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ABSTRACT

Objective: Health care providers increasingly rely upon predictive algorithms when making important treatment
decisions, however, evidence indicates that these tools can lead to inequitable outcomes across racial and
socio-economic groups. In this study, we introduce a bias evaluation checklist that allows model developers
and health care providers a means to systematically appraise a model’s potential to introduce bias.

Materials and Methods: Our methods include developing a bias evaluation checklist, a scoping literature review
to identify 30-day hospital readmission prediction models, and assessing the selected models using the checklist.
Results: We selected 4 models for evaluation: LACE, HOSPITAL, Johns Hopkins ACG, and HATRIX. Our assess-
ment identified critical ways in which these algorithms can perpetuate health care inequalities. We found that
LACE and HOSPITAL have the greatest potential for introducing bias, Johns Hopkins ACG has the most areas of
uncertainty, and HATRIX has the fewest causes for concern.

Discussion: Our approach gives model developers and health care providers a practical and systematic method
for evaluating bias in predictive models. Traditional bias identification methods do not elucidate sources of bias
and are thus insufficient for mitigation efforts. With our checklist, bias can be addressed and eliminated before
a model is fully developed or deployed.

Conclusion: The potential for algorithms to perpetuate biased outcomes is not isolated to readmission prediction
models; rather, we believe our results have implications for predictive models across health care. We offer a system-
atic method for evaluating potential bias with sufficient flexibility to be utilized across models and applications.

Key words: predictive model, hospital readmission, bias, health care disparity, clinical decision-making

INTRODUCTION efficacy of these algorithms continues to mount, so too does the evi-
The use of machine learning to diagnose disease,* aid clinical decision dence that these models can perpetuate and introduce racial bias if
support,™* and guide population health interventions® has driven not adequately evaluated.®” For example, a class of commercial
consequential changes in health care. While the data supporting the risk-prediction tools that help health systems identify target patients
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for “high-risk care management” programs assigned the same level
of risk to White patients and sicker Black patients. As a consequence
of this bias, the number of Black patients identified for extra care
was reduced by more than half.® This inequality extends beyond
hospital settings. Recently, the National Football League (NFL) was
criticized for using race-based adjustments in dementia testing and
for making it difficult for Black players to qualify for concussion
claims.® The NFL has since announced an end to the use of “race
norming” when determining eligibility for concussion compensa-
tion; however, these examples reveal how pervasive medical racism
remains.’

In response to these developing concerns, several reporting
guidelines have been published to help researchers uncover potential
issues in studies using prediction models.”' Researchers have also
proposed mathematical definitions of bias,''™'® describing methods

. 14417
for measuring bias,

and offering approaches for mitigating
bias.">'®!” While the development of these resources has been un-
doubtedly useful, they are limited in their comprehensiveness. For
example, some frameworks assess only one element of algorithmic

bias (eg, model training or optimization),zo‘22

while others only as-
sess specific types of biases.'”*>** By considering bias constituents
in isolation, sources of inequality are likely to be missed. We refer to
this effect—biases impacting algorithm performance across sub-
groups which leads to disparities from the algorithm’s use in the real
world—as disparate performance.

The bias-related shortcomings of predictive models in health
care are due, in part, to the failure to identify these concerns during
algorithm design and reporting. If our ambition is to use machine
learning to improve the health of patients irrespective of socio-
economic status (SES) or race, fairness cannot be a fragmented or
secondary consideration.?® The goal of our research was to develop
a checklist with which model developers and health care providers
can use to holistically assess an algorithm’s potential for disparate
performance. By allowing these parties to appraise a model before it
is deployed or even developed, potential for bias necessarily becomes
a primary criterion of evaluation.

To evaluate our method, we applied the checklist to 4 of the
most widely used 30-day hospital readmission prediction models.
These models have been used to direct care to high-readmission-risk
patients, standardize readmissions-based quality metrics across hos-
pitals,>® and forecast all-cause and condition-specific readmis-
sions.2*2% We selected this class of algorithms because of their

27229 and because reducing readmissions is a primary am-

30

prevalence
bition for health systems and regulators.
Moreover, there are established disparities in readmission rates

in the United States—Black and Hispanic patients®'=>*

and patients
with lower SES**~3® are known to have higher than average readmis-
sion rates. While these statistics do not inherently demonstrate bias,
if readmission rates reflect disparities in the distribution of care, we
must consider whether prediction models developed without ac-
counting for these variations lead to disparate performance. To our
knowledge, readmissions prediction research has only studied pre-
dictive performance, not disparate performance. We present the
ways in which inter-group discrepancies can be introduced at each
stage of the model development and deployment and how these dif-
ferences have disproportionate effects on disadvantaged groups.

