
A Biased Random-Key Genetic Algorithm with

Forward-Backward Improvement for the Resource Constrained

Project Scheduling Problem
∗

José Fernando Gonçalves

LIAAD, Faculdade de Economia do Porto, Universidade do Porto

Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal

jfgoncal@fep.up.pt

Mauricio G. C. Resende

Algorithms and Optimization Research Department, AT&T Labs Research,

180 Park Avenue, Room C241, Florham Park, NJ 07932 USA

mgcr@research.att.com

Jorge J. M. Mendes

Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto

Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto, Portugal

jjm@isep.ipp.pt

This paper presents a biased random-keys genetic algorithm for the resource con-
strained project scheduling problem. The chromosome representation of the prob-
lem is based on random keys. Active schedules are constructed using a priority-rule
heuristic in which the priorities of the activities are de�ned by the genetic algo-
rithm. A forward-backward improvement procedure is applied to all solutions.
The chromosomes supplied by the genetic algorithm are adjusted to re�ect the so-
lutions obtained by the improvement procedure. The heuristic is tested on a set of
standard problems taken from the literature and compared with other approaches.
The computational results validate the e�ectiveness of the proposed algorithm.

Keywords: Project management, scheduling, genetic algorithms, random keys,
forward-backward improvement, resource constrained project scheduling problem.

1 Introduction

The resource constrained project scheduling problem (RCPSP) can be stated as follows. A
project consists of n + 2 activities where each activity has to be processed to complete the
project. Let J = {0, 1, . . . , n, n + 1} denote the set of activities to be scheduled and K =
{1, . . . , k} denote the set of resources. Activities 0 and n+ 1 are dummies, have no duration,
and represent the initial and �nal activities of the project. The activities are interrelated by
two kinds of constraints:
∗ Supported by Fundação para a Ciência e Tecnologia (FCT) project PTDC/GES/72244/2006.
AT&T Labs Research Technical Report.
Date: 2009-03-11; revised 2010-04-07.

1



1. Precedence constraints force each activity j to be scheduled after all predecessor activi-
ties Pj are completed;

2. Activities require resources with limited capacities.

While being processed, activity j requires rj,k units of resource type k ∈ K during every time
instant of its non-preemptable duration dj . Resource type k has a limited capacity Rk at any
point in time. The parameters dj , rj,k, and Rk are assumed to be integer, non-negative, and
deterministic. For the project start and end activities, we impose the boundary conditions
d0 = dn+1 = 0 and r0,k = rn+1,k = 0, for all k ∈ K. The RCPSP consists in �nding a
schedule of the activities, taking into account the resource and the precedence constraints,
that minimizes the makespan Cmax , i.e. that minimizes the �nish time of the last activity
processed.
Let Fj represent the �nish time of activity j. A schedule can be represented by a vector of

�nish times (F1, . . . , Fm, . . . , Fn+1). Figure 1 shows an example of a project comprising n = 9
activities which have to be scheduled, subject to one renewable resource type with a capacity
of two units. Two solutions for this example are shown in Figure 2, an infeasible solution that
violates the resource constraint with a makespan of 24 and an optimal feasible solution with
a makespan of 36.

1
4

1

3
4

1

5
2

1

8
6

1

Start

2
8

2

4
4

1

7
4

2

6
6

1

j - activity

d - duration

r - qt. of resource

9
8

1

End

Figure 1: Project network example. Activities are represented as boxes and precedences by
directed arcs. Parameters dj and rj are given for each activity j.

Several exact methods to solve the RCPSP are proposed in the literature. Currently, the
most competitive exact algorithms seem to be the ones of Demeulemeester and Herroelen
(1997), Brucker et al. (1998), Klein and Scholl (1998a;b), Mingozzi et al. (1998), and Sprecher
(2000). Stork and Uetz (2005) present several complexity results related to generation and
counting of all circuits of an independence system and study their relevance in the solution
of RCPSP.
It was shown by Blazewicz et al. (1983) that the RCPSP, as a generalization of the classical

job shop scheduling problem, is NP-hard, therefore justifying the use of heuristics to solve
large problem instances.
Several authors propose procedures for computing lower bounds on the makespan of the

RCPSP. Demassey et al. (2005) propose a cooperation method between constraint program-
ming and integer programming. Brucker and Knust (2003) present a destructive lower bound
for the multi-mode resource-constrained project scheduling problem with minimal and maxi-
mal time-lags. Brucker and Knust (2000) develop a destructive lower bound for the RCPSP,
where the lower bound calculations are based on two methods for proving infeasibility of a
given threshold value for the makespan. The �rst uses constraint propagation techniques,
while the second is based on a linear programming formulation.

2



 
 

↑↑↑↑                                        
5      4                                  
                                        

4  5    6  4                                
                                        

3   1      6                               
                                        

2   3                                     
          2     7                         

1   8                  9                   
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 

 
 
 

↑↑↑↑                                        

2  5             3    4                     
         2                  7             

1   1             8      6           9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

Figure 2: Two solutions for the project network example of Figure 1. On top, an infeasible
schedule that ignores the resource constraint and results in a makespan of 24. On the bottom,
a feasible schedule with an optimal makespan of 36.

