simulation results more reliable, the par-

ameter settings such as the target area, the number of

sensors, and their detection radius are according to [34].

The monitored target area is a square region with a size

of 100 m × 100m, and 100 sensor nodes are scattered

randomly on this target region. The parameter settings

for the probabilistic detection model are α1 = 1, α2 = 0,

β1 = 1, and β2 = 1.5. And the detection radius of each

sensor node is 7 m, the uncertainty parameter of meas-

urement re is 3.5 m, and the communication radius rc is

21 m. The effective detection threshold cth is 0.7. The

control parameters of each algorithm are the same as in

Section 5.1 except that the acceleration coefficients c1

and c2 of the PSO are set to 1. The population size ps is

set to 40, and the number of iterations is 1000. We run

each algorithm 10 times independently with the same

initialization.

One of initial deployments and the final best deploy-

ments of WSN after executing all competing algorithms

based on the probabilistic detection model are shown in

Fig. 3. The best convergences of each algorithm are

shown in Fig. 4 by coverage rate for the number of itera-

tions. The best, mean, and standard deviation of the

coverage rates for the mentioned algorithms are given in

Table 4. Obviously, it can be seen that our proposed BP-

QUATRE has better performance than other two QUA-

TRE variants and all QUATRE algorithms have better

performance than PSO-IW and DE algorithm. In other

words, BP-QUATRE has better coverage rate than the

other four competing algorithms in the dynamic deploy-

ment of WSN. This is certainly related to the more

powerful exploration and exploitation capability of the

BP-QUATRE algorithm.

6 Conclusion
This paper proposes a novel BP-QUATRE algorithm

for optimization problems. In BP-QUATRE, the

population is divided into two subpopulations with

sort strategy, and each subpopulation employs a dif-

ferent mutation strategy to balance between the di-

versity and convergence rate. In addition, adjusting

scale factor with linear decrease strategy is adopted

in BP-QUATRE algorithm to balance between ex-

ploration and exploitation ability. The proposed

algorithm is verified under CEC2013 test suite. The

experimental results demonstrate that the proposed

BP-QUATRE algorithm not only has better perform-

ance than QUATRE variants “QUATRE/target-to-

best/1” and “QUATRE/best/1,” but also has better

performance than the PSO-IW algorithm and DE

algorithm. We also apply the proposed BP-QUATRE

algorithm to dynamic deployment in WSN. The

simulation results demonstrate that the proposed

BP-QUATRE algorithm has better coverage rate than

the other competing algorithms. In the future work,

we will apply BL-QUATRE algorithm to classify

music genre [41].

Fig. 4 Comparison of coverage rates of the proposed algorithm

with the other algorithms, e.g., PSO-IW, DE, QUATRE/best/1 and

QUATRE/targetto-best/1

Table 4 Performance for competing algorithms in the dynamic deployment of WSN

PSO-IW DE QUATRE/best/1 QUATRE/target-to-best/1 BP-QUATRE

Best 0.8873 0.9183 0.9367 0.9305 0.9389

Mean 0.8629 0.9143 0.9212 0.9187 0.9362

Worse 0.8443 0.9084 0.9149 0.9123 0.9331

Std 0.0117 0.0030 0.0067 0.0053 0.0021
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