MATERIALS AND METHODS

This study had 2 objectives: (1) develop a checklist that operational-
izes the assessment of a model’s potential biases during model selec-

tion or before model deployment; and (2) assess if/how common 30-
day readmission models might perpetuate health care disparities.
The checklist was designed to surface possible biases and can thus
guide supplementary quantitative assessments, mitigation efforts,
and deployment considerations. When applied, the checklist ques-
tions uncover a model’s effect on both bias and disparity where we
define bias as a difference in inter-group predictions, and disparity
as a difference in health outcomes/quality due to disadvantaged
attributes (eg, being of a specific racial group or having a low
SES).*>* Note that our definition of bias does not specify how
inter-group predictions must differ (eg, algorithms may differ in
terms of predictions made on otherwise identical patients, overall er-
ror rates, calibration, etc.). This is intentional as the bias of primary
concern is contextually specific and we wish to consider a broad
range of potential biases.

Our research methods included (1) our process for developing a
bias screening checklist, (2) our process and criteria for identifying
common 30-day hospital readmission prediction models, and (3)
our process for assessing these predictive models using the checklist.

Development of the bias evaluation checklist

We first gathered a team of experts in machine learning, health serv-
ices research, health disparities, and informatics to develop a practi-
cal checklist for identifying potential biases in machine learning
models. The checklist is a 3-step process: (1) understand background
of the predictive task, which defines the disadvantaged groups and
the types of biases and disparities of concern, (2) identify algorithm
and validation evidence, and (3) use checklist questions to identify
potential biases. The first 2 steps define objective of the predictive
task and the parameters of deployment and step 3 is the in-depth as-
sessment. The conceptual framework for the checklist was guided
by several frameworks, including the 3 central axes framework,*!
PROBAST,” and the concepts of disparity and bias in Rathore
2004.%° We first separated the typical model development and de-
ployment lifecycle into 4 phases: model definition and design; data
acquisition and processing; validation; and deployment/model use.
For each phase, we identified potential sources of bias, defined how
each source could lead to bias and/or disparity, and established sup-
porting examples. The potential sources of bias and their mecha-
nisms were summarized through synthesizing literature and
discussion with multidisciplinary stakeholders whose work relates
directly to 1 of the 4 phases. Lastly, we created guiding questions to
help those applying the checklist identify these potential sources of
bias. The questions were developed based on extensive literature re-
view and expert opinions. The checklist was refined iteratively
through working sessions and pilot tests.

Selection of algorithms for analysis
To select algorithms for analysis, we performed a literature search in
the PubMed, Embase, and Google Scholar databases to identify all-
cause 30-day hospital readmission prediction models and their cor-
responding validation or comparison studies. Our review started
with the assessment of the readmission models covered in several
systematic reviews.”>*** An additional search was conducted for
30-day readmission models published after June 2019 as models de-
veloped after this date were not covered by the systematic reviews.
To be included in our assessment, algorithms had to predict 30-
day hospital readmissions at the patient-level and must have been
based on claims data or electronic health records (EHRs). All model
types (eg, linear models, deep learning) were considered. Models
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that predicted readmissions for specific conditions (eg, patients with
congestive heart failure), or that used risk factors not typically avail-
able in EHRs, discharge records, or insurance claims (eg, living ar-
rangement, frailty assessment) were excluded. We also excluded
studies that did not establish a predictive model (eg, determined the
association between a certain risk factor and readmissions).

We prioritized assessing commonly used models. To qualify as

>

“common,” an algorithm must have been validated, evaluated, or
applied in 2 or more external settings. To determine if a model met
our definition of common, we conducted a literature search to iden-
tify external validation studies and comparison studies for each
model that met our inclusion criteria.

