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ABSTRACT

Objective: Health care providers increasingly rely upon predictive algorithms when making important treatment

decisions, however, evidence indicates that these tools can lead to inequitable outcomes across racial and

socio-economic groups. In this study, we introduce a bias evaluation checklist that allows model developers

and health care providers a means to systematically appraise a model’s potential to introduce bias.

Materials and Methods: Our methods include developing a bias evaluation checklist, a scoping literature review

to identify 30-day hospital readmission prediction models, and assessing the selected models using the checklist.

Results: We selected 4 models for evaluation: LACE, HOSPITAL, Johns Hopkins ACG, and HATRIX. Our assess-

ment identified critical ways in which these algorithms can perpetuate health care inequalities. We found that

LACE and HOSPITAL have the greatest potential for introducing bias, Johns Hopkins ACG has the most areas of

uncertainty, and HATRIX has the fewest causes for concern.

Discussion: Our approach gives model developers and health care providers a practical and systematic method

for evaluating bias in predictive models. Traditional bias identification methods do not elucidate sources of bias

and are thus insufficient for mitigation efforts. With our checklist, bias can be addressed and eliminated before

a model is fully developed or deployed.

Conclusion: The potential for algorithms to perpetuate biased outcomes is not isolated to readmission prediction

models; rather, we believe our results have implications for predictive models across health care. We offer a system-

atic method for evaluating potential bias with sufficient flexibility to be utilized across models and applications.
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INTRODUCTION

The use of machine learning to diagnose disease,1,2 aid clinical decision

support,3,4 and guide population health interventions5 has driven

consequential changes in health care. While the data supporting the

efficacy of these algorithms continues to mount, so too does the evi-

dence that these models can perpetuate and introduce racial bias if

not adequately evaluated.6,7 For example, a class of commercial

risk-prediction tools that help health systems identify target patients
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for “high-risk care management” programs assigned the same level

of risk to White patients and sicker Black patients. As a consequence

of this bias, the number of Black patients identified for extra care

was reduced by more than half.6 This inequality extends beyond

hospital settings. Recently, the National Football League (NFL) was

criticized for using race-based adjustments in dementia testing and

for making it difficult for Black players to qualify for concussion

claims.8 The NFL has since announced an end to the use of “race

norming” when determining eligibility for concussion compensa-

tion; however, these examples reveal how pervasive medical racism

remains.8

In response to these developing concerns, several reporting

guidelines have been published to help researchers uncover potential

issues in studies using prediction models.9,10 Researchers have also

proposed mathematical definitions of bias,11–13 describing methods

for measuring bias,14–17 and offering approaches for mitigating

bias.15,18,19 While the development of these resources has been un-

doubtedly useful, they are limited in their comprehensiveness. For

example, some frameworks assess only one element of algorithmic

bias (eg, model training or optimization),20–22 while others only as-

sess specific types of biases.17,23,24 By considering bias constituents

in isolation, sources of inequality are likely to be missed. We refer to

this effect—biases impacting algorithm performance across sub-

groups which leads to disparities from the algorithm’s use in the real

world—as disparate performance.

The bias-related shortcomings of predictive models in health

care are due, in part, to the failure to identify these concerns during

algorithm design and reporting. If our ambition is to use machine

learning to improve the health of patients irrespective of socio-

economic status (SES) or race, fairness cannot be a fragmented or

secondary consideration.25 The goal of our research was to develop

a checklist with which model developers and health care providers

can use to holistically assess an algorithm’s potential for disparate

performance. By allowing these parties to appraise a model before it

is deployed or even developed, potential for bias necessarily becomes

a primary criterion of evaluation.

To evaluate our method, we applied the checklist to 4 of the

most widely used 30-day hospital readmission prediction models.

These models have been used to direct care to high-readmission-risk

patients, standardize readmissions-based quality metrics across hos-

pitals,26 and forecast all-cause and condition-specific readmis-

sions.26–28 We selected this class of algorithms because of their

prevalence27–29 and because reducing readmissions is a primary am-

bition for health systems and regulators.30

Moreover, there are established disparities in readmission rates

in the United States—Black and Hispanic patients31–34 and patients

with lower SES35–38 are known to have higher than average readmis-

sion rates. While these statistics do not inherently demonstrate bias,

if readmission rates reflect disparities in the distribution of care, we

must consider whether prediction models developed without ac-

counting for these variations lead to disparate performance. To our

knowledge, readmissions prediction research has only studied pre-

dictive performance, not disparate performance. We present the

ways in which inter-group discrepancies can be introduced at each

stage of the model development and deployment and how these dif-

ferences have disproportionate effects on disadvantaged groups.

