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Fourier, Grenoble, France (Present Address: National Marine Fisheries Service Northwest Fisheries Science
Center, 2725 Montlake Blvd. East, Seattle, Washington, 98112, USA, Phone: +206-860-3254; Fax: +206-
860-3335; E-mail: robin.waples@noaa.gov)

Received 26 August 2005; accepted 25 November 2005

Key words: computer simulations, mating systems, non-ideal populations, precision, sample size, temporal
method

Abstract

Analysis of linkage disequilibrium (r̂2=mean squared correlation of allele frequencies at different gene loci)
provides a means of estimating effective population size (Ne) from a single sample, but this method has seen
much less use than the temporal method (which requires at least two samples). It is shown that for realistic
numbers of loci and alleles, the linkage disequilibrium method can provide precision comparable to that of
the temporal method. However, computer simulations show that estimates of Ne based on r̂2 for unlinked,
diallelic gene loci are sharply biased downwards (N̂e=N<0:1 in some cases) if sample size (S) is less than
true Ne. The bias is shown to arise from inaccuracies in published formula for Eðr̂2Þ when S and/or Ne are
small. Empirically derived modifications to Eðr̂2Þ for two mating systems (random mating and lifetime
monogamy) effectively eliminate the bias (residual bias in N̂e<5% in most cases). The modified method
also performs well in estimating Ne in non-ideal populations with skewed sex ratio or non-random variance
in reproductive success. Recent population declines are not likely to seriously affect N̂e, but if N has recently
increased from a bottleneck N̂e can be biased downwards for a few generations. These results should
facilitate application of the disequilibrium method for estimating contemporary Ne in natural populations.
However, a comprehensive assessment of performance of r̂2 with highly polymorphic markers such as
microsatellites is needed.

Introduction

Although effective population size (Ne) is of
central importance to both evolutionary biology
and conservation biology, obtaining reliable
estimates of this key parameter has proved elu-
sive. Researchers still debate whether the ratio of
effective to census population size (Ne/N) is
constrained within certain limits (Nunney 1993;
Frankham 1995) or can be orders of magnitude
smaller for some species (Hedgecock 1994;

Turner et al. 1999; Hauser et al. 2002). Because
of the difficulty of obtaining adequate demo-
graphic data to compute Ne, several genetic
methods for estimating effective size have been
proposed. The temporal method (Krimbas and
Tsakas 1971; Nei and Tajima 1981; Waples
1989), which utilizes information on the rate of
change in allele frequencies between samples ta-
ken at different points in time, has been applied
to a wide variety of species, and several modifi-
cations of the original approach have been pro-
posed in recent years (Williamson and Slatkin
1999; Wang 2001; Berthier et al. 2002; Tallmon
et al. 2004).
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In contrast, relatively few studies (Laurie-Ahlberg
and Weir 1979; Bartley et al. 1992; Bucci et al.
1997; Ardren and Kapuschinski 2003) have
applied the method for estimating Ne based on
gametic disequilibrium, or the non-random
association of alleles at different gene loci. An
advantage of this method is that it only requires
a single sample from the population, as opposed
to at least two for the temporal method. Hill
(1981) showed that the disequilibrium method
has low precision unless tightly linked loci are
used, in which case the estimate is strongly af-
fected by historical, rather than recent, Ne; he
concluded that the disequilibrium method has
limited utility for the estimation of effective size.
However, Waples (1991) pointed out that the
method has greater power when effective size is
small (because the signal from Ne becomes large
relative to various sources of noise) and therefore
may be useful for evolutionary biologists or
conservation biologists, who often are concerned
with low (or potentially low) Ne. Waples also
suggested that if data for a number of unlinked
loci are available, collectively they might provide
adequate precision for the method to be useful.
Some empirical evaluations of the relationship
between linkage disequilibrium and Ne have been
made (Maruyama 1982; Hudson 1985; Vitalis
and Couvet 2001), and in recent years consider-
able efforts have been made to analyze and
model patterns of linkage disequilibrium in hu-
man populations (Hudson 2001; Pritchard and
Przeworski 2001). However, most of these studies
have considered large population sizes, large
samples, and/or tightly linked markers, and
many were motivated by goals other than esti-
mating effective population size. No rigorous
evaluation has been made of the performance of
the linkage disequilibrium method for estimating
contemporary Ne based on unlinked loci in
natural populations.

Recently, England et al. (2006, this volume)
showed that the disequilibrium method leads to
severe downward bias in the estimate of Ne when
sample size (S) is small relative to effective size.
In this paper I consider this topic in more detail,
describe a method to reduce the bias to a level at
which it should not impede practical application
of the method, and consider precision of the
resulting estimates.

Methods

Estimating linkage disequilibrium and Ne

See Table 1 for an explanation of notation. Link-
age disequilibrium (D) between alleles at two gene
loci is defined as the difference between the
observed frequency of a two-locus gamete and its
expected frequency based on random association
and population allele frequencies. D can be esti-
mated directly from gametic frequencies; however,
for the vast majority of natural populations only
genotypic data are available, which means that
gamete frequencies cannot be reconstructed with
certainty because of ambiguity regarding gametes
that unite to form double heterozygotes. In the
latter case, the most commonly used method for
estimating linkage disequilibrium is Burrows’ D,
which is simple to calculate and, unlike the maxi-
mum likelihood method of Hill (1974), does not
depend on the assumption of random mating.