After applying these inclusion criteria, we were left with 2 of the
most well-studied 30-day readmission models—LACE and HOSPI-
TAL.*™3 To broaden our analysis, we also chose to assess
HATRIX®* and the readmission model in the Johns Hopkins ACG
system.>® We selected HATRIX because its validation study was
conducted iteratively over 2.5 years. The length of this analysis
means HATRIX provided rare insights into temporal effects on
model validity.>**® The Johns Hopkins ACG system is one of the
most widely applied commercial risk adjustment tools. The system’s
broad commercial use, the international validation of ACG’s utiliza-

57-61 and the relative avail-

tion and health care needs predictions,
ability of its documentation warranted the model’s inclusion. The

review process is illustrated in Figure 1.

Analyzing bias in the selected algorithms

Lastly, we evaluated the common 30-day readmission models using
our checklist. Each model was assessed by 1 researcher and verified
by at least 2 others to ensure consistency across all judgments and
descriptions. Disagreements and comments were resolved during
working sessions wherein the research team reviewed evidence, eval-
uated intent, consulted experts if needed, and ultimately defined an
answer for the question under consideration.

RESULTS

Our checklist gives model developers and health care providers a
means to systematically assess an algorithm’s potential for disparate
performance across subgroups. The checklist consists of 3 steps.
First, a user must clearly define what the model predicts and how it
should be used. Second, a user should find evidence of the algo-
rithm’s efficacy. Third, a user must answer 11 guiding questions
to identify 6 sources of potential bias in step 3 (Table 1).
These questions are organized into 4 stages, one for each step of
model development.

We evaluated LACE, HOSPITAL, HATRIX, and Johns Hopkins
ACG with our checklist. All 4 are logistic regression models that
predict a patient’s risk of being readmitted to a hospital within 30
days of discharge based on clinical characteristics and health care
utilization history. The results of this analysis are summarized in
this section. The unabridged results are included in Supplementary
Appendix 1.

Step 1: defining how the model will be used

We defined our operational setting as a hypothetical hospital system
that is seeking to reduce readmission rates. To most appropriately
manage the discharge and post-acute care follow-up for patients at
high risk of unplanned readmission, this hospital employs an algo-
rithm to predict which patients are most likely to be readmitted. In

regard to bias, the hospital is most concerned with the inequitable
treatment of Blacks and those with low SES given the evidence of

. . 31-34,36,3
higher readmission rates for these groups.>'-3%3¢:38

Step 2: compiling and examining prior evidence for
each algorithm

The respective external validations studies for LACE, HOSPITAL,
HATRIX, and Johns Hopkins ACG measured performance for differ-
ent populations (eg, hospital system or country).*6:48:4%:51-53,
36:57:59,:60 However, no studies examined disparate performance for the
relevant subgroups (ie, performance for Black patients relative to White

patients).

Step 3: identifying and evaluating potential

sources of bias

Our checklist allows users to uncover potential sources of bias, con-
sider the magnitude of each bias’s effect on disparate performance,
and rate the level of concern for each type of bias. By design, the
checklist questions are grouped by model development stage.

Model development stage 1: definition and design

We found each model’s prediction target to be potentially concern-
ing. LACE, HOSPITAL, and Johns Hopkins ACG predict unplanned
readmissions, while HATRIX predicts global readmissions. Both
unplanned and global readmissions are measures of health care utili-
zation, not health care needs. Hospital utilization is driven by insur-
ance coverage and access, willingness to seek care, the resources of
local hospitals, and racially associated social conditions.”””® More
utilization only means a patient uses more health care resources; it
does not necessarily mean that a patient requires more care. In this
way, health care utilization is an inadequate proxy for health care
needs. Thus, using readmissions to represent underlying health care
needs could lead to the systemic underestimation of risk for those
with higher barriers to access care.

We also found concerns related to each model’s design. All 4
algorithms depend on routinely collected data including health care
utilization history, lab tests, and medications. These data can lead to
biased health care outcomes. For example, Black and low SES
patients are more likely to visit the Emergency Department (ED) for
routine care and non-urgent reasons.”” The difference in number
and severity of ED visits may affect a model’s analysis of risk across
groups. Moreover, each model relies on diagnoses, clinical severity,
and comorbidities. These data are subject to different practice and
coding intensity (eg, frequency of diagnoses).®=8% Therefore, using
these data can adversely affect those who lack access and visit health
systems with lower practice intensity.