MATERIALS AND METHODS

This study had 2 objectives: (1) develop a checklist that operational-

izes the assessment of a model’s potential biases during model selec-

tion or before model deployment; and (2) assess if/how common 30-

day readmission models might perpetuate health care disparities.

The checklist was designed to surface possible biases and can thus

guide supplementary quantitative assessments, mitigation efforts,

and deployment considerations. When applied, the checklist ques-

tions uncover a model’s effect on both bias and disparity where we

define bias as a difference in inter-group predictions, and disparity

as a difference in health outcomes/quality due to disadvantaged

attributes (eg, being of a specific racial group or having a low

SES).39,40 Note that our definition of bias does not specify how

inter-group predictions must differ (eg, algorithms may differ in

terms of predictions made on otherwise identical patients, overall er-

ror rates, calibration, etc.). This is intentional as the bias of primary

concern is contextually specific and we wish to consider a broad

range of potential biases.

Our research methods included (1) our process for developing a

bias screening checklist, (2) our process and criteria for identifying

common 30-day hospital readmission prediction models, and (3)

our process for assessing these predictive models using the checklist.

Development of the bias evaluation checklist
We first gathered a team of experts in machine learning, health serv-

ices research, health disparities, and informatics to develop a practi-

cal checklist for identifying potential biases in machine learning

models. The checklist is a 3-step process: (1) understand background

of the predictive task, which defines the disadvantaged groups and

the types of biases and disparities of concern, (2) identify algorithm

and validation evidence, and (3) use checklist questions to identify

potential biases. The first 2 steps define objective of the predictive

task and the parameters of deployment and step 3 is the in-depth as-

sessment. The conceptual framework for the checklist was guided

by several frameworks, including the 3 central axes framework,41

PROBAST,9 and the concepts of disparity and bias in Rathore

2004.39 We first separated the typical model development and de-

ployment lifecycle into 4 phases: model definition and design; data

acquisition and processing; validation; and deployment/model use.

For each phase, we identified potential sources of bias, defined how

each source could lead to bias and/or disparity, and established sup-

porting examples. The potential sources of bias and their mecha-

nisms were summarized through synthesizing literature and

discussion with multidisciplinary stakeholders whose work relates

directly to 1 of the 4 phases. Lastly, we created guiding questions to

help those applying the checklist identify these potential sources of

bias. The questions were developed based on extensive literature re-

view and expert opinions. The checklist was refined iteratively

through working sessions and pilot tests.

Selection of algorithms for analysis
To select algorithms for analysis, we performed a literature search in

the PubMed, Embase, and Google Scholar databases to identify all-

cause 30-day hospital readmission prediction models and their cor-

responding validation or comparison studies. Our review started

with the assessment of the readmission models covered in several

systematic reviews.26–29,42 An additional search was conducted for

30-day readmission models published after June 2019 as models de-

veloped after this date were not covered by the systematic reviews.

To be included in our assessment, algorithms had to predict 30-

day hospital readmissions at the patient-level and must have been

based on claims data or electronic health records (EHRs). All model

types (eg, linear models, deep learning) were considered. Models
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that predicted readmissions for specific conditions (eg, patients with

congestive heart failure), or that used risk factors not typically avail-

able in EHRs, discharge records, or insurance claims (eg, living ar-

rangement, frailty assessment) were excluded. We also excluded

studies that did not establish a predictive model (eg, determined the

association between a certain risk factor and readmissions).

We prioritized assessing commonly used models. To qualify as

“common,” an algorithm must have been validated, evaluated, or

applied in 2 or more external settings. To determine if a model met

our definition of common, we conducted a literature search to iden-

tify external validation studies and comparison studies for each

model that met our inclusion criteria.