Table 1. Notation used in this paper

N The number of adult individuals in a population

Ne Effective population size for a generation

k Number of gametes contributed to the

next generation by an individual
�k; Vk Mean and variance of k among individuals

within a generation

S The number of individuals sampled to

estimate population parameters

L The number of diallelic loci examined

J The number of pairwise comparisons of

L loci [J=L(L)1)/2]
c Frequency of recombination between

two gene loci

D Burrows’ composite disequilibrium measure

rD The inter-locus correlation of allele frequencies

based on Burrows’ D
r̂2 The mean of squared r̂D values

averaged over J pairs of loci in a single replicate
�̂r2 The mean of r̂2 values across all replicates

Eðr̂2Þ;
V ðr̂2Þ

The expected value (and variance) of r̂2

Eðr̂2driftÞ Expected contribution to r̂2 from a finite

number of breeders

Eðr̂2sampleÞ Expected contribution to r̂2 from sampling

a finite number of individuals

r̂20 Empirical r̂2 adjusted for sampling error:

r̂20 ¼ r̂2 � Eðr̂2sampleÞ
/ V ðr̂2Þ

�
ð�̂r2Þ2 ¼ squared coefficient

of variation of r̂2
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Weir (1979) evaluated both Hill’s and Burrows’
methods and concluded that D should generally be
preferred even when it is reasonable to assume
random mating. An unbiased estimate of D can be
obtained by adjusting for sample size (Weir 1979):

D̂ ¼ D
S

S� 1
: ð1Þ

D values can be standardized to adjust for the ef-
fect of allele frequencies, yielding a correlation
coefficient (r). An estimate of the analogue to r for
the Burrows method (rD) is

r̂D¼
D̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p̂ð1�p̂Þþðh1�p̂2Þ�½q̂ð1�q̂Þþðh2�q̂2Þ�

p ;

ð2Þ

where h1(h2) is the observed frequency of AA (BB)
homozygotes at the first (second) locus and p̂ðq̂Þ is
the sample frequency of allele A (B) (Weir 1996).
The analyses described here follow Weir and many
others and use the Burrows method to compute r̂.

In a stable population with random mating
and no selection, migration, or mutation,
E(D)=E(rD)=0 for unlinked loci. However, in fi-
nite populations |D| and |rD| will generally not be
zero because of random deviations from expected
probabilities. Sampling also introduces disequi-
libria, and the magnitude of these random depar-
tures from equilibrium will increase as Ne and S
decrease. Thus, it is expected that the squared
coefficients of disequilibrium D̂2 and r̂2D will be
inversely proportional to Ne and S. Although
Eðr̂2Þ is not known, most authors (e.g., Hill and
Robertson 1968; Ohta and Kimura 1969; Sved and
Feldman 1973; Weir and Hill 1980) have used the
following approach to obtain an approximation:
Eðr̂2Þ ¼ E2ðr̂Þ þ Vðr̂Þ; since E2ðr̂Þ ¼ 0, this leads to

Eðr̂2Þ¼Vðr̂Þ¼V
D̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞqð1�qÞ

p

 !

� EðD̂2Þ
E½pð1�pÞqð1�qÞ�; and

Eðr̂2DÞ�
EðD̂2Þ

Eð½p̂ð1�p̂Þþðh1�p̂2Þ�½q̂ð1�q̂Þþðh2�q̂2Þ�Þ
:

Weir and Hill (1980) showed that the expectation
of squared disequilibrium coefficients is strongly

affected by the mating system and recombination
fraction (c) between the loci in question. Assuming
Ne and S are both large, for monoecious species or
dioecious species with random mating and no
permanent pair bonds,

Eðr̂2DÞ �
ð1� cÞ2 þ c2

2Necð2� cÞ þ
1

S
; ð3Þ

(Weir and Hill 1980), whereas with lifetime
monogamy,

Eðr̂2DÞ �
1� cþ 2c2

2Necð2� cÞ þ
1

S
: ð4Þ

If the loci are unlinked (c=0.5), these equations
simplify to

Eðr̂2DÞ �
1

3Ne
þ 1

S
ðmonoecious or

dioecious random matingÞ;
ð5Þ

Eðr̂2DÞ �
2

3Ne
þ 1

S
ðdioecious,

lifetime monogamyÞ;
ð6Þ

[Waples (1991) indicated that the first term in
Equation (6) was 5/(12Ne), but that is correct only
for the case of gametic data.] Hereafter, I will drop
the subscript and use r̂2 to refer to r̂2D. In both
equations, Eðr̂2Þ can be expressed as the sum of a
term due to finite population size and a term
due to sampling a finite number of individuals:
Eðr̂2Þ ¼ Eðr̂2driftÞ þ Eðr̂2sampleÞ. Equations (5) and (6)
indicate that Eðr̂2sampleÞ ¼ 1=S is the same in the
two mating systems, but Eðr̂2driftÞ is twice as large if
permanent pair bonds are formed. Replacing Eðr̂2Þ
with its estimate ðr̂2Þ and rearranging leads to an
estimator for Ne:

N̂e ¼
1

3ðr̂2 � 1
�
SÞ
ðmonoecious or

dioecious random matingÞ;
ð7Þ

N̂e ¼
2

3ðr̂2 � 1
�
SÞ
ðdioecious,

lifetime monogamyÞ:
ð8Þ

If S varies among loci, the harmonic mean should
be used.
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Performance of the estimators

Computer simulations were used to model the two
mating systems described above in a single popu-
lation closed to migration. Generations were dis-
crete, population size (N) was constant, and the
numbers of males and females were equal. In the
random mating model, each progeny was pro-
duced by mating a randomly selected female and a
randomly selected male, chosen independently and
with replacement from the breeding population. In
the monogamy model, the only difference was that
each progeny was produced by randomly drawing,
with replacement, a permanently bonded male-
female pair. Selfing was not permitted in either
model. Under the simulated conditions, the dis-
tribution of reproductive success is binomial and
inbreeding effective size with or without monog-
amy is given by (Wright 1969, as modified by
Balloux 2004):

Ne ¼ Nþ 1=ð2NÞ þ 0:5: ð9Þ

The 0.5 term in Equation (9) (and in Equations
(10) and (11) below) arises because by convention
the ‘‘ideal’’ population is defined to include ran-
dom selfing, and inbreeding is retarded slightly if
selfing is not allowed. Equation (9) was used to
calculate the true Ne for each simulation. For
simplicity, although the last two terms on the right
side of Equation (9) were carried through in all
calculations and analyses reported here, in the text
the true Ne is reported as the number of ‘‘ideal’’
individuals (N).