Most of the heuristic methods used for solving resource-constrained project scheduling prob-
lems either belong to the class of priority rule based methods or to the class of metaheuristic
based approaches (Kolisch and Hartmann, 1999). The �rst class of methods starts with none
of the jobs being scheduled. Subsequently, a single schedule is constructed by selecting a
subset of jobs in each step and assigning starting times to these jobs until all jobs have
been considered. This process is controlled by the scheduling scheme as well as priority rules
with the latter being used for ranking the jobs. Several approaches in this class have been
proposed in the literature, e.g. Alvarez-Valdez and Tamarit (1989), Boctor (1990), Cooper
(1976; 1977), Davis and Patterson (1975), Lawrence (1985), Kolisch (1996a;b), Kolisch and
Hartmann (1999), and Tormos and Lova (2001; 2003). The second class of methods improves
upon an initial solution. This is done by successively executing operations which transform
one or several solutions into others. Several approaches of this class have been proposed in
the literature, e.g. genetic algorithms (Leon and Ramamoorthy (1995), Lee and Kim (1996),
Hartmann (1998), Kohlmorgen et al. (1999), Hartmann (2002), Kochetov and Stolyar (2003),
Valls et al. (2003; 2005), and Mendes et al. (2009)), simulated annealing ( Slowinski et al.
(1994), Boctor (1996), and Bouleimen and Lecocq (2003)), tabu search ( Pinson et al. (1994),
Baar et al. (1998), Thomas and Salhi (1998), Nonobe and Ibaraki (2002), and Gagnon et al.
(2004)), local search-oriented approaches (Fleszar and Hindi (2004) and Palpant et al. (2004)),
and population-based approaches (Debels et al. (2006) and Valls et al. (2003)).
Surveys are presented by Icmeli et al. (1993), Herroelen et al. (1998), Brucker et al. (1999),

Klein (1999), Kolisch and Hartmann (1999), Hartmann and Kolisch (2000), Kolisch and Pad-
man (2001), and Demeulemeester and Herroelen (2002). Kolisch and Hartmann (2005) and
Brucker and Knust (2006) describe models and algorithms for complex scheduling problems
and discuss the RCPSP.
In this paper, we present a new biased random-key genetic algorithm for �nding optimal or

near optimal solutions for the resource constrained project scheduling problem. The remain-
der of the paper is organized as follows. Section 2, presents the new approach based on a
biased random-keys genetic algorithm Gonçalves and Resende (2009), a schedule generation
procedure, and an improvement procedure that �nds optimal or near optimal solutions to the
resource constrained project scheduling problem. Section 3 reports computational results and
concluding remarks are made in Section 4.

3



2 New approach

2.1 Overview of the new approach

The new approach proposed in this paper combines a biased random-keys based genetic
algorithm, a schedule generation scheme, an improvement procedure, and a chromosome ad-
justment procedure.
The role of the genetic algorithm is to evolve the encoded solutions, or chromosomes, which

represent the priorities of the activities. For each chromosome, the following four phases are
applied:

1. Decoding of priorities. In this phase the chromosome supplied by the genetic algorithm
is transformed into the priorities of the activities.

2. Schedule generation. This phase makes use of the priorities de�ned in the �rst phase
and constructs an active schedule using a serial schedule generation scheme (serial SGS)

described in Section 2.3.

3. Schedule improvement. This phase tries to improve the solution obtained in the previous
phase using an improvement procedure called forward-backward improvement.

4. Chromosome adjustment. This phase adjusts the chromosome genes given by the genetic
algorithm to re�ect the solution obtained after the schedule improvement.

After a schedule is obtained, the corresponding measure of quality (makespan) is fed back to
the genetic algorithm. Figure 3 illustrates the sequence of steps applied to each chromosome
generated by the genetic algorithm. Each of these phases will be described in detail in the
following sections.

Decoding of GenesDecoding of the Priorities of each Activity

Construction of a Schedule – Serial SGS Schedule Generation

Phase

Feedback of the Quality of the Chromosome
(Makespan )

Chromosome

E
vo

lu
tio

na
ry

 P
ro

ce
ss

 o
f t

he
 G

en
et

ic
 A

lg
or

ith
m

Backward-Forward Improvement Schedule Improvement

Adjustment of Genes to 
Reflect Improved Solution

Adjustment of Chromosome

Figure 3: Architecture of the new approach.

2.2 Biased random-key genetic algorithm

The following subsections present the chromosome representation, the decoding procedure,
and the evolutionary process of the genetic algorithm.

4



2.2.1 Chromosome representation

The genetic algorithm described in this paper uses a random-key alphabet which is comprised
of real-valued random numbers between 0 and 1. The evolutionary strategy used is similar
to the one proposed by Bean (1994), the main di�erence occurring in how individuals are
selected for crossover. The important feature of random keys is that all o�spring formed
by crossover are feasible solutions. This is accomplished by moving much of the feasibility
issue into the objective function evaluation. If any random-key vector can be interpreted
as a feasible solution, then any crossover vector is also feasible. Through the dynamics of
the genetic algorithm, the system learns the relationship between random-key vectors and
solutions with good objective function values.
A chromosome represents a solution to the problem and is encoded as a vector of random

keys. In a direct representation, a chromosome represents a solution of the original problem,
and is called a genotype, while in an indirect representation it does not and special procedures
are needed to derive a solution from it. Such a solution is called a phenotype.
In the present context, the direct use of schedules as chromosomes is too complicated to

represent and manipulate. In particular, it is di�cult to develop corresponding crossover and
mutation operations. Instead, solutions are represented indirectly by parameters that are
later used by a schedule-generation scheme to obtain a solution. To build the solution, we
use an active schedule generator described in Section 2.3.
Each solution chromosome is made of n genes, where n is the number of activities:

chromosome = (gene1, . . . , genen︸ ︷︷ ︸
priorities

).