After applying these inclusion criteria, we were left with 2 of the

most well-studied 30-day readmission models—LACE and HOSPI-

TAL.43–53 To broaden our analysis, we also chose to assess

HATRIX54 and the readmission model in the Johns Hopkins ACG

system.55 We selected HATRIX because its validation study was

conducted iteratively over 2.5 years. The length of this analysis

means HATRIX provided rare insights into temporal effects on

model validity.54,56 The Johns Hopkins ACG system is one of the

most widely applied commercial risk adjustment tools. The system’s

broad commercial use, the international validation of ACG’s utiliza-

tion and health care needs predictions,57–61 and the relative avail-

ability of its documentation warranted the model’s inclusion. The

review process is illustrated in Figure 1.

Analyzing bias in the selected algorithms
Lastly, we evaluated the common 30-day readmission models using

our checklist. Each model was assessed by 1 researcher and verified

by at least 2 others to ensure consistency across all judgments and

descriptions. Disagreements and comments were resolved during

working sessions wherein the research team reviewed evidence, eval-

uated intent, consulted experts if needed, and ultimately defined an

answer for the question under consideration.

RESULTS

Our checklist gives model developers and health care providers a

means to systematically assess an algorithm’s potential for disparate

performance across subgroups. The checklist consists of 3 steps.

First, a user must clearly define what the model predicts and how it

should be used. Second, a user should find evidence of the algo-

rithm’s efficacy. Third, a user must answer 11 guiding questions

to identify 6 sources of potential bias in step 3 (Table 1).

These questions are organized into 4 stages, one for each step of

model development.

We evaluated LACE, HOSPITAL, HATRIX, and Johns Hopkins

ACG with our checklist. All 4 are logistic regression models that

predict a patient’s risk of being readmitted to a hospital within 30

days of discharge based on clinical characteristics and health care

utilization history. The results of this analysis are summarized in

this section. The unabridged results are included in Supplementary

Appendix 1.

Step 1: defining how the model will be used
We defined our operational setting as a hypothetical hospital system

that is seeking to reduce readmission rates. To most appropriately

manage the discharge and post-acute care follow-up for patients at

high risk of unplanned readmission, this hospital employs an algo-

rithm to predict which patients are most likely to be readmitted. In

regard to bias, the hospital is most concerned with the inequitable

treatment of Blacks and those with low SES given the evidence of

higher readmission rates for these groups.31–34,36,38

Step 2: compiling and examining prior evidence for

each algorithm
The respective external validations studies for LACE, HOSPITAL,

HATRIX, and Johns Hopkins ACG measured performance for differ-

ent populations (eg, hospital system or country).44–46,48,49,51–53,

56,57,59,60 However, no studies examined disparate performance for the

relevant subgroups (ie, performance for Black patients relative to White

patients).

Step 3: identifying and evaluating potential

sources of bias
Our checklist allows users to uncover potential sources of bias, con-

sider the magnitude of each bias’s effect on disparate performance,

and rate the level of concern for each type of bias. By design, the

checklist questions are grouped by model development stage.

Model development stage 1: definition and design

We found each model’s prediction target to be potentially concern-

ing. LACE, HOSPITAL, and Johns Hopkins ACG predict unplanned

readmissions, while HATRIX predicts global readmissions. Both

unplanned and global readmissions are measures of health care utili-

zation, not health care needs. Hospital utilization is driven by insur-

ance coverage and access, willingness to seek care, the resources of

local hospitals, and racially associated social conditions.77,78 More

utilization only means a patient uses more health care resources; it

does not necessarily mean that a patient requires more care. In this

way, health care utilization is an inadequate proxy for health care

needs. Thus, using readmissions to represent underlying health care

needs could lead to the systemic underestimation of risk for those

with higher barriers to access care.

We also found concerns related to each model’s design. All 4

algorithms depend on routinely collected data including health care

utilization history, lab tests, and medications. These data can lead to

biased health care outcomes. For example, Black and low SES

patients are more likely to visit the Emergency Department (ED) for

routine care and non-urgent reasons.79 The difference in number

and severity of ED visits may affect a model’s analysis of risk across

groups. Moreover, each model relies on diagnoses, clinical severity,

and comorbidities. These data are subject to different practice and

coding intensity (eg, frequency of diagnoses).80–82 Therefore, using

these data can adversely affect those who lack access and visit health

systems with lower practice intensity.