Each replicate was initialized by choosing
genotypes in generation 0 by binomial draw based
on parametric allele frequencies (P0) at L diallelic
and independent gene loci. This is equivalent to
drawing the initial generation of breeders from an
infinitely large source population in which linkage
disequilibrium is zero. Under this scenario, r2 will
increase to its asymptotic value at a rate described
by Sved (1971), and during that time period esti-
mates of Ne will be upwardly biased because r2 is
lower than its equilibrium value. Previous results
for the same simulation model used here (Waples
2005) showed that, as expected for unlinked loci, r̂2

approaches its asymptotic value quickly at the rate
predicted by Sved (1971), and N̂e stabilized within
3–4 generations. Therefore, the population was
allowed to equilibrate for four generations

(generations 0–3), after which data were col-
lected for six generations (generations 4–9) be-
fore the simulation was terminated and another
replicate begun. Limiting each replicate to 9
generations minimized the number of alleles that
became extinct or drifted to extreme frequencies.
To further reduce possible biases due to low
frequency alleles, if the breeders (or the sample)
in any generation had an allele frequency at any
locus less than a threshold value P* (or greater
than 1)P*), the breeders or sample were re-
drawn. P*=0.05 was used in most simulations,
although other values were evaluated for their
effects on the results.

The relationship between r̂2;S, and true Ne was
examined in a complete matrix of Ne� S values,
using Ne=10, 12, 16, 20, 24, 30, 40, 60, 80, 100,
120, 160, 200, 300, 500; S=10, 12, 16, 20, 24, 30,
40, 50, 60, 80, 100, 150, and 200. In addition,
sampling from a population with Ne=¥ was
mimicked by using results for samples drawn in
generation 0. Samples were taken by producing
additional progeny beyond those needed for the
next generation; hence, S could exceed Ne (as can
occur if Ne/N<1 or if a species is sampled as
juveniles). In each sample in each generation, r̂D
was computed for each pair of loci using Equation
(2), and these squared r̂D values ( r̂2) were averaged
across all pairs of loci to obtain the estimate of r2

for that sample. To obtain an overall estimate of r2

for each parameter set, the mean r̂2 values were
averaged across generations 4–9 within each rep-
licate and then across replicates, yielding an
overall mean �̂r2. Typically, 30,000 replicates were
run for each parameter set, so each mean �̂r2 value
(and associated N̂e values) is based on data for
6�30,000=180,000 replicate samples from a single
generation.

Non-ideal populations
For a limited number of parameter sets, I also

considered populations that departed from ideal
conditions in either of two ways. If sex ratio is
uneven but the distribution of reproductive success
is random within each sex, effective size is given by

Ne �
4NmNf

Nm þNf
þ 0:5; ð10Þ

where Nm and Nf are the numbers of the two sexes.
Uneven sex ratio was modeled by arbitrarily
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dividing the N individuals each generation into
two sexes in fixed proportions ranging from 1:1 to
1:15, which, based on Equation (10) and using
N=96 or 192, led to expected Ne/N ratios of 0.24
to 1.0.

More generally, departures from ideal condi-
tions can be described in terms of the mean (�k) and
variance (Vk) among individuals in the number of
gametes contributed to the next generation:

Ne ¼
�kN� 2

�k� 1þ Vk

�
�k
þ 0:5: ð11Þ

Equation (11) gives the inbreeding effective size for
species with separate sexes and for non-selfing
monoecious species (Crow and Denniston 1988;
Caballero 1994).

The ratio Vk=�k, termed the ‘‘index of variabil-
ity’’ by Crow and Morton (1955), quantifies
departures from ideal conditions. In the Wright–
Fisher model, variance in reproductive success is
binomial (=Poisson in the limiting case of infinite
N), so Vk � �k and Vk=�k � 1. Here, the interest is
in modeling an overdispersed Poisson distribution
with mean �k ¼ 2 (so the population is constant in
size) and variance Vk ‡ 2. This can be obtained via
a two-step process. First, a random variable c is
generated from an appropriate Gamma distribu-
tion (see Anderson 2001 for a similar method using
the negative binomial distribution). Second, c is
used as the parameter for a Poisson distribution,
from which another number (k) is randomly cho-
sen; the value of k is the number of gametes one
individual contributes to the next generation. This
two-step process is repeated N times to generate
the distribution of reproductive success values for
the population as a whole. It can be shown that if
the desired mean is �k=2 and the desired variance
is Vk, then the appropriate Gamma distribution is
one with �c ¼ 1 and Vc=(Vk)2)/4. With �k fixed at
2, I modeled selected values of Vk between 2 and
20, leading to Vk=�k ratios of 1 to 10 and expected
Ne/N ratios ranging from 0.19 to 1.0. Because this
procedure only leads asymptotically to �k ¼ 2 for
large samples, in each generation I adjusted the
actual mean reproductive success to �k ¼ 2 by
adding or subtracting progeny from randomly
chosen individuals. Realized Vk was calculated
after the adjustment, averaged across replicates,
and used in Equation (11) to calculate true Ne for
each parameter set.

To validate general behavior of the simulation
model under non-ideal conditions, I also tracked
temporal changes in allele frequency and estimated
Ne using the temporal method. Allele frequencies
were computed for Plan I samples (Nei and Tajima
1981; Waples 1989) taken in generation 3, and
these were compared with frequencies in samples
from generations 4–9 using Pollak’s (1983) method
to estimate the standardized variance in allele
frequencies (F). The estimates of F for 1–6 elapsed
generations were used to estimate Ne using Equa-
tion (12) in Waples (1989), and the harmonic mean
of the N̂e values for the different time periods was
taken as the temporal estimate of Ne for that
parameter set.

Results

Evaluating bias

Random mating
Mean r̂2 and �̂r2 values did not depend on the
number of loci used, nor on the initial allele fre-
quency in the range P0=0.5–0.9 (data not shown).
Therefore, except as noted below, results will be
shown only for L=8 and P0=0.5.

It is apparent that Equation (7) does not pro-
vide an unbiased estimate of effective population
size for the range of S/Ne ratios likely to occur in
the study of natural populations (Figure 1). N̂e is
downwardly biased if S is less than about 2Ne, and
the bias is substantial for S<Ne, particularly for
samples of small absolute size. If S=Ne<0:1; N̂e

can be a small fraction of true Ne. When S is small
relative to Ne; N̂e is more closely related to the
sample size than it is to the true effective size.
Conversely, for S>2Ne, Equation (7) leads to an
overestimate of Ne, although the bias is less pro-
nounced (<20%; Figure 1). Again, for the same
S/Ne the upward bias in N̂e is larger for smaller
samples.

