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A BIAS CORRECTION FOR THE MINIMUM ERROR RATE IN
CROSS-VALIDATION

BY RYAN J. TIBSHIRANI1 AND ROBERT TIBSHIRANI2

Stanford University and Stanford University

Tuning parameters in supervised learning problems are often estimated
by cross-validation. The minimum value of the cross-validation error can be
biased downward as an estimate of the test error at that same value of the
tuning parameter. We propose a simple method for the estimation of this bias
that uses information from the cross-validation process. As a result, it requires
essentially no additional computation. We apply our bias estimate to a number
of popular classifiers in various settings, and examine its performance.

1. Introduction. Cross-validation is widely used in regression and classifica-
tion problems to choose the value of a “tuning parameter” in a prediction model.
By training and testing the model on separate subsets of the data, we get an idea
of the model’s prediction strength as a function of the tuning parameter, and we
choose the parameter value to minimize the CV error curve. This estimate admits
many nice properties [see Stone (1977) for a discussion of asymptotic consistency
and efficiency] and works well in practice.

However, the minimum CV error itself tends to be too optimistic as an estimate
of true prediction error. Many have noticed this downward bias in the minimum
error rate. Breiman et al. (1984) acknowledge this bias in the context of classifica-
tion and regression trees. Efron (2008) discusses this problem in the setting p � n,
and employs an empirical Bayes method, which does not involve cross-validation
in the choice of tuning parameters, to avoid such a bias. However, the proposed
algorithm requires an initial choice for a “target error rate,” which complicates
matters by introducing another tuning parameter. Varma and Simon (2006) sug-
gest a method using “nested” cross-validation to estimate the true error rate. This
essentially amounts to doing a cross-validation procedure for every data point, and
is hence impractical in settings where cross-validation is computationally expen-
sive.

We propose a bias correction for the minimum CV error rate in K-fold cross-
validation. It is computed directly from the individual error curves from each fold
and, hence, does not require a significant amount of additional computation.
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FIG. 1. Brown microarray cancer data: the CV error curve is minimized at 23 genes, achieving a
CV error of 0.047. Meanwhile, the test error at 23 genes is 0.08, drawn as a dashed line. The pro-
posed bias estimate is 0.027, giving an adjusted error of 0.047 + 0.027 = 0.074, drawn as a dotted
line.

Figure 1 shows an example. The data come from the laboratory of Dr. Pat
Brown of Stanford, consisting of gene expression measurements over 4718 genes
on 128 patient samples, 88 from healthy tissues and 40 from CNS tumors. We
randomly divided the data in half, into training and test samples, and applied the
nearest shrunken centroids classifier Tibshirani et al. (2001) with 10-fold cross-
validation, using the pamr package in the R language. The figure shows the CV
curve, with its minimum at 23 genes, achieving a CV error rate of 4.7%. The test
error at 23 genes is 8%. The estimate of the CV bias, using the method described
in this paper, is 2.7%, yielding an adjusted error of 4.7+ 2.7 = 7.4%. Over 100 re-
peats of this experiment, the average test error was 7.8%, and the average adjusted
CV error was 7.3%.

In this paper we study the CV bias problem and examine the accuracy of our
proposed adjustment on simulated data. These examples suggest that the bias is
larger when the signal-to-noise ratio is lower, a fact also noted by Efron (2008).
We also provide a short theoretical section examining the expectation of the bias
when there is no signal at all.

2. Model selection using cross-validation. Suppose we observe n indepen-
dent and identically distributed points (xi, yi), where xi = (xi1, . . . , xip) is a vector
of predictors, and yi is a response (this can be real-valued or discrete). From this
“training” data we estimate a prediction model f̂ (x) for y, and we have a loss
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function L(y, f̂ (x)) that measures the error between y and f̂ (x). Typically, this is

L(y, f̂ (x)) = (
y − f̂ (x)

)2 squared error

for regression, and

L(y, f̂ (x)) = 1{y �= f̂ (x)} 0–1 loss

for classification.
An important quantity is the expected prediction error E[L(y0, f̂ (x0))] (also

called expected test error). This is the expected value of the loss when predicting an
independent data point (x0, y0), drawn from the same distribution as our training
data. The expectation is over all that is random [namely, the model f̂ and the test
point (x0, y0)].

Suppose that our prediction model depends on a parameter θ , that is, f̂ (x) =
f̂ (x, θ). We want to select θ based on the training set (xi, yi), i = 1, . . . , n, in order
to minimize the expected prediction error.