Finally, LACE and HOSPITAL rely on relatively few inputs (4

and 7, respectively). While simplicity can be attractive, missing im-

portant features can have a profound effect on readmission predic-

tion. For example, one study demonstrated the differential

readmission rates for myocardial infarction patients across races dis-

appeared after adjusting for a comprehensive set of patient factors.83

If a model does not account for these factors, its use may lead to bi-

ased health outcomes.

Model development stage 2: data collection and acquisition

We found concerns related to the difference in the data used for

model training and the data used for making real-world predictions.

For example, the Johns Hopkins ACG models were developed with

claims data; however, many hospitals feed EHR data to their
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deployed ACG models. This is problematic because some data may

not be identically represented across these 2 data sources. Consider

medication prescriptions. When a doctor prescribes a drug, the event

is invariably represented in an EHR while claims data only captures

filled prescriptions.83,84 Patients may not fill a prescription for sev-

eral reasons including expense, concerns about the medication, lack

of perceived need, lack of trust with the provider, or lack of access.85

Since Blacks have a lower prescription fill rate and medication ad-

herence than Whites,86,87 it is possible that using EHR data in a

model developed with claims data (or vice versa) could lead to dis-

parate performance across subgroups.88

Our checklist also identified concerns regarding the lack of a

standard definition for an “unplanned readmission.” There are sev-

eral approaches that can be used to determine whether a readmis-

sion is planned or unplanned including patient interviews,47 the

SQLape algorithm,89 and the CMS methodology.90 When a model’s

definition of unplanned readmission does not match the health sys-

tem’s, adjustments are often made to suit the local context. For ex-

ample, some institutions use hospitalizations resulting from an ED

visit as a proxy for unplanned admissions. No research has assessed

how these adjustments impact different subgroups’ readmissions

rates.

For each model, we also found the potential for bias to arise

from different rates of data availability and data quality across

subgroups. Health care utilization history is a key predictor in the

models we analyzed. Certain subpopulations (eg, those with housing

challenges, unstable employment, or lack of insurance coverage) are

more likely to have fractured or lower-quality care and more limited

access to care.91,92 In these cases, hospitals must join disparate data

sources to form a complete account of a patient’s history—a task

that is often impractical if not impossible. Additionally, patients

with lower health literacy may not be able to report all their health

events or may lack access to the online patient portals in which care

received at other institutions is recorded.92

We also found each model’s use of test results and medications

to be problematic. Because race and SES can affect the treatment a

patient receives, access to diagnostic tests, and the number of diag-

nostic tests conducted,93,94 these data may cause prediction algo-

rithms to unduly assign higher risk to patients with greater access to

care.

Model development stage 3: validation

Despite the popularity of these models, there are no studies that as-

sess the disparate impact of LACE, HOSPITAL, HATRIX, or ACG

across racial or SES groups. To our knowledge, the only related re-

search evaluated 50 prediction tasks using embeddings from medical

notes.95 The authors concluded that predictive performance favored

Readmission models iden�fied in 
published systema�c reviews and a 

supplementary search
361

Condi�on or procedure specific models 302

All-cause 30-day readmission 
models

60 Popula�on specific models 5
Included non-rou�ne risk factors 8
Associa�on or risk factor studies 15

All-cause 30-day readmission 
models for general popula�on

33

Not externally validated or evaluated
24

All-cause 30-day readmission 
models for general popula�on with 

published external evalua�on
9

Model with long-term, itera�ve 
valida�on 1  Evaluated in fewer than two external 

se�ngs
7

Common commercial model 1 

Models selected for analysis

4

Figure 1. The PRISMA diagram for selecting common 30-day hospital readmission models.
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the majority group; thus, we cannot rule out the potential for perfor-

mance disparities across subgroups.

Model development stage 4: deployment and use

Even if a model is completely free of bias, there is potential for in-

equality to arise from a user’s response to a model’s output. LACE,

HOSPITAL, and HATRIX generate a score to represent readmission

risk. Practically, this means users must define a threshold above

which a “high risk” intervention is triggered. For example, patients

with LACE scores above 10 are typically considered high risk, how-

ever, evidence to support this threshold is mixed.51,96,97 It is unclear

how different “high risk” thresholds might affect health outcomes

across subgroups.