Because the S/(S)1) correction (Equation (1))
to obtain an unbiased estimate of D increases r̂2, it
exacerbates the downward bias in N̂e for small S.
Therefore, behavior of r̂2 and N̂e was also evalu-
ated without this adjustment. Omitting the
S/(S)1) term does reduce downward bias (but
only moderately) for small S/Ne, but it increases
upward bias for large S/Ne (data not shown). As
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the S/(S)1) adjustment to D is implemented in
widely used computer programs for analyzing
population genetic data (e.g., LINKDOS: Black
and Krafsur 1985; Garnier-Gere and Dillmann
1992; GENEPOP: Raymond and Rousset 1995),
and omitting it does not solve the bias problem,
the adjustment was used in the remaining analyses.
Because Equations (3)–(6) were derived by
approximating Eðr̂2Þ as the ratio of two expecta-
tions, I also evaluated performance of a modified
r̂2 based on computing an average (across all pairs
of loci) of the squared numerator of Equation (2)
divided by an average (across all pairs of loci) of
the squared denominator of Equation (2). Vitalis
and Couvet (2001) used this approach – averaging
numerators and denominators separately – with
their index of multilocus gametic disequilibrium.
For all parameter sets examined, however, this
approach led to a larger r̂2, which increased bias in
N̂e for small samples; therefore, this method was
not considered further.

Monogamy
Results for the monogamy model (not shown) were
qualitatively similar: substantial downward bias
for S/Ne<1 and upward bias for S/Ne>1. The
downward bias for small S/Ne was not quite as
pronounced as in the random mating model, which

is understandable because Eðr̂2driftÞ is larger with
monogamy, so the contribution from sampling is
relatively less important. Conversely, upward bias
for large S/Ne was more severe in the monogamy
model (up to 30% in some cases for S/Ne>5).

For both mating systems, the downward
(upward) bias in N̂e occurs when r̂2 is larger
(smaller) than the value expected from Equations
(5) and (6) based on the true Ne. I evaluated two
different approaches to reduce this bias, one based
on modifying Eðr̂2Þ to more closely predict
empirical r̂2, the other based on adjusting r̂2 before
using Equation (7) to calculate N̂e.

Empirical modification to Eðr̂2Þ

Random mating
To obtain the approximations for Eðr̂2Þ given in
Equations (3)–(6), Weir and Hill (1980) assumed
both S and Ne were small enough that second
order and higher terms, as well as inverse terms
in SNe, could be ignored. Accordingly, I evalu-
ated empirically whether inclusion of second
order terms could be effective in removing the
bias in N̂e. To isolate the contribution to r̂2 of
sampling from that due to drift, I first examined
data for samples taken only in generation 0,
which mimics sampling from a population of

S/Ne

0.01 0.1 1 10

N
e  
/N

e

0.00

0.25

0.50

0.75

1.00

1.25

10
20
30
40
60
80
100
150
200

^
Sample size

Figure 1. Random mating model. The ratio of estimated to true effective size (N̂e

�
Ne) for simulated data with S=10– 200 and

Ne=10 – 500. Mean �̂r2 values were computed as in Equation (2) and used to compute N̂e in Equation (7). Vertical dashed line indicates
that the region of no bias (N̂e ¼ Ne) occurs at S� 2.15Ne.
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infinite size. In this case, Eðr̂2driftÞ ¼ 0, so
observed �̂r2 ¼ �̂r2sample, which could be compared
with its expectation from Equation (5) (1/S). In
all cases, empirical �̂r2 was larger than 1/S, and
residuals were larger for small S (Figure 2a). A
best-fit model of the form y=a/S2+b/S+c yiel-
ded c=4.8�10)5 and b=0.991, in good agree-
ment with the theoretical expectation that c=0
and b=1 (Equation (5)). Setting c=0 and b=1,
the least-squares fit (r2>0.999) to the empirical
data is residual�̂r2sample ¼ 3:19=S2.Thus,Equation(5)
can be improved by adding a second order term
for sampling error: Eðr̂2sampleÞ � 1=Sþ 3:19=S2.

Evaluations indicated that this adjustment is
less effective for S<30, so an adjusted Eðr̂2sampleÞ
was computed separately for S=10–30. In
this case, a better fit (r2>0.999) to the empiri-
cal data was found by allowing c and b to
depart slightly from values in Equation (5):
Eðr̂2sampleÞ � 0:0018þ 0:907=Sþ 4:44=S2 (Figure 2b).

To evaluate effectiveness of these modifica-
tions to Eðr̂2sampleÞ with finite Ne, I subtracted the
modified Eðr̂2sampleÞ from empirical �̂r2 values,
leaving a quantity r̂20 ¼ r̂2 � Eðr̂2sampleÞ that can
be compared with the expected contribution
from drift (Eðr̂2driftÞ). For each Ne; r̂

20 was aver-
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 r
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m

p
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r 2
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m
p
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Y = .0018 + .907/S + 4.44/S2

^
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(a)

(b)

Figure 2. Random mating model. A. Large sample sizes (S ‡ 30). Residual �̂r2 after subtracting the expected contribution from
sampling (Eð�̂r2sampÞ ¼ 1=S; Equation (5)) for simulations that mimic sampling for a population with Ne=¥. Filled circles are empirical
results from simulations; dotted line is the curve Y=3.19/S2 fitted to the residuals. B. Small sample sizes (S £ 30). Filled circles are
empirical �̂r2 for simulations that mimic sampling for a population with Ne=¥; solid line is Eð�̂r2sampÞ ¼ ð1=SÞ and dotted line is the
modified Eð�̂r2sampÞ ¼ 0:0018þ 0:907=Sþ 4:44=S2 fitted to the data.
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aged across sample sizes, separately for S ‡ 30
and S<30. If the drift term in Equation (5) were
adequate, these mean r̂20 values should closely
approximate 1/(3Ne). Although agreement was
reasonably good for Ne larger than about 100,
for smaller effective sizes the residuals
½r̂20 � 1