Finally, LACE and HOSPITAL rely on relatively few inputs (4
and 7, respectively). While simplicity can be attractive, missing im-
portant features can have a profound effect on readmission predic-
tion. For example, one study demonstrated the differential
readmission rates for myocardial infarction patients across races dis-
appeared after adjusting for a comprehensive set of patient factors.®?
If a model does not account for these factors, its use may lead to bi-
ased health outcomes.

Model development stage 2: data collection and acquisition

We found concerns related to the difference in the data used for
model training and the data used for making real-world predictions.
For example, the Johns Hopkins ACG models were developed with
claims data; however, many hospitals feed EHR data to their
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Readmission models identified in
published systematic reviews and a
supplementary search

361

Condition or procedure specific models 302

All-cause 30-day readmission
models

60 Population specific models 5

Included non-routine risk factors 8

Association or risk factor studies 15
All-cause 30-day readmission
models for general population

33
24

Not externally validated or evaluated

9

All-cause 30-day readmission
models for general population with
published external evaluation

Model with long-term, iterative
validation 1

Evaluated in fewer than two external 7

Common commercial model 1

settings

Models selected for analysis

Figure 1. The PRISMA diagram for selecting common 30-day hospital readmission models.

deployed ACG models. This is problematic because some data may
not be identically represented across these 2 data sources. Consider
medication prescriptions. When a doctor prescribes a drug, the event
is invariably represented in an EHR while claims data only captures
filled prescriptions.®*%* Patients may not fill a prescription for sev-
eral reasons including expense, concerns about the medication, lack
of perceived need, lack of trust with the provider, or lack of access.®®
Since Blacks have a lower prescription fill rate and medication ad-
herence than Whites,*®%” it is possible that using EHR data in a
model developed with claims data (or vice versa) could lead to dis-
parate performance across subgroups.®®

Our checklist also identified concerns regarding the lack of a
standard definition for an “unplanned readmission.” There are sev-
eral approaches that can be used to determine whether a readmis-
sion is planned or unplanned including patient interviews,*” the
SQLape algorithm,®® and the CMS methodology.”® When a model’s
definition of unplanned readmission does not match the health sys-
tem’s, adjustments are often made to suit the local context. For ex-
ample, some institutions use hospitalizations resulting from an ED
visit as a proxy for unplanned admissions. No research has assessed
how these adjustments impact different subgroups’ readmissions
rates.

For each model, we also found the potential for bias to arise
from different rates of data availability and data quality across

subgroups. Health care utilization history is a key predictor in the
models we analyzed. Certain subpopulations (eg, those with housing
challenges, unstable employment, or lack of insurance coverage) are
more likely to have fractured or lower-quality care and more limited
access to care.”"?? In these cases, hospitals must join disparate data
sources to form a complete account of a patient’s history—a task
that is often impractical if not impossible. Additionally, patients
with lower health literacy may not be able to report all their health
events or may lack access to the online patient portals in which care
received at other institutions is recorded.””

We also found each model’s use of test results and medications
to be problematic. Because race and SES can affect the treatment a
patient receives, access to diagnostic tests, and the number of diag-

nostic tests conducted,”**

these data may cause prediction algo-
rithms to unduly assign higher risk to patients with greater access to

care.

Model development stage 3: validation

Despite the popularity of these models, there are no studies that as-
sess the disparate impact of LACE, HOSPITAL, HATRIX, or ACG
across racial or SES groups. To our knowledge, the only related re-
search evaluated 50 prediction tasks using embeddings from medical
notes.”” The authors concluded that predictive performance favored
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Stage Source of bias LACE HOSPITAL | ACG HATRIX
1. Model Label bias RED RED RED RED
definition and . -
design Modeling bias - general REY (EiRA=N REY ==
Modeling bias - key feature missing REY =D SR (EIRA=N
Modeling bias — accounting for bias REY K= REY ==
2. Data Population bias GREEN GREEN YELLOW GREEN
collection and
o i -1 GREEN GREEN YELLOW GREEN
acquisition Measurement bias - inputs
Measurement bias - prediction target NED INED CAGEN EREEN
Measurement bias - incompleteness R R RED R
3. Validation Missing validation bias RED RED RED RED
4. Deployment Human use bias - different o o ST o
and model use | interpretation
Human use biaS - mode| use YELLOW YELLOW YELLOW YELLOW
Human use bias - reduce uncertainty (IR EIREEY EREE (EIREE