The n genes are used to determine the priority of each of the n activities.

2.2.2 Decoding the priorities of the activities

The priorities of the activities are given directly by the genetic algorithm, i.e.

PRIORITY j = genej , for all j = 1, . . . , n.

These priorities are used by the decoding algorithm presented in Section 2.3.

2.2.3 Evolutionary strategy

Given a current population, we perform the following three steps to obtain the next generation:

1. Reproduction. Some of the best individuals are copied from the current generation into
the next (see TOP in Figure 5). This strategy is called elitist (Goldberg, 1989) and its
main advantage is that the best solution is monotonically improving from one generation
to the next.

2. Crossover. Parametrized uniform crossover (Spears and Dejong, 1991) is used as op-
posed to the traditional one-point or two-point crossover. After two parents are chosen,
one chosen randomly from the TOP (unlike Bean (1994) we always choose one parent
from TOP , Gonçalves and Resende (2009) show that this change produces results with
better quality and is faster) and the other chosen randomly from the full old population
(including chromosomes copied to the next generation in the elitist selection). For each
gene, a real random number in the interval [0, 1] is generated. If the random number
obtained is smaller than a threshold value, called crossover probability (CProb), for
example 0.7, then the allele of the �rst parent is inherited by the o�spring solution.
Otherwise, the inherited allele is that of the second parent. An example of a crossover
outcome is given in Figure 4.

5



3. Mutation. In this scheme, mutation is used in a broader sense than usual. The operator
we de�ne acts like a mutation operator and its purpose is to prevent premature conver-
gence of the population to local minima. Instead of performing gene-by-gene mutation,
with very small probability at each generation, we introduce some new individuals into
the next generation (see BOT in Figure 5). These new individuals (called mutants) are
randomly generated from the same distribution as the original population and thus, no
genetic material of the current population is brought in. This process prevents prema-
ture convergence of the population, like in a mutation operator, and leads to a simple
statement of convergence, i.e. if a su�ciently large number of generations is carried out,
then the entire solution space will be sampled.

0.32 0.77 0.53 0.85Chromosome 1 (from TOP)

0.26 0.15 0.91 0.44Chromosome 2               

0.58 0.89 0.68 0.25Random number

< > < <
Relation to crossover 

probability of 0.7

0.32 0.15 0.53 0.85Offspring Chromosome

Crossover

Figure 4: Example of parametrized uniform crossover with crossover probability equal to 0.7.

The initial population is randomly generated. Figure 5 depicts the transitional process
between two consecutive generations.

��������	�
�	�����	���

�������������	�
�� ��
��Generation��
�

���
�

TOP

��������	�
�	����	��������������
�����������

������������������������������������������������				��������



����

����



����������������



����������		���������
BOT

��������



��������



������������

Figure 5: Transitional process between consecutive generations.

2.3 Schedule generation procedure

The procedure used to construct active schedules is based on a scheduling generation scheme
which consists of g = 1, .... , n stages, in each of which one activity is selected and scheduled at
the earliest precedence and resource feasible completion time. There are two disjoint activity
sets associated with each stage. The schedule set Sg, which includes all the activities that
been already scheduled and the eligible set Dg, which comprises all the activities eligible for
scheduling. Let A(t) represent the set of activities active a time t and let RDk(t) be the
remaining capacity of resource type k at time t, given by

RDk(t) = Rk −
∑

j∈A(t)

rj,k.

6



The algorithmic description of the scheduling generation scheme used to build parametrized

active schedules is shown in the pseudo-code in Figure 6. The initialization assigns a com-
pletion time of 0 to the dummy source (activity 0) and places it in the partial schedule. At
the start of every step g, the eligible set Dg, the set of �nish timesΓg, and the remaining
capacities RDk(t) are calculated. Step 4 selects from eligible set Dg the activity which has
the highest priority (the priorities of the activities are supplied by the genetic algorithm). Af-
terwards, the �nish time of j is calculated by �rst computing the earliest precedence feasible
�nish time EFj and then calculating the earliest precedence and resource feasible �nish time
LFj within the interval [EFj , LFj ], where LFj denotes the latest �nish time as calculated
by backward recursion (cf. Elmaghraby (1977)) from an upper bound of �nish time T of the
project. Note that when checking for the availability of capacity we only need to check for the
time periods in Γg because between �nish times the capacity availability remainsunchanged.
The makespan of the solution is given by the maximum of all predecessor activities of activity
n + 1, i.e. Fn+1 = max{Fl | l ∈ Pn+1}. The time complexity of the serial SGS presented in
Figure 6 is O(n2 ·K) .