One of the simplest and most popular methods for doing this is K-fold cross-
validation. We first split our data (xi, yi) into K equal parts. Then for each
k = 1, . . . ,K , we remove the kth part from our data set and fit a model f̂ −k(x, θ).
Let Ck be the indices of observations in the kth fold. The cross-validation estimate
of the expected test error is

CV(θ) = 1

n

K∑
k=1

∑
i∈Ck

L(yi, f̂
−k(xi, θ)).(1)

Recall that f̂ −k(xi, θ) is a function of θ , so we compute CV(θ) over a grid of para-
meter values θ1, . . . , θt , and choose the minimizer θ̂ to be our parameter estimate.
We call CV(θ) the “CV error curve.”

3. Bias correction. We would like to estimate the expected test error using
f̂ (x, θ̂), namely,

Err = E[L(y0, f̂ (x0, θ̂ ))].
The naive estimate is CV(θ̂), having bias

Bias = Err − CV(θ̂).(2)

This is likely to be positive, since θ̂ was chosen because it minimizes CV(θ).
Let nk be the number of observations in the kth fold, and define

ek(θ) = 1

nk

∑
i∈Ck

L(yi, f̂
−k(xi, θ)).

This is the error curve computed from the predictions in the kth fold.
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Our estimate uses the difference between the value of ek at θ̂ and its minimum to
mimic the bias in cross-validation. Specifically, we propose the following estimate:

B̂ias = 1

K

K∑
k=1

[ek(θ̂) − ek(θ̂k)],(3)

where θ̂k is the minimizer of ek(θ). Note that this estimate uses only quantities that
have already been computed for the CV estimate (1), and requires no new model
fitting. Since B̂ias is a mean over K folds, we can also use the standard error of the
mean as an approximate estimate for its standard deviation.

The adjusted estimate of test error is CV(θ̂) + B̂ias. Note that if the fold sizes
are equal, then CV(θ̂) = 1

K

∑K
k=1 ek(θ̂) and the adjusted estimate of test error is

CV(θ̂) + B̂ias = 2 CV(θ̂) − 1

K

K∑
k=1

ek(θ̂k).

The intuitive motivation for the estimate B̂ias is as follows: first, ek(θ̂k) ≈ CV(θ̂)

since both are error curves evaluated at their minima; the latter uses all K folds,
while the former uses just fold k. Second, for fixed θ , cross-validation error esti-
mates the expected test error, so that ek(θ) ≈ E[L(y, f̂ (x, θ))]. Thus, ek(θ̂) ≈ Err.

The second analogy is not perfect: Err = E[L(y, f̂ (x, θ̂))], where (x, y) is sto-
chastically independent of the training data, and hence of θ̂ . In contrast, the terms
in ek(θ̂) are L(yi, f̂

−k(xi, θ̂)), i ∈ Ck ; here (xi, yi) has some dependence on θ̂

since θ̂ is chosen to minimize the validation error across all folds, including the
kth one. To remove this dependence, one would have to carry out a new cross-
validation for each of the K original folds, which is much more computationally
expensive.

There is a similarity between the bias estimate in (3) and bootstrap estimates of
bias in Efron (1979) and Efron and Tibshirani (1993). Suppose that we have data
z = (z1, z2, . . . , zn) and a statistic s(z). Let z∗1, z∗2, . . . , z∗B be bootstrap samples
each of size n drawn with replacement from z. Then the bootstrap estimate of bias
is

B̂iasboot = 1

B

B∑
b=1

[s(z∗b) − s(z)].(4)

Suppose that s(z) is a functional statistic and hence can be written as t (F̂ ),
where F̂ is the empirical distribution function. Then B̂iasboot approximates
EF [t (F̂ )] − t (F ), the expected bias in the original statistic as an estimate of the
true parameter t (F ).

Now to estimate the quantity Bias in (2), we could apply the bootstrap esti-
mate in (4). This would entail drawing bootstrap samples and computing a new
cross-validation curve from each sample. Then we would compute the difference
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between the minimum of the curve and the value of curve at the training set min-
imizer. In detail, let CV(z∗, θ̂ (z̃)) be the value of the cross-validation curve com-
puted on the dataset z∗ and evaluated at θ̂ (z̃), the minimizer for the CV curve
computed on dataset z̃. Then the bootstrap estimate of bias can be expressed as

1

B

B∑
b=1

[CV(z∗b, θ̂(z)) − CV(z∗b, θ̂(z∗b))].(5)

The computation of this estimate is expensive, requiring B K-fold cross-
validations, where B is typically 100 or more. The estimate in B̂ias in (3) finesses
this by using the original cross-validation folds to approximate the bias in place of
the bootstrap samples.