To our knowledge, there is no literature reporting the impact of

LACE, HOSPITAL, HATRIX, or ACG on clinical decision-making.

However, available evidence demonstrates that prediction scores ac-

count for only a part of a provider’s perception about a patient’s

readmission risk.98 In fact, for one readmission prediction algo-

rithm, the score and the readmission prevention program enrollees

were congruent in only 65% of patients.99 These findings are valu-

able; however, without additional evidence, we cannot draw conclu-

sions about the effect of readmission prediction algorithms on

disparate performance.

Overall, our results demonstrate that LACE and HOSPITAL in-

troduce the most areas of possible bias, Johns Hopkins ACG has the

most sources of uncertainty, and HATRIX has the fewest causes for

concerns. Importantly, this does not mean any one of these models

is inherently better or worse than the others. Rather, our results indi-

cate the areas that must be most thoroughly assessed by health sys-

tems intending to use one of these models. The summary is

illustrated in Figure 2.

DISCUSSION

We have developed a practical and systematic method for uncover-

ing the ways in which a machine learning model can perpetuate bias

in health care. To assess our proposed approach, we applied our

checklist to 4 common 30-day readmission risk prediction models—

LACE, HOSPITAL, HATRIX, and Johns Hopkins ACG. Despite

being widely deployed and available for more than a decade, these

models have undergone limited or no bias-related evaluations. This

is particularly concerning given our checklist exposed several ways

in which these algorithms can lead to disparate performance across

subgroups. The sources of bias we identified are not unique to read-

mission models—they can arise in nearly any health care prediction

algorithm, many of which are far more complex than the readmis-

sion prediction models we assessed. While our analysis focused pri-

marily on race and SES due to the evidence of disparities in

readmission rates across these groups,31–34,36,38 other types of de-

mographic biases are equally important and likely to arise across

other areas of healthcare.100 Although the algorithms analyzed in

this article are relatively straightforward logistic regression models,

it remains important to assess whether these models can be deployed

to new settings with equitable impact to various subpopulations,

and what factors may hinder the models’ generalizability (eg, distri-

bution shifts, temporal effects etc.).101–103

Generally, the assessment of an algorithm’s bias has been re-

duced to statistical testing of performance across sub-

groups.12,14,15,17,104 Our results illustrate the necessity for new bias

evaluation and management tools that allow model developers and

health care providers to understand the sources, impact, and mecha-

nisms of disparity. For example, we found routine EHR and claims

data—such as utilization history, diagnoses, and procedures—are

subject to racial differences in completeness and quality. While it is

clear models relying on these data can lead to biased health care out-

comes, the reasons for and magnitude of the disparity cannot be de-

termined using quantitative methods because the “truth” is often

unavailable. For this reason, a qualitative approach can be more ef-

fective at identifying sources of bias—a task critical to predicting

how a model may lead to disparities in an operational setting.

Traditional bias assessment methods are also unable to evaluate

how users interpret and act based upon a model’s output. This rela-

tionship is notoriously difficult to evaluate; however, it is important

to consider given its direct impact on health outcomes and because

the interaction between a model and health care provider are often

not systematic. In fact, a recent review on automation bias identified

a wide range of user and environmental factors that affect a user’s

reliance on a model’s output.105 For example, it is not uncommon

for risk thresholds to be defined to maximize the benefit of an inter-

vention given resource constraints after a model is deployed, not by

some consistent method.106 A user’s interaction with a model can

Stage  Source of bias LACE HOSPITAL ACG HATRIX 
1. Model 
definition and 
design 

Label bias RED RED RED RED 

Modeling bias - general RED GREEN RED RED 

Modeling bias - key feature missing RED RED GREEN GREEN 

Modeling bias – accounting for bias RED RED RED RED 

2. Data 
collection and 
acquisition 

Population bias GREEN GREEN YELLOW GREEN 

Measurement bias - inputs GREEN GREEN YELLOW GREEN 

Measurement bias - prediction target RED RED GREEN GREEN 

Measurement bias - incompleteness RED RED RED RED 

3. Validation Missing validation bias RED RED RED RED 

4. Deployment 
and model use 

Human use bias - different 
interpretation 

RED RED YELLOW RED 

Human use bias - model use YELLOW YELLOW YELLOW YELLOW 

Human use bias - reduce uncertainty GREEN GREEN GREEN GREEN 

Figure 2. Model assessment heat map. An overall rating was given for each bias type based on the qualitative assessment of the checklist questions (details in