The basic idea consists in letting the genetic algorithm evolve the priorities used in the
selection step of the procedure (step 4),

j∗ ← argmin{PRIORITY j | j ∈ Dg},

i.e. the parameters PRIORITY j (priority of activity j used at each g) are supplied by the
genetic algorithm.

procedure CONSTRUCT - ACTIVE SCHEDULE

1 Initialize F0 = 0, S0 = {0}
2 for g = 1 to n do

3 Calculate Dg, Γg and RDk(t) (k εK; t εΓg)
4 // select activity with highest priority

· j∗ ← argmin{PRIORITY j | j ∈ Dg}
5 // compute earliest �nish time (in terms of precedence only)

· EF j∗ ← max{Fi | i ∈ Pj}+ dj∗

6 // compute earliest �nish time (in terms of precedence and capacity)

· Fj∗ ← min {t ∈ [EF j∗ − dj∗ , LFj − dj∗ ] ∩ Γg |
· rj∗,k ≤ RDk(τ), k ∈ K, τ ∈ [t, t+ dj∗ ]}+ dj∗

7 // update Sg

· Sg ← Sg−1 ∪ {j∗}
8 end for

9 // compute makespan (equal to �nish time of activity n+ 1)
· Fn+1 = max

j∈Pn+1

{Fj}

end CONSTRUCT - ACTIVE SCHEDULE;

Figure 6: Pseudo-code for the active schedule construction procedure.

Figure 7 presents an example of the application of the serial SGS to the problem given in
Figure 1. The numbers in bold for the row labeled Dg indicate the selected activity.

7



g 1 2 3 4 5 6 7 8 9

Dg 1, 3, 5, 8 3, 5, 8, 2 3, 8, 2 3, 8 3 4, 6 6, 7 7 9

Act. Selected 1 5 2 8 3 4 6 7 9

 
 
 

↑↑↑↑                                        

2  5             3    4                     
         2                  7             

1   1             8      6           9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

Figure 7: Example of serial SGS.

2.4 Forward-Backward Improvement

After obtaining a solution by the SGS proposed in Section 2.3, our heuristic attempts to
reduce the makespan of the project through the use of a procedure called Forward�Backward

Improvement (FBI).
The FBI procedure employs an SGS to iteratively schedule the project by alternating be-

tween forward and backward scheduling. This multi-pass heuristic scheduling procedure was
proposed by Li and Willis (1992). The forward and backward passes are based on the concepts
of forward and backward free slack of the activities. The forward (backward) free slack of an
activity in a feasible schedule is the amount of time that the activity can be shifted right (left)
allowing the remaining activities to start on their scheduled dates. Pseudo-code for backward
scheduling is shown in Figure 6. Forward scheduling applies the procedure outlined in Figure
6 to the reverse precedence network where the former end activity n + 1 becomes the new
start activity. The priority values used in step 4 of the algorithm can be obtained from the
completion times of the last schedule generated for the forward pass and from the start times
of the last schedule generated for the backward pass.
Figure 8 depicts the application of FBI to an initial solution given in Figure 8-a. In Figure

8-b all the activities are moved forward (to the right) reducing the makespan from 36 to 32
time units. In Figure 8-c all the activities are moved backward (to the left) reducing the
makespan from 32 to 30 time units.

a)

b)

c)

 
 
Initial Solution (Makespan = 36) 
 

↑↑↑↑                                        
2  5             3    4                     
         2                  7             

1   1             8      6           9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→
                                        

 
 
Solution after Forward Improvement (Makespan = 32) 
 

↑↑↑↑                                        

2                      8        5    6      
             2              7             

1       1            3    4          9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→
                                        

 
 
Solution after Forward and Backward Improvement (Makespan = 30) 
 

↑↑↑↑                                        
2   3            4   5        6              
         2            7                   

1   1             8           9             
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→
                                        

 

Figure 8: Example of Forward Backward Improvement

8



2.5 Chromosome Adjustment

The solutions produced by FBI are usually not in agreement with the priorities initially sup-
plied by the GA chromosome. Since the GA has no knowledge of the changes in priorities that
occur in the �nal solution, the heuristic adjusts the chromosome to re�ect these changes. To
make the chromosome supplied by the GA agree with the solution, the heuristic adjusts the
order of the genes according to the starting times. Figure 9 shows an example of the adjust-
ment process. This chromosome adjustment improves not only the quality of the solutions
but also decreases the number of iterations necessary to obtain the best values.

Initial Chromosome = ( 0.1,  0.3,  0.5, 0.6, 0.2, 0.7, 0.8, 0.4, 0.9 )

Corrected  Chromosome = ( 0.1,  0.3,  0.2, 0.4, 0.6, 0.8,  0.7, 0.5,  0.9 )

Final Schedule

Initial Schedule
↑↑↑↑                                        

2  5             3    4                     
         2                  7             

1   1             8      6           9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

↑↑↑↑                                        

2   3            4   5        6              
         2            7                   

1   1             8           9             
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

Initial Chromosome = ( 0.1,  0.3,  0.5, 0.6, 0.2, 0.7, 0.8, 0.4, 0.9 )

Corrected  Chromosome = ( 0.1,  0.3,  0.2, 0.4, 0.6, 0.8,  0.7, 0.5,  0.9 )

Final Schedule

Initial Schedule
↑↑↑↑                                        

2  5             3    4                     
         2                  7             

1   1             8      6           9       
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

↑↑↑↑                                        

2   3            4   5        6              
         2            7                   

1   1             8           9             
                                        
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 →→→→ 
                                        

 

Figure 9: Example of the chromosome adjustment process.

3 Experimental Results

In this section, we report results obtained on a set of experiments conducted to evaluate the
performance of the genetic algorithm proposed in this paper. We call this algorithm GA-FBI.
The algorithm was implemented using Microsoft Visual Basic 6.0 and the tests were carried
out on a computer with a Intel Core 2 CPU running at 2.4 GHZ on the Windows XP operating
system.