In the next section we examine the performance of our estimate in various con-
texts.

4. Application to simulated data. We carried out a simulation study to exam-
ine the size of the CV Bias, and the accuracy of our proposed adjustment (3). The
data were generated as standard Gaussian in two settings: p < n (n = 400,p =
100) and p � n (n = 40,p = 1000). There were two classes of equal size. For
each of these we created two settings: “no signal,” in which the class labels were
independent of the features, and “signal,” where the mean of the first 10% of the
features was shifted to be 0.5 units higher in class 2.

In each of these settings we applied five different classifiers: LDA (linear dis-
criminant analysis), SVM (linear support vector machines), CART (classification
and regression trees), KNN (K-nearest neighbors), and GBM (gradient boosting
machines). In the p � n setting, the LDA solution is not of full rank, so we used di-
agonal linear discriminant analysis with soft-thresholding of the centroids, known
as nearest shrunken centroids (NSC). Table 1 shows the mean of the test error, min-
imum CV error (using 10-fold CV), true bias, and estimated bias, over 100 simu-
lations. The standard errors are given in brackets.

We see that the bias tends to larger in the “no signal” case, and varies signifi-
cantly depending on the classifier. And it seems to be sizable only when p � n.
The bias adjustment is quite accurate in most cases, except for the KNN and GBM
classifiers when p � N , when it is too large. With only 40 observations, 10-fold
CV has just four observations in each fold, and this may cause erratic behavior for
these highly nonlinear classifiers. Table 2 shows the results for KNN and GBM
when p � N , with 5-fold CV. Here the bias estimate is more accurate, but is still
slightly too large.

5. Nonnegativity of the bias. Recall Section 3, where we introduced Bias =
Err − CV(θ̂), and our estimate B̂ias. It follows from the definition that B̂ias ≥ 0
always. We show that for classification problems, E[Bias] ≥ 0 when there is no
signal.
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TABLE 1
Results for proposed bias correction for the minimum CV error, using 10-fold cross-validation.

Shown are mean and standard error over 100 simulations, for five different classifiers

Method Min CV error Test error Adjusted CV error

p < n

No signal LDA 0.503 (0.003) 0.5 0.503 (0.003)
SVM 0.485 (0.003) 0.5 0.511 (0.004)
CART 0.474 (0.003) 0.5 0.510 (0.004)
KNN 0.473 (0.002) 0.5 0.524 (0.003)
GBM 0.475 (0.003) 0.5 0.520 (0.003)

Signal LDA 0.290 (0.003) 0.284 (0.001) 0.290 (0.003)
SVM 0.257 (0.003) 0.260 (0.001) 0.279 (0.003)
CART 0.356 (0.003) 0.378 (0.002) 0.384 (0.003)
KNN 0.291 (0.003) 0.284 (0.002) 0.305 (0.004)
GBM 0.269 (0.002) 0.272 (0.002) 0.288 (0.003)

p � n

No signal NSC 0.384 (0.009) 0.5 0.511 (0.012)
SVM 0.475 (0.009) 0.5 0.498 (0.010)
CART 0.498 (0.011) 0.5 0.500 (0.011)
KNN 0.430 (0.007) 0.5 0.577 (0.009)
GBM 0.432 (0.010) 0.5 0.552 (0.012)

Signal NSC 0.106 (0.006) 0.136 (0.004) 0.152 (0.008)
SVM 0.142 (0.007) 0.138 (0.003) 0.157 (0.008)
CART 0.432 (0.012) 0.432 (0.004) 0.437 (0.012)
KNN 0.200 (0.007) 0.251 (0.005) 0.297 (0.010)
GBM 0.233 (0.008) 0.276 (0.006) 0.307 (0.010)

THEOREM 1. Suppose that there is no true signal, so that y0 is stochasti-
cally independent of x0. Suppose also that we are in the classification setting,
and y0 = 1, . . . ,G with equal probability. Finally suppose that the loss is 0–1,
L(y, f̂ (x)) = 1{y �= f̂ (x)}. Then E[CV(θ̂)] ≤ Err.