�
ð3NeÞ� were substantial and negative

(Figure 3), indicating that 1/(3Ne) slightly over-
estimates the contribution of drift to �̂r2. For
S ‡ 30, the least-squares fit yielded c<2�10)5

and b=0.325, again in good agreement with the
theoretical expectation (c=0, b=1/3; Equation
5). Setting c=0 and b=1/3, the least-squares fit
to r̂20 occurred with a second order-term of
�0:69=N2

e (Figure 3a). For S<30, a better fit

was found for Eðr̂2driftÞ � 0:308=Ne � 0:52=N2
e

(Figure 3b).
Collectively, these results suggest that Equation

(5) can be modified as follows to provide a better
approximation for drift and sampling terms in
Eðr̂2Þ:

Eðr̂2ÞðS�30Þ �
1

3Ne
� 0:69

N2
e

� �
drift

þ 1

S
þ 3:19

S2

� �
sample:

Eðr̂2ÞðS<30Þ �
0:308

Ne
� 0:52

N2
e

� �
drift

þ 0:0018þ0:907
S
þ4:44

S2

� �
sample:

Ne
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Figure 3. Random mating model. A. Large sample sizes (S ‡ 30). Residual �̂r2drift after subtracting the expected contribution from
sampling [Eð�̂r2sampÞ ¼ 1=Sþ 3:19=S2; Table 2] and the drift term from Equation (5) (1/3Ne). Filled circles are empirical results from
simulations; dotted line is the curve Y ¼ �0:69=N2

e fitted to the residuals. B. Small sample sizes (S £ 30). Open triangles are residual
�̂r2drift after subtracting Eð�̂r2sampÞ ¼ 0:0018þ 0:907=Sþ 4:44=S2 and the drift term from Equation (5)(1/3Ne). Filled triangles are residuals
after adjusting the drift term to Eð�̂r2driftÞ ¼ 0:308=Ne � 0:52=N2

e .
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Because Eðr̂2driftÞ involves second-order terms in
Ne, this does not lead to as simple an expression
for N̂e as does Equation (7). However, Eðr̂2sampleÞ
and r̂2 can both be calculated directly from
empirical data, and a solution for N̂e can be found
by rearranging terms and use of the quadratic
formula. For example, for S ‡ 30,

r̂20 ¼ r̂2 � Eðr̂2sampleÞ

¼ r̂2 � 1

S
þ 3:19

S2

� �
� 1

3Ne
� :69

N2
e

;

r̂20 ¼ ð1=3ÞNe � :69
N2

e

;

r̂20N2
e � ð1=3ÞNe þ :69 ¼ 0;

N̂e ¼
1=3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=9� 2:76r̂20

p

2r̂20
:

Expressions for Eðr̂2sampleÞ;Eðr̂2driftÞ, and N̂e for
large and small sample sizes are shown in Table 2.
If r̂20<0, then all the disequilibrium can be ex-
plained by sampling error and the appropriate
estimate of Ne is ¥ (Laurie-Ahlberg and Weir
1979). Conversely, if r̂20 is large, the square-root
term can be negative; this implies small Ne, and an
approximate estimate is N̂e ¼ ð1=3Þ=ð2r̂20Þ for
randommating or N̂e ¼ ð2=3Þ=ð2r̂20Þ for monogamy.

Use of the formulas in Table 2 to estimate Ne

based on mean �̂r2 values from a new round of
simulations led to results shown in Figure 4. For
S ‡ 30, bias in N̂e was virtually eliminated (less
than 5%), even for the minimum S=30 and
S/Ne=0.06 (Figure 4a). For smaller sample sizes,
performance was nearly as good; bias was <10%
for all parameter sets with S/Ne > 0.1 and no
larger than 15% for smaller samples (Figure 4b).

The slight residual bias for small S can be con-
trasted with results using Equation (7), which leads
to a 95% downward bias in N̂e for S=20 and true
N̂e ¼ 500 (Figure 1).

Monogamy
For the monogamy model, Eðr̂2sampleÞ is the same as
under random mating, and analyses similar to
those described above led to the expressions for
Eðr̂2driftÞ and N̂e shown in Table 2. Use of the re-
vised Eðr̂2Þ with new simulated data resulted in
estimates of Ne that performed at least as well as
those for random mating (results not shown). Bias
in N̂e was minimal for all parameter sets with large
samples and for small samples when S/Ne>0.1.
Even with S<30 and S/Ne<0.1, bias in N̂e was no
more than 10%.

Precision

With bias largely removed, it is important to at
least briefly consider precision, because it can be a
limiting factor for genetic estimates of effective
size. A useful measure for this purpose is the
quantity / ¼ Vðr̂2Þ

�
ðr̂2Þ2=the square of the

coefficient of variation of r̂2. Hill (1981) showed
that if r̂2 is computed for a single pair of loci, /�
2, as would be expected if r̂2

�
�̂r2 were a chi square

variate with one degree of freedom. More gener-
ally, for r̂2 computed over all pairwise combina-
tions of L loci, if Jr̂2

�
�̂r2 follows a chi square

distribution with J=L(L)1)/2 degrees of freedom,
the following relationship should hold: /�2/J;J/
�2. That is, the variance of r̂2 should be inversely
proportional to the number of pairwise compari-
sons of loci (J) used in its computation.

Table 2. Parameters for estimating Ne for large and small sample sizes (S) under two mating systems

S ‡ 30 S<30

Random mating

Eðr̂2driftÞ 1=ð3NeÞ � 0:69=N2
e 308=Ne � 0:52=N2

e

Eðr̂2sampleÞ 1/S+3.19/S2 0018+.907/S+4.44/S2

N̂e
1=3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=9� 2:76r̂20

p

2r̂20
:308þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:3082 � 2:08r̂20
p

2r̂20
Monogamy

Eðr̂2driftÞ 2=ð3NeÞ � 1:8=N2
e :618=Ne � 1:31=N2

e

Eðr̂2sampleÞ 1/S+3.19/S2 .0018+.907/S+4.44/S2

N̂e
2=3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=9� 7:2r̂20

p

2r̂20
:618þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:6182 � 5:24r̂20
p

2r̂20

r̂20 ¼ r̂2 � Eðr̂2sampleÞ is the empirical r̂2 after subtracting the expected contribution from sampling for that model and sample size.
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With L=8 loci, J/ is close to 2 provided that
effective size is not too small (Figure 5a; random
mating). However, when Ne< 50, J/ is higher
than expected for a chi square variate, and it is
much higher if Ne< 25 (Figure 5a). Comparable
results were found for the monogamy model
(Figure 5b).