3.1 Benchmark Instances and Algorithms

To illustrate the e�ectiveness of GA-FBI we consider a total of 1560 instances from three
classes of standard RCPSP test problems: J30 (480 instances, each with 30 activities), J60
(480 instances, each with 60 activities), and J120 (600 instances, each with 120 activities).
All problem instances require four resource types. Instance details are described by Kolisch
et al. (1995) and can be obtained at http://129.187.106.231/psplib/datasm.html.

The proposed algorithm is compared with the following algorithms:

1. Local search-oriented approaches: Fleszar and Hindi (2004); Palpant et al. (2004).

2. Population-based approaches: Debels et al. (2006); Valls et al. (2004).

3. Problem and heuristic space method: Leon and Ramamoorthy (1995).

4. Priority-rule based sampling methods: Tormos and Lova (2003) - sampling LFT, FBI;
Schirmer and Riesenberg (1998); Kolisch and Drexl (1996); Kolisch (1996b) - single pass
LFT (serial); Kolisch (1996b) - single pass LFT (parallel); Kolisch (1996a;b) - single pass
WCS; Kolisch (1995) - random (serial); Kolisch (1995) - random (parallel).

9



5. Genetic algorithms: Mendes et al. (2009) - BRKGA; Valls et al. (2005) - GA-FBI; Debels
and Vanhoucke (2005) - GA-DBH; Valls et al. (2003) - GA-hybrid, FBI; Kochetov and
Stolyar (2003) - GA, tabu search, path-relinking; Hartmann (2002) - GA self adapting;
Hartmann (1998) - GA activity list; Hartmann (1998) - GA random key; Hartmann
(1998) - GA priority rule.

6. Simulated annealing: Bouleimen and Lecocq (2003).

7. Tabu search: Nonobe and Ibaraki (2002); Baar et al. (1998).

8. Other type heuristics: Möhring et al. (2003) - Lagrangian relaxation.

3.2 GA con�guration

In our past experience with biased random-key genetic algorithms (see e.g. Gonçalves and
Almeida (2002), Gonçalves et al. (2005), Gonçalves and Resende (2004), Buriol et al. (2005),
and Gonçalves (2006)), we obtained good results with values of TOP , BOT , and crossover
probability (CProb) in the following ranges:

Parameter Interval

TOP 0.10 � 0.20
BOT 0.15 � 0.30
CProb 0.70 � 0.80

To �ne tune these parameters, we conducted a small pilot experiment with combinations of
the following values TOP ∈ {0.10, 0.15, 0.20}, BOT ∈ {0.15, 0.20, 0.25, 0.30}, and CProb ∈
{0.70, 0.75, 0.80}. We obtain good results by using a population size proportional to the
number of activities. We therefore experimented with population sizes having 1, 2, 5, 10, and
15 times the number of activities in the project.
The pilot experimented resulted in the following con�guration, which was held constant for

all experiments and all problem instances:

Population Size 10 × number of activities in the problem
CProb 0.7
TOP The chromosomes of the 10% best �t solutions from the previous

population are copied to the next generation.
BOT The number of mutant chromosomes randomly generated

and added to the next generation is 20% of the population size.
Fitness Makespan (to minimize)
Stopping Criterion Maximum number of generations

The experimental results demonstrate that this con�guration provides high-quality solutions
and that it is robust.

3.3 Results

In our results we compare the solutions obtained by the algorithms as a function of the
number of schedules generated. In the case of the GA-FBI the number of schedules
generated is given by

3× [PopSize + (nGen − 1)× PopSize × (1− TOP)]

10



where nGen is the number of generations,PopSize is the population size, and TOP is the
proportion of the previous population copied to the next generation. Notice that we
multiply by three to account for one schedule produced by the GA and two schedules
produced by the FBI procedure. A single run of GA-FBI is performed per problem instance.

Tables 1 (for algorithms in which papers report the number of schedules generated) and
Table 2 (for algorithms in which papers do not report the number of schedules generated)
summarize the average percentage deviation DOPT from the optimal makespan for instance
set J30. The best value obtained by GA-FBI was DOPT = 0.01. GA-FBI obtains the optimal
solution for 478 of the 480 instances (99.58% of the instances). GA-FBI ranks �rst for 5,000
schedules and ranks second for 50,000 schedules or more.

Table 1: Average percent deviations from optimal makespan � ProGen set J30.
Maximum number of schedules / Average CPU time (s)

Generations / (Number of schedules of GA-FBI )

1000 / 0.36 5000 /1.8 50,000 /18 100,000 / 36 500,000 / 180

Reference 1 / (900) 6 / (4950) 61 / (49,500) 123 / (99,720) 617 / (499,860)

This paper 0.32 0.02 0.01 0.01 0.01

Kochetov and Stolyar (2003) 0.10 0.04 0.00 - -

Mendes et al. (2009) 0.06 0.02 0.01 0.01 0.01

Debels et al. (2006) 0.27 0.11 0.01 0.01 0.01

Debels and Vanhoucke (2005) 0.15 0.04 0.02 - -

Valls et al. (2003) 0.27 0.06 0.02 - -

Valls et al. (2005) 0.34 0.20 0.02 - -

Tormos and Lova (2003) 0.25 0.13 0.05 - -

Nonobe and Ibaraki (2002) 0.46 0.16 0.05 - -

Hartmann (2002) 0.38 0.22 0.08 - -

Hartmann (1998) 0.54 0.25 0.08 - -

Bouleimen and Lecocq (2003) 0.38 0.23 - - -

Schirmer and Riesenberg (1998) 0.65 0.44 - - -

Baar et al. (1998) 0.86 0.44 - - -

Kolisch and Drexl (1996) 0.74 0.53 - - -

Kolisch (1996b) 0.83 0.53 0.27 - -

Hartmann (1998) 1.03 0.56 0.23 - -

Kolisch (1995) 1.44 1.00 0.51 - -

Hartmann (1998) 1.38 1.12 0.88 - -

Kolisch (1996a;b) 1.40 1.28 - - -

Kolisch (1996b) 1.40 1.29 1.13 - -

Kolisch (1995) 1.77 1.48 1.22 - -

Leon and Ramamoorthy (1995) 2.08 1.59 - - -

Table 2: Average percent deviations from optimal makespan � ProGen set J30.
CPU time