TABLE 2
Results for KNN and GBM when p � N , with 5-fold cross-validation

Classifier Setting Min CV error Test error Adjusted CV error

KNN No signal 0.430 (0.007) 0.5 0.524 (0.009)
KNN Signal 0.213 (0.007) 0.253 (0.005) 0.281 (0.009)
GBM No signal 0.425 (0.008) 0.5 0.511 (0.010)
GBM Signal 0.265 (0.008) 0.289 (0.007) 0.325 (0.010)
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PROOF. The proof is quite straightforward. Well Err = 1 − P(y0 = f̂ (x0, θ̂ )),
where f̂ (·, θ̂ ) is fit on the training examples (x1, y1), . . . , (xn, yn). Suppose that
marginally P(f̂ (x0, θ̂ ) = j) = pj , for j = 1, . . . ,G. Then, by independence,

P
(
y0 = f̂ (x0, θ̂)

) = ∑
j

P
(
y0 = f̂ (x0, θ̂) = j

) = ∑
j

1

G
pj = 1

G
,

so Err = G−1
G

. By the same argument, E[CV(θ)] = G−1
G

for any fixed θ . Therefore,

E[CV(θ̂)] = E
[
min

i
CV(θi)

]
≤ E[CV(θ1)] = G − 1

G
,

which completes the proof. �

Now suppose that there is no signal and we are in the regression setting
with squared error loss, L(y, f̂ (x)) = (y − f̂ (x))2. We conjecture that indeed
E[CV(θ̂)] ≤ Err for a fairly general class of models f̂ .

Let (x̃1, ỹ1), . . . , (x̃n, ỹn) denote n test points, independent of the training data
and drawn from the same distribution. Consider doing cross-validation on the test
set in order to determine a value for θ (just treating the test data like it were training
data). That is, define

C̃V(θ) = 1

n

K∑
k=1

∑
i∈Ck

(
ỹi − f̃ −k(x̃i , θ)

)2
,

where f̃ −k is fit on all test examples (x̃i , ỹi) except those in the kth fold. Let θ̃ be
the minimizer of C̃V(θ) over θ1, . . . , θt . Then

E[CV(θ̂)] = E[C̃V(θ̃)] ≤ E[C̃V(θ̂)],
where the first step is true by symmetry, and the second is true by definition
of θ̃ . But (assuming for notational simplicity that 1 ∈ C1) E[C̃V(θ̂)] = E[(ỹ1 −
f̃ −1(x̃1, θ̂ ))2], and we conjecture that

E
[(

ỹ1 − f̃ −1(x̃1, θ̂ )
)2] = E

[(
ỹ1 − f̂ −1(x̃1, θ̂ )

)2]
.(6)

Intuitively, since there is no signal, f̃ (·, θ̂ ) and f̂ (·, θ̂ ) should predict equally well
against a new example (x̃1, ỹ1), because θ̂ should not have any real relation to
predictive strength.

For example, if we are doing ridge regression with p = 1 and K = n (leave-
one-out CV), and we assume that each xi = x̃i is fixed (nonrandom), then we can
write out the model f̂ −k(·, θ) explicitly. In this case, we can show (6) is equivalent
to showing

E[y1|θ̂ ] = E[y1], E[y2
1 |θ̂ ] = E[y2

1 ] and E[y1y2|θ̂] = E[y1]E[y2].
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In words, the mean and variance of y1 are unchanged by conditioning on θ̂ , and
y1, y2 are conditionally independent given θ̂ . These certainly seem true when look-
ing at simulations, but are hard to prove rigorously because of the complicated
relationship between the yi and θ̂ .

Similarly, we conjecture that

E
[(

ỹ1 − f̂ −1(x̃1, θ̂ )
)2] = E

[(
ỹ1 − f̂ (x̃1, θ̂ )

)2]
,(7)

because there is no signal. If we could show (6) and (7), then we would have
E[CV(θ̂)] ≤ E[(ỹ1 − f̂ (x̃1, θ̂ ))2] = Err.

6. Discussion. We have proposed a simple estimate of the bias of the mini-
mum error rate in cross-validation. It is easy to compute, requiring essentially no
additional computation after the initial cross-validation. Our studies indicate that it
is reasonably accurate in general. We also found that the bias itself is only an issue
when p � N and its magnitude varies considerably depending on the classifier.
For this reason, it can be misleading to compare the CV error rates when choosing
between models (e.g., choosing between NSC and SVM); in this situation the bias
estimate is very important.
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