To evaluate effects on hypothesis testing,
I examined the frequency with which parametric
confidence intervals (CIs) for N̂e based on point
estimates of r̂2 contained the true Ne. Confidence
intervals were computed using an analogue of
Equation (16) in Waples (1989):

1� a CI for r̂2 ¼ Jðr̂2Þ
X2

a=2½J�

;
Jðr̂2Þ

X2
1�a=2½J�

" #

;

ð12Þ

where X2
a=2½J�

and X2
1�a=2½J�

are the a/2 and 1)a/2
points of the chi square distribution with J degrees
of freedom. CIs for r̂2 were used with formulas in

Table 2 and Equation (7), respectively, to calculate
CIs for N̂e. I used a ¼ 0:05 and the 0.025 and 0.975
points of the chi square distribution to calculate
95% CIs for N̂e.

Results of these analyses (Figure 6) show that a
nearly linear (negative) relationship exists between
the ratio J/ and the probability that the 95% CI
for N̂e contains true Ne. For J/ £ 2, the 95% CIs
contained the true Ne at least 95% of the time, and
performance dropped by about 5% for each unit
of J/ above 2. Results for the monogamy model
paralleled those of the random mating model
(Figure 6).

Finally, I evaluated the effects on precision of
using different numbers of loci to compute r̂2. In
simulations using Ne=100, S=20, 40, or 100 and
L=2–20 loci, J/ increased as a linear functionof the
number of loci (Figure 7). Because mean �̂r2 was
essentially invariant for L=2–20 (data not shown),
the increases were due to increases in the numerator
½JVðr̂2Þ� – that is, with increases in J the variance of
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Figure 4. The ratio N̂e

�
Ne in the random mating model after bias correction (�̂r2 values were used in modified expressions for Eðr̂2Þ

shown in Table 2). (a) Large samples (S ‡ 30). (b) Small samples (S=10–24). Results are based on new simulation data not used in
deriving the bias corrections.
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r̂2 did not decrease as rapidly as expected for vari-
ates following the chi square distribution. The
effects on CIs of increases in J/ were similar to the
pattern shown in Figure 7 for other simulations.

Transforming r̂2

I also considered an alternative bias correction
method – to adjust empirical r̂2 and use the
existing formula (Equation (7)) to calculate N̂e.
This is feasible because the relationship between
�̂r2 and Eðr̂2Þ for any given sample size is almost
perfectly linear (data not shown); therefore, for
each sample size, a simple linear transformation

of empirical �̂r2 values can bring them into
agreement with Eðr̂2Þ. Although this method
proved to be as effective as the modified Eðr̂2Þ
method in reducing bias in N̂e, the linear trans-
formation increased the variance of the adjusted
�̂r2 and therefore reduced precision of N̂e (data
not shown). Therefore, this latter method was
not pursed further.

Non-ideal populations

The temporal method tracked Ne in non-ideal
populations almost perfectly, both for skewed sex
ratio (Figure 8a) and greater-than-random vari-

Ne

0 100 200 300 400 500

Jφ

0

2

4

6

0

1

2

3

4

10
20
40
60
100
200
Expected

(a)

(b) Sample
 size:

Figure 5. The ratio J/ for simulations with L=8 loci and a wide range of S and Ne values. Dotted line represents expected value (2)
assuming Jr̂2

�
�̂r2 is distributed as chi square with J=L(L)1)/2=28 degrees of freedom. (a) Random mating model. (b) Permanent pair

bonds model.
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ance in reproductive success (Figure 8b). The
modified linkage disequilibrium method also per-
formed very well, although a consistent, slight
upward bias in N̂e was evident (Figure 8). The
cause of this slight bias is not clear, but it is in-
versely related to both Ne and Ne/N. Upward bias
in N̂e was less than 10% unless N2

e=N was less
than about 10 (data not shown).

Discussion

Bias

Sampling and drift effects
In spite of many years of concerted efforts, devel-
oping a theoretical expectation for Eðr̂2Þ has been
difficult (Beaumont 2003). Several authors (e.g.,
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Figure 6. Performance of the confidence intervals (CIs) for N̂e as a function of J/. CIs for N̂e were based on CIs for r̂2 calculated using
Equation (12). Filled symbols are for the random mating model, open circles for monogamy.
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�̂r2 is distributed as chi square with J=L(L)1)/2 degrees of freedom.
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Maruyama 1982; Golding 1984; Hudson 1985)
have shown that the common approach of
approximating Eðr̂2Þ as the ratio of two expecta-
tions can lead to bias. Weir and Hill (1980) pro-
vided the most rigorous derivation for Eðr̂2Þ but
obtained their results only by assuming S and Ne

are both large. In real-world applications, how-
ever, sample sizes are generally limited and effec-
tive size is (or may be) small.

Inspection of Equations (5) and (6) shows that
adequately accounting for sampling error is
essential to obtain reliable estimates of Ne. If S and
Ne are the same size, Eðr̂2sampleÞ is three times as
large as Eðr̂2driftÞ in the random mating model and
50% higher in the monogamy model. Under these
conditions, reliable estimates of Ne can be
obtained only if two conditions are met: (1) the
formula relating Eðr̂2Þ to Ne and S is accurate; and
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Figure 8. Comparison of estimated and true Ne in non-ideal populations. Open circles are estimates based on the temporal method;
closed circles are estimates based on gametic disequilibrium using the modified expressions for Eðr̂2Þ given in Table 2. Populations were
of fixed size N as indicated and were ideal and random mating except for the following features: (a) Sex ratio ranged from 1:1 to 1:15.
(b) Sex ratio equal but variance in reproductive success (Vk) ranged from Poisson (Vk ¼ �k ¼ 2) to Vk=20. Sample size was 50 and true
Nse was calculated using Equations (10) (Panel A) and (11) (Panel B).
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(2) large amounts of data are available (sample
sizes, number of loci), so that the actual contri-
butions to r̂2 of drift and sampling are close to
their expected values.