Reference Avg. % deviation Avg. Max. CPU freq.

Palpant et al. (2004) 0.00 10.26s 123.0s 2.3 GHz

Fleszar and Hindi (2004) 0.01 0.64s 5.9s 1.0 GHz

Valls et al. (2003) 0.06 1.61s 6.2s 400 MHz

Valls et al. (2004) 0.10 1.16s 5.5s 400 MHz

11



Tables 3 (for algorithms in which papers report the number of schedules generated) and
Table 4 (for algorithms in which papers do not report the number of schedules generated)
summarize the average percentage deviation from the well-known critical path-based lower
bound (DLB) for instance set J60 (Stinson et al. (1978)). GA-FBI obtained DLB = 10.49.
GA-FBI ranks seventh for 5,000 schedules and ranks �rst for 50,000 schedules or more.

Table 3: Average percent deviations from critical path lower bound � ProGen set J60.
Maximum number of schedules / Average CPU time (s)

Generations / (Number of schedules of GA-FBI )

1000 / 0.11 5000 / 0.53 50,000 / 5.25 100,000 / 10.5 500,000 / 52.5

Reference 1 / (1800) 3 / (5040) 30 / (48,780) 61 / (99,000) 308 / (499,140)

This paper - 11.56 10.57 10.51 10.49

Mendes et al. (2009) 11.72 11.04 10.67 10.67 10.67

Debels and Vanhoucke (2005) 11.45 10.95 10.68 - -

Debels et al. (2006) 11.73 11.10 10.71 - 10.53

Valls et al. (2003) 11.56 11.10 10.73 - -

Kochetov and Stolyar (2003) 11.71 11.17 10.74 - -

Valls et al. (2005) 12.21 11.27 10.74 - -

Hartmann (2002) 12.21 11.70 11.21 - -

Hartmann (1998) 12.68 11.89 11.23 - -

Tormos and Lova (2003) 11.88 11.62 11.36 - -

Bouleimen and Lecocq (2003) 12.75 11.90 - - -

Nonobe and Ibaraki (2002) 12.97 12.18 11.58 - -

Schirmer and Riesenberg (1998) 12.94 12.58 - - -

Kolisch and Drexl (1996) 13.51 13.06 - - -

Baar et al. (1998) 13.80 13.48 - - -

Hartmann (1998) 14.68 13.32 12.25 - -

Hartmann (1998) 13.30 12.74 12.26 - -

Kolisch (1996b) 13.59 13.23 12.85 - -

Kolisch (1996b) 13.96 13.53 12.97 - -

Kolisch (1995) 14.89 14.30 13.66 - -

Kolisch (1996a;b) 13.66 13.21 - - -

Kolisch (1995) 15.94 15.17 14.22 - -

Leon and Ramamoorthy (1995) 14.33 13.49 - - -

Table 4: Average percent deviations from critical path lower bound � ProGen set J60.
CPU time

Reference Avg. % deviation Avg. Max. CPU freq.

Palpant et al. (2004) 10.81 38.8s 223.0s 2.3 GHz

Valls et al. (2004) 10.89 3.7s 22.6s 400 MHz

Valls et al. (2003) 11.45 2.8s 14.6s 400 MHz

Möhring et al. (2003) 15.60 6.9s 57s 200 MHz

Tables 5 (for algorithms in which papers report the number of schedules generated) and
Table 6 (for algorithms in which papers do not report the number of schedules generated)
summarize the average percentage deviation from the well-known critical path-based lower
bound (DLB) for instance set J120 (Stinson et al. (1978)). GA-FBI obtained DLB = 30.08.
GA-FBI ranks ninth for 5,000 schedules, seventh for 50,000 schedules and ranks �rst for
500,000 schedules.

12



Table 5: Average percent deviations from critical path lower bound � ProGen set J120.
Maximum number of schedules / Average CPU time (s)

Generations / (Number of schedules of GA-FBI )

1000 / 0.6 5000 / 1.8 50000 / 18 100000 / 36 500000 / 180

Reference 1 / (3600) 2 / (6840) 15 / (48960) 30 / (97560) 154 / (490320)