Figure 2. Model assessment heat map. An overall rating was given for each bias type based on the qualitative assessment of the checklist questions (details in
Appendix 1). Red indicates there is potential for concern, green indicates there is limited potential for concern, and yellow indicates the potential for concern is

unclear or there is not enough information with which to draw a conclusion.

the majority group; thus, we cannot rule out the potential for perfor-
mance disparities across subgroups.

Model development stage 4: deployment and use

Even if a model is completely free of bias, there is potential for in-
equality to arise from a user’s response to a model’s output. LACE,
HOSPITAL, and HATRIX generate a score to represent readmission
risk. Practically, this means users must define a threshold above
which a “high risk” intervention is triggered. For example, patients
with LACE scores above 10 are typically considered high risk, how-
ever, evidence to support this threshold is mixed.*»*®” It is unclear
how different “high risk” thresholds might affect health outcomes
across subgroups.

To our knowledge, there is no literature reporting the impact of
LACE, HOSPITAL, HATRIX, or ACG on clinical decision-making.
However, available evidence demonstrates that prediction scores ac-
count for only a part of a provider’s perception about a patient’s
readmission risk.”® In fact, for one readmission prediction algo-
rithm, the score and the readmission prevention program enrollees
were congruent in only 65% of patients.”” These findings are valu-
able; however, without additional evidence, we cannot draw conclu-
sions about the effect of readmission prediction algorithms on
disparate performance.

Opverall, our results demonstrate that LACE and HOSPITAL in-
troduce the most areas of possible bias, Johns Hopkins ACG has the
most sources of uncertainty, and HATRIX has the fewest causes for
concerns. Importantly, this does not mean any one of these models
is inherently better or worse than the others. Rather, our results indi-
cate the areas that must be most thoroughly assessed by health sys-
tems intending to use one of these models. The summary is
illustrated in Figure 2.

DISCUSSION

We have developed a practical and systematic method for uncover-
ing the ways in which a machine learning model can perpetuate bias
in health care. To assess our proposed approach, we applied our
checklist to 4 common 30-day readmission risk prediction models—
LACE, HOSPITAL, HATRIX, and Johns Hopkins ACG. Despite
being widely deployed and available for more than a decade, these

models have undergone limited or no bias-related evaluations. This
is particularly concerning given our checklist exposed several ways
in which these algorithms can lead to disparate performance across
subgroups. The sources of bias we identified are not unique to read-
mission models—they can arise in nearly any health care prediction
algorithm, many of which are far more complex than the readmis-
sion prediction models we assessed. While our analysis focused pri-
marily on race and SES due to the evidence of disparities in

31=34.36.38 Gther types of de-

readmission rates across these groups,
mographic biases are equally important and likely to arise across
other areas of healthcare.!® Although the algorithms analyzed in
this article are relatively straightforward logistic regression models,
it remains important to assess whether these models can be deployed
to new settings with equitable impact to various subpopulations,
and what factors may hinder the models’ generalizability (eg, distri-
bution shifts, temporal effects etc.).'*1~103

Generally, the assessment of an algorithm’s bias has been re-
duced to statistical testing of performance