Results presented here confirm and expand the
conclusion of England et al. (2006, this volume)
that the first condition is not met with the most
commonly used method for estimating effective
population size based on gametic disequilibrium;
rather, this method leads to substantial downward
bias of N̂e if sample size is less than true Ne.
Figure 2, in which the effects of sampling are iso-
lated from those due to drift, demonstrates that
second-order terms that can safely be ignored
when S is large become important contributors to
r̂2 when sample size is smaller. A similar result was
found for Eðr̂2driftÞ (Figure 3), and empirically de-
rived second order terms in S and Ne substantially
improve the agreement between r̂2 and Eðr̂2Þ. The
small discrepancies that remain are probably due
primarily to ignoring interaction terms in SNe.

Collectively, these results explain the pattern of
bias seen in Figure 1. When S/Ne is small, sam-
pling error affects r̂2 much more strongly that does
drift, and N̂e is biased downwards because
Equation (5) underestimates Eðr̂2sampleÞ. Con-
versely, when Ne is small compared to S (i.e., for
large S/Ne), the overestimation of Eðr̂2driftÞ is more

important, leading to upward bias in N̂e. In the
random mating model for S ‡ 30, these over- and
under-estimation errors (3.19/S2 and �:69=N2

e ;
Table 2) cancel each other when S=2.15Ne, indi-
cating that Equation (5) for Eðr̂2Þ should be
unbiased only when S/Ne� 2.15. That this is in-
deed the case is evident from Figure 1.

The modified equations for Eðr̂2Þ are effective
enough that residual bias in N̂e (in most cases
<5%) is not likely to lead to biologically mis-
leading conclusions. After applying this correc-
tion, therefore, bias should be much less of a
limitation for use of the disequilibrium method
than is precision. Residual bias up to approxi-
mately 10% was found for S<30 and S/Ne<0.1
(i.e., when Ne> 300).

England et al. (2006) suggested that situations
in which N̂e is downwardly biased using the dis-
equilibrium method might be identified by taking a
series of subsamples of increasing size from the
original sample. They reasoned that if the esti-
mates of N̂e for the subsamples reach an asymp-

totic value as size of the subsample increases, then
N̂e for the complete data can be considered reli-
able, but if N̂e estimates continue to increase as
size of the subsample increases, then true Ne is
being underestimated by an unknown amount.
Although this approach is reasonable in principle,
it would not provide any redress for the latter case
except to collect more individuals.

Non-ideal populations
Virtually all studies that have modeled the

relationship between Ne and population genetic
parameters have used ideal populations of differ-
ent sizes. The implicit assumption is that an ideal
population of Ne=N individuals is a reasonable
proxy for all non-ideal populations of the same
nominal effective size. Results presented in
Figure 8 demonstrate that this is indeed a rea-
sonable assumption for genetic estimators of
effective size, regardless whether departures from
ideal conditions are due to skewed sex ratio or
overdispersed reproductive success. The slight
upward bias in N̂e for the linkage disequilibrium
method should not pose a significant problem in
practical applications unless Ne and/or Ne/N are
very small.

Violation of model assumptions
The models used here assume selective neutrality
of unlinked markers and a single, closed popu-
lation. Sensitivity of r̂2 and N̂e to violation of
these assumptions remains to be studied in any
systematic way. In structured populations,
migration will lead to population mixture (and
subsequent interbreeding will lead to admixture),
which creates linkage disequilibrium due to a
two-locus Wahlund effect (Sinnock 1975). Wa-
ples and Smouse (1990) considered the joint
effects of population divergence, mixture frac-
tion, and drift on linkage disequilibrium; al-
though they did not estimate Ne directly, they
showed that even with substantial population
mixing, disequilibrium due to drift could domi-
nate that due to mixture if population size was
small. More recently, Vitalis and Couvet (2001)
evaluated joint estimation of Ne and migration
rate using both a single-locus measure and a
two-locus measure related to r̂2. Several authors
have examined power of linkage disequilibrium
to detect selection, but potential biases that
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selection might create for estimating Ne have not
been evaluated.

Although results presented here were not sensi-
tive to allele frequencies in the range 0.05<P<0.95,
other studies (Maruyama 1982; Hudson 1985;
Hedrick 1987; Waples and Smouse 1990) indicate
that r̂2 is not independent of allele frequency. Bias in
N̂e might be expected if allele frequencies are close to
0 or 1 but, again, a rigorous assessment remains to
be done, particularly regarding the combined effects
of many low-frequency alleles, such as might be
encountered with data frommicrosatellites. Results
presented by England et al. (2006 this volume)
showing robustness of N̂e to varying numbers of
alleles per locus are encouraging and suggest that
challenges presented by loci with many alleles are
not insurmountable for the disequilibrium method.
Genotyping errors (Akey et al. 2001) are another
source of potential bias for measures of gametic
disequilibrium that have not been evaluated for
their effects on N̂e.

Formulas for Eðr̂2Þ presented here all apply to
asymptotic values in populations of constant size.
When N varies, r̂2 will be affected by Ne in gen-
erations prior to the one sampled. Fortunately, for
unlinked loci the approach to asymptotic r̂2 is
rapid. Waples (2005) examined the specific time
periods to which genetic estimates of Ne apply and
concluded that recent population declines are not
likely to seriously affect N̂e based on linkage dis-
equilibrium, because the signal from current
(reduced) Ne is strong relative to the signal from
larger Ne in previous generations. This was also
observed in the present study, where N̂e quickly
stabilized after initiating the simulations with
Ne=¥. If N has recently increased, N̂e can be
biased downwards for a few generations, with
duration and magnitude of bias proportional to
severity of the bottleneck.

Linkage strongly affects Eðr̂2Þ and hence N̂e

(Equations (3) and (4)). Linked loci provide
greater precision in estimating Ne if c is known
(Hill 1981), but in that case N̂e will be more
strongly affected by Ne in prior generations.
Information for pairs of loci with different c
values can be combined as described by Hill
(1981).