This paper - 35.94 32.76 31.63 30.08

Debels and Vanhoucke (2005) 34.19 32.34 30.82 - -

Valls et al. (2003) 34.07 32.54 31.24 - -

Mendes et al. (2009) 35.87 33.03 31.44 31.32 31.20

Debels et al. (2006) 35.22 33.10 31.57 - 30.48

Valls et al. (2005) 35.39 33.24 31.58 - -

Kochetov and Stolyar (2003) 34.74 33.36 32.06 - -

Hartmann (2002) 37.19 35.39 33.21 - -

Tormos and Lova (2003) 35.01 34.41 33.71 - -

Hartmann (1998) 39.37 36.74 34.03 - -

Bouleimen and Lecocq (2003) 42.81 37.68 - - -

Nonobe and Ibaraki (2002) 40.86 37.88 35.85 - -

Hartmann (1998) 39.93 38.49 36.51 - -

Schirmer and Riesenberg (1998) 39.85 38.70 - - -

Kolisch (1996b) 39.60 38.75 37.74 - -

Kolisch (1996a;b) 39.65 38.77 - - -

Kolisch and Drexl (1996) 41.37 40.45 - - -

Leon and Ramamoorthy (1995) 42.91 40.69 - - -

Hartmann (1998) 45.82 42.25 38.83 - -

Kolisch (1996b) 42.84 41.84 40.63 - -

Kolisch (1995) 44.46 43.05 41.44 - -

Kolisch (1995) 49.25 47.61 45.60 - -

Table 6: Average percent deviations from critical path lower bound � ProGen set J120.
CPU time

Reference Avg. % deviation Avg. Max. CPU freq.

Valls et al. (2004) 31.58 59.4s 264.0s 400 MHz

Palpant et al. (2004) 32.41 207.9s 501.0s 2.3 GHz

Valls et al. (2003) 34.53 17.0s 43.9s 400 MHz

Möhring et al. (2003) 36.00 72.9s 654s 200 MHz

Figure 10 presents a Box-Plot comparison betweenGA-FBI andGA-PAR, the biased random-
key genetic algorithm of Mendes et al. (2009). The encoding of a solution in GA-PARconsists
of two parts, both of which are used by a novel SGS parametrized active scheduler to con-
struct schedules. On the other hand, in GA-FBI the chromosome has only one part, directly
used by a serial SGS to construct active schedules, followed by an improvement phase (FBI)
and a chromosome adjustment phase. This chromosome adjustment cannot be done in GA-

PARbecause of the encoding and the adopted scheduler. For the J120 class of instances, it
it can be seen in the �gure that that as the number of allowed schedules increases, heuristic
GA-FBI becomes better than GA-PAR.

From the above results it is clear that no algorithm dominates GA-FBI. The approach of
Debels et al. (2006) is the one that seems to have similar performance. Given that GA-FBI
uses an evolutionary strategy that depends on the number of generations, it is not surprising
that, for problems with large number of activities, it does not perform so well when only a

13



small number of schedules generated is allowed. With our heuristic, we improved1 the best
known solution for 11 instances in test problem repository PSPLIB http://129.187.106.

231/psplib/files/j120hrs.sm.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

GA−FBI GA−PAR

0
1

2
3

4
5

6

1000 Schedules

●

●

●

●

●

●

●

●

●

●

GA−FBI GA−PAR

0
1

2
3

4
5

6

5000 Schedules

●

●

●

●

GA−FBI GA−PAR

0
1

2
3

4
5

6

50000 Schedules

(a) Problem instances J30.

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

GA−FBI GA−PAR

0
5

10
15

20

5000 Schedules ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

GA−FBI GA−PAR

0
5

10
15

20

50000 Schedules ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

GA−FBI GA−PAR

0
5

10
15

20

100000 Schedules

●●

●

●

●

●

●

●●

●

●

●

●

●

●

GA−FBI GA−PAR

0
5

10
15

20

500000 Schedules

(b) Problem instances J60.

GA−FBI GA−PAR

0
10

20
30

40
50

5000 Schedules

GA−FBI GA−PAR

0
10

20
30

40
50

50000 Schedules

GA−FBI GA−PAR

0
10

20
30

40
50

100000 Schedules

GA−FBI GA−PAR

0
10

20
30

40
50

500000 Schedules

(c) Problem instances J120.

Figure 10: Box-plots comparing average percent deviation from optimal or lower bound for
GA-FBI and GA-PAR.

1As of March 8, 2009.

14



4 Concluding remarks

This paper presents a biased random-keys genetic algorithm for the resource constrained
project scheduling problem. The chromosome representation of the problem is based on
random keys. The schedules are constructed using a priority rule in which the priorities are
de�ned by the genetic algorithm. Schedules are constructed using a procedure that generates
active schedules. The approach is tested on a set of 1560 standard instances taken from the
literature and compared with results of 25 other algorithms taken from the literature. In
extensive computational testing, our algorithm compared well with the other algorithms and
produced new best known solutions for a number of benchmark test instances. Overall, the
experiments validate the e�ectiveness of the proposed algorithm.

Acknowledgment

This work has been supported by funds granted by Fundação para a Ciência e Tecnologia
(FCT) project PTDC/GES/72244/2006.