Appendix 1). Red indicates there is potential for concern, green indicates there is limited potential for concern, and yellow indicates the potential for concern is

unclear or there is not enough information with which to draw a conclusion.
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also be complicated by its transparency and interpretability. For ex-

ample, clinicians may struggle to trust the algorism due to large

number of inputs and the difficulty to explain the logic behind an

alert,107 but they also showed willingness to trust the algorism if

they understand how the system works in different scenarios.108 In

practice, the cooperation between a human decision-maker and an

algorithm adds layers of complexity to the potential for biased out-

comes. Thus, this interaction must be considered with the same scru-

tiny as every other stage in the model’s development and

deployment.

Our checklist addresses each of these concerns by allowing

model developers and health care providers elucidate how bias

might arise at each phase of an algorithm’s development, deploy-

ment, and use. Because bias can arise from the data, model, work-

flow, or the intervention design, a multidisciplinary team (data

scientists, statisticians, clinicians, informaticians, etc.) is required

to comprehensively identify bias and devise appropriate mitigation

methods.109 For example, a machine learning scientist may employ

feature selection techniques to optimize a model, however, a health

practitioner or clinician must assess whether the selected features

make sense given established knowledge and whether the algorithm

may have eliminated features that are relevant for potential algo-

rithmic bias. Given our analysis demonstrates that the early phases

of model development—such as defining a prediction objective and

selecting data sources—are particularly prone to introducing bias,

these efforts should begin as early as possible.25Definitions of bias

and fair practices have been increasingly scrutinized as machine

learning models have proliferated in health care. For example,

there has been a rich debate regarding the use and impact of sensi-

tive data such as race as inputs to any predictive algorithm.110–113

These considerations have extended beyond pure performance to

issues such as privacy.114 We believe these discussions are critical

and should be had within the context of a specific algorithm and

use case. The inclusion of sensitive data should be based on the po-

tential for latent discrimination even in the absence of sensitive

data, the relative availability and completeness of sensitive attrib-

utes, a priori knowledge of which sensitive features are responsible

for bias, and many other related factors.112,113 Uniformly defining

which features should or should not be included in a model is

overly restrictive. Our checklist was designed to give model devel-

opers a framework with which to discuss these sensitive yet impor-

tant topics.

This study had a few limitations and caveats. First, we assessed

the readmission prediction models in the context of a hypothetical

health system, thus we had to simplify several practical matters. Ad-

ditionally, without quantitatively assessing each models’ perfor-

mance, we were unable to precisely identify the magnitude of

subgroup disparities or make definitive conclusions about each

model’s fairness. Moreover, since our assessment was based on

published literature, our findings largely depend on the quantity

and quality of the reporting. Finally, our qualitative assessment

may not be sufficient to propose mitigation or model design strate-

gies. Future research should define the methods best suited to pre-

vent or limit specific disparities across vulnerable population

groups.

CONCLUSION

Despite the enthusiasm surrounding the use of algorithms to guide

clinical and population health interventions, a growing body of evi-

dence indicates that these tools can lead to inequitable outcomes

across racial and socio-economic groups. Biased results are prob-

lematic, however, the absence of methods for systematically evalu-

ating the models that produce these outcomes is even more

concerning. In effect, sophisticated yet opaque tools are being used

to make consequential health care recommendations, yet we have

few methods to assess their racially disparate consequences. The

checklist we introduce allows model developers and health care

providers to systematically assess a model’s potential to introduce

bias. Because reducing hospital readmissions is a notable initiative

for health care providers and policy makers, we evaluated our

method by assessing 4 of the most widely deployed 30-day readmis-

sion prediction models. Our results demonstrate that, despite the

significant effort applied to the development of readmission predic-

tion algorithms, there are several critical ways in which these mod-

els can perpetuate growing health care inequalities. While we

assessed readmission models, our framework was designed to be

flexible such that it can be used to evaluate bias in other health care

domains and applications.
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