Results confirm the theoretical conclusion
(Weir and Hill 1980) that different mating systems
can have substantial effects on the expectation of
r̂2. In particular, for species with separate sexes,

Eðr̂2Þ is much higher with lifetime monogamy than
with completely random mating. Because Weir
and Hill (1980) showed that Eðr̂2Þ for the random
mating, separate sexes model is the same as Eðr̂2Þ
for monoecious species with or without selfing,
together the two mating systems considered here
are applicable to a wide variety of organisms. As
considerable bias could result from incorrect assump-
tions regarding lifetime monogamy, researchers
should carefully consider this aspect of their study
species. However, the encouraging results from
modeling non-ideal populations suggest that lack
of complete information about the mating system
should not preclude general application of the
disequilibrium method.

The assumption of discrete generations is vio-
lated by many (perhaps most) species; again, a
rigorous treatment is lacking. In general, however,
it can be noted that sampling a population with
overlapping generations will provide an estimate
of Nb (the effective number of breeders that pro-
duced the sample), rather than Ne (effective size for
the generation). For example, if a single cohort is
sampled, N̂b will provide information only about
the effective number of breeders producing that
cohort, not the population as a whole. The rela-
tionship between Nb and Ne can be complex
(Waples 1991; 2002).

Precision

The sharp increase in Vðr̂2Þ for small Ne that is
apparent in Figure 5 is probably an artifact of
stochastic modeling of small populations. The
expectation that J/=2 for a chi-square variate is
valid only if Ne is constant. In the Wright–Fisher
model used here, the expected variance in
reproductive success was the binomial variance=
�kð1� 1=NÞ, but the actual Vk was a random
variable that differed among replicates. As a
consequence, actual Ne varied among replicates
as well (cf Equation (11)). This inflates the var-
iance in r̂2 and the effect is increasingly more
pronounced as Ne gets smaller – the same pat-
tern seen in Figure 5. Furthermore, this addi-
tional source of drift variance in r̂2 will be
relatively more important when the contribution
from sampling error is small, which explains why
J/ is elevated more for larger sample sizes
(Figure 5). It remains, however, to determine
whether this phenomenon is sufficient to explain
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all of the elevated Vðr̂2Þ when Ne is small, or
whether another factor is also involved.

J/ increases almost linearly with the number of
loci (Figure 7) – the result that would be expected
if r̂2 for individual locus pairs were not indepen-
dent. Although the loci themselves are indepen-
dent in the model used here, each pairwise
comparison shares one locus with L)2 other
pairwise comparisons. Hill (1981) did a limited
evaluation of the correlation structure of r̂2 com-
puted for different pairs of loci and found that
correlations could be as high as 25% if one locus
was shared in the two comparisons. It seems likely
that results shown in Figure 7 reflect cumulative
effects of relatively small dependencies among
pairwise r̂2 values. In essence, r̂2 and N̂e behave as
if they had fewer than J degrees of freedom.

This topic merits further study. Analyses con-
sidered here only dealt with diallelic loci, whereas
many genetic studies include data for highly
polymorphic gene loci with many segregating
alleles. A rigorous analysis of precision for the
disequilibrium method would have to consider the
effects of multiple alleles within loci (and their
correlation structure) as well as effects of multiple
loci. In the meantime, results in Figure 7 suggest

that non-independence of pairwise comparisons
is not likely to strongly affect precision of N̂e.
However, as precision can limit usefulness of the
method, researchers should use as many individ-
uals and loci as possible.

It is useful to compare precision of the link-
age disequilibrium method with that of the more
commonly used temporal method. As an exam-
ple, assume one has two samples of S=50 indi-
viduals (using sampling Plan II; Waples 1989)
and has obtained an estimate of N̂e ¼ 100 for
both the temporal method (using both samples)
and the disequilibrium method (using either
sample). How would confidence intervals for
these estimates compare? This question can be
answered for any given numbers of loci and
alleles by computing confidence intervals for r̂2

(Equation (12)) and using the resulting values to
compute CIs for N̂e (Table 2); analogous for-
mulas (Waples 1989) accomplish the same thing
for the temporal method. Figure 9 shows the
range of CIs for L=5 or 20 loci, each having
a=2 or 10 alleles. Each locus has the equivalent
of a)1 independent alleles, and in the temporal
method the number of degrees of freedom (n)
associated with N̂e increases as the product of
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Figure 9. 95% confidence intervals (CIs) for N̂e in the temporal (Temp) and disequilibrium (Diseq) methods for different numbers of
loci (L), alleles per locus (a), and number of generations (t) between samples of 50 individuals each. These examples assume the point
estimate N̂e is 100, based on a pair of samples (temporal method) or a single sample (disequilibrium method). CIs for r̂2 were calculated
using Equation (12) and resulting values were used to compute CIs for N̂e using the formula for random mating, S>30 in Table 2;
Equations (16) and (11) in Waples (1989) were used in a similar way to generate CIs for the temporal method. Note that the exact time
period(s) to which an estimate of N̂e applies is not necessarily the same for the two methods (see Waples 2005 for details).
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the numbers of loci and alleles (n=L(a)1)). In
contrast, in the disequilibrium method the num-
ber of different pairwise comparisons of alleles at
different loci (and hence the approximate degrees
of freedom) increases as the square of this
product (n � L(L)1)(a)1)(a)1)/2). In the tem-
poral method, precision also increases with the
number of generations between samples (t). With
only two alleles per locus (typical for allozymes
or single-nucleotide polymorphisms), precision of
both methods is poor except for the case of
t=10 in the temporal method (Figure 9). How-
ever, with 10 alleles/locus, as commonly can be
achieved with microsatellites, precision of the
disequilibrium estimate exceeds that for a tem-
poral estimate with t=2 and compares favorably
with that of a temporal estimate based on 10
generations of drift. Results for the linkage
disequilibrium method should be considered
approximate, as data shown in Figure 7 and
discussed above indicate that more work is nee-
ded to document the pattern of changes in Vðr̂2Þ
for large numbers of loci and alleles. Neverthe-
less, it is apparent that under realistic scenarios
for collecting genetic data for natural popula-
tions, the linkage disequilibrium method can
provide estimates of N̂e with precision that rivals
(and in some cases perhaps exceeds) that of the
temporal method, and can do so with only a
single sample of individuals.
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