5 . . .
groups.'»141517:10% Oup results illustrate the necessity for new bias

across  sub-

evaluation and management tools that allow model developers and
health care providers to understand the sources, impact, and mecha-
nisms of disparity. For example, we found routine EHR and claims
data—such as utilization history, diagnoses, and procedures—are
subject to racial differences in completeness and quality. While it is
clear models relying on these data can lead to biased health care out-
comes, the reasons for and magnitude of the disparity cannot be de-
termined using quantitative methods because the “truth” is often
unavailable. For this reason, a qualitative approach can be more ef-
fective at identifying sources of bias—a task critical to predicting
how a model may lead to disparities in an operational setting.
Traditional bias assessment methods are also unable to evaluate
how users interpret and act based upon a model’s output. This rela-
tionship is notoriously difficult to evaluate; however, it is important
to consider given its direct impact on health outcomes and because
the interaction between a model and health care provider are often
not systematic. In fact, a recent review on automation bias identified
a wide range of user and environmental factors that affect a user’s
reliance on a model’s output.'® For example, it is not uncommon
for risk thresholds to be defined to maximize the benefit of an inter-
vention given resource constraints after a model is deployed, not by
some consistent method.'® A user’s interaction with a model can
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also be complicated by its transparency and interpretability. For ex-
ample, clinicians may struggle to trust the algorism due to large
number of inputs and the difficulty to explain the logic behind an
alert,®” but they also showed willingness to trust the algorism if
they understand how the system works in different scenarios.!*® In
practice, the cooperation between a human decision-maker and an
algorithm adds layers of complexity to the potential for biased out-
comes. Thus, this interaction must be considered with the same scru-
tiny as every other stage in the model’s development and
deployment.

Our checklist addresses each of these concerns by allowing
model developers and health care providers elucidate how bias
might arise at each phase of an algorithm’s development, deploy-
ment, and use. Because bias can arise from the data, model, work-
flow, or the intervention design, a multidisciplinary team (data
scientists, statisticians, clinicians, informaticians, etc.) is required
to comprehensively identify bias and devise appropriate mitigation
methods.'%® For example, a machine learning scientist may employ
feature selection techniques to optimize a model, however, a health
practitioner or clinician must assess whether the selected features
make sense given established knowledge and whether the algorithm
may have eliminated features that are relevant for potential algo-
rithmic bias. Given our analysis demonstrates that the early phases
of model development—such as defining a prediction objective and
selecting data sources—are particularly prone to introducing bias,
these efforts should begin as early as possible.>’Definitions of bias
and fair practices have been increasingly scrutinized as machine
learning models have proliferated in health care. For example,
there has been a rich debate regarding the use and impact of sensi-
tive data such as race as inputs to any predictive algorithm, 107113
These considerations have extended beyond pure performance to
issues such as privacy.!'* We believe these discussions are critical
and should be had within the context of a specific algorithm and
use case. The inclusion of sensitive data should be based on the po-
tential for latent discrimination even in the absence of sensitive
data, the relative availability and completeness of sensitive attrib-
utes, a priori knowledge of which sensitive features are responsible
for bias, and many other related factors.!'*>'"'3 Uniformly defining
which features should or should not be included in a model is
overly restrictive. Our checklist was designed to give model devel-
opers a framework with which to discuss these sensitive yet impor-
tant topics.

This study had a few limitations and caveats. First, we assessed
the readmission prediction models in the context of a hypothetical
health system, thus we had to simplify several practical matters. Ad-
ditionally, without quantitatively assessing each models’ perfor-
mance, we were unable to precisely identify the magnitude of
subgroup disparities or make definitive conclusions about each
model’s fairness. Moreover, since our assessment was based on
published literature, our findings largely depend on the quantity
and quality of the reporting. Finally, our qualitative assessment
may not be sufficient to propose mitigation or model design strate-
gies. Future research should define the methods best suited to pre-
vent or limit specific disparities across vulnerable population
groups.

CONCLUSION

Despite the enthusiasm surrounding the use of algorithms to guide
clinical and population health interventions, a growing body of evi-
dence indicates that these tools can lead to inequitable outcomes

across racial and socio-economic groups. Biased results are prob-
lematic, however, the absence of methods for systematically evalu-
ating the models that produce these outcomes is even more
concerning. In effect, sophisticated yet opaque tools are being used
to make consequential health care recommendations, yet we have
few methods to assess their racially disparate consequences. The
checklist we introduce allows model developers and health care
providers to systematically assess a model’s potential to introduce
bias. Because reducing hospital readmissions is a notable initiative
for health care providers and policy makers, we evaluated our
method by assessing 4 of the most widely deployed 30-day readmis-
sion prediction models. Our results demonstrate that, despite the
significant effort applied to the development of readmission predic-
tion algorithms, there are several critical ways in which these mod-
els can perpetuate growing health care inequalities. While we
assessed readmission models, our framework was designed to be
flexible such that it can be used to evaluate bias in other health care
domains and applications.
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