References

Alvarez-Valdez, R., Tamarit, J.M.: Heuristic algorithms for resource-constrained project
scheduling: A review and empirical analysis. In: Slowinski, R., Weglarz, J. (eds.) Ad-
vances in project scheduling, pp. 113�134. Elsevier (1989)

Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the resource-
constrained project scheduling problem. In: Voss, S., Martello, S., Osman, I., Roucairol,
C. (eds.) Meta-heurisitics: Advances and trends in local search paradigms for optimization,
pp. 1�8. Kluwer (1998)

Bean, J.C.: Genetics and random keys for sequencing and optimization. ORSA Journal on
Computing 6, 154�160 (1994)

Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource con-
straints: Classi�cation and complexity. Discrete Applied Mathematics 5, 11�24 (1983)

Boctor, F.F.: Some e�cient multi-heuristic procedures for resource-constrained project
scheduling. European Journal of Operational Research 49, 3�13 (1990)

Boctor, F.F.: An adaptation of the simulated annealing algorithm for solving resource-
constrained project scheduling problems. International Journal of Production Research
34, 2335�2351 (1996)

Bouleimen, K., Lecocq, H.: A new e�cient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple mode version. European Journal
of Operational Research 149, 268�281 (2003)

Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project
scheduling : Notation, classi�cation, models, and methods. European Journal of Opera-
tional Research 112, 3�41 (1999)

Brucker, P., Knust, S.: A linear programming and constraint propagation-based lower bound
for the RCPSP. European Journal of Operational Research 127, 355�362 (2000)

Brucker, P., Knust, S.: Lower bounds for resource-constrained project scheduling problems.
European Journal of Operational Research 149, 302�313 (2003)

Brucker, P., Knust, S.: Complex scheduling. Springer (2006)

15



Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research 107,
272�288 (1998)

Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algorithm for the
weight setting problem in OSPF/IS-IS routing. Networks 46(1), 36�56 (2005)

Cooper, D.F.: Heuristics for scheduling resource-constrained projects: An experimental in-
vestigation. Management Science 22, 1186�1194 (1976)

Cooper, D.F.: A note on serial and parallel heuristics for resource-constrained project schedul-
ing. Foundations of Control Engineering 2, 131�133 (1977)

Davis, E.W., Patterson, J.H.: A comparison of heuristic and optimum solutions in resource-
constrained project scheduling. Management Science 21, 944�955 (1975)

Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search / electromag-
netism meta-heuristic for project scheduling. European Journal of Operational Research
169, 638�653 (2006)

Debels, D., Vanhoucke, M.: A decomposition-based heuristic for the resource-constrained
project scheduling problem. Tech. Rep. 2005/293, Faculty of Economics and Business
Administration, University of Ghent, Ghent, Belgium (2005)

Demassey, S., Artigues, C., Michelon, P.: Constraint-propagation-base cutting planes : An
application to the resource-constrained project scheduling problem. INFORMS Journal of
Computing 17, 52�65 (2005)

Demeulemeester, E., Herroelen, W.: New benchmark results for the resource-constrained
project scheduling problem. Management Science 43, 1485�1492 (1997)

Demeulemeester, E., Herroelen, W.: Project scheduling � A research handbook. Kluwer
Academic Publishers (2002)

Elmaghraby, S.: Activity networks: Project planning and control by network models. Wiley
(1977)

Fleszar, K., Hindi, K.S.: Solving the resource-constrained project scheduling problem by a
variable neighbourhood search. European Journal of Operational Research 155, 402�413
(2004)

Gagnon, M., Boctor, F.F., d'Avignon, G.: A tabu search algorithm for the resource-
constrained project scheduling problem. In: Proceedings of Administrative Sciences As-
sociation of Canada Annual Conference (ASAC 2004) (2004)

Goldberg, D.E.: Genetic algorithms in search optimization and machine learning. Addison-
Wesley (1989)

Gonçalves, J.F.: A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal pack-
ing problem. European Journal of Operational Research (2006). To appear

Gonçalves, J.F., Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. Jornal
of Heuristics 8, 629�642 (2002)

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A hybrid genetic algorithm for the job
shop scheduling problem. European Journal of Operational Research 167, 77�95 (2005)

Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell forma-
tion. Computers & Industrial Engineering 47, 247�273 (2004)

16



Gonçalves, J.F., Resende, M.G.C.: Biased random key genetic algorithms for combinatorial
optimization. Tech. rep., AT&T Labs Research Technical Report, Florham Park, NJ 07733
USA (2009)

Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling.
Naval Research Logistics 45, 279�302 (1998)

Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource con-
straints. Naval Research Logistics 49, 433�448 (2002)

Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. European Journal of Operational Re-
search 127, 394�407 (2000)

Herroelen, W., De Reyck, B., Demeulemeeste, E.: Resource-constrained project scheduling:
A survey of recent developments. Computers & Operations Research 25, 279�302 (1998)

Icmeli, O., Erenguc, S.S., Zappe, C.J.: Project scheduling problems: A survey. International
Journal of Operations & Production Management 13, 80�91 (1993)

Klein, R.: Scheduling of resource-constrained projects. Kluwer (1999)

Klein, R., Scholl, A.: Progress: Optimally solving the generalized resource-constrained project
scheduling problem. Tech. rep., University of Technology, Darmstadt (1998a)

Klein, R., Scholl, A.: Scattered branch and bound: An adaptative search strategy applied
to resource-constrained project scheduling problem. Tech. rep., University of Technology,
Darmstadt (1998b)

Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighborhood for the
resource constrained project scheduling problem. In: Proceedings of the 3rd International
Workshop of Computer Science and Information Technologies (2003)

Kohlmorgen, U., Schmeck, H., Haase, K.: Experiences with �ne-grained parallel genetic algo-
rithms. Annals of Operations Research 90, 203�219 (1999)

Kolisch, R.: Project scheduling under resource constraints: E�cient heuristics for several
problem classes. Physica-Verlag (1995)

Kolisch, R.: E�cient priority rules for the resource-constrained project scheduling problem.
Journal of Operations Management 14, 179�192 (1996a)

Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisite :
Theory and computation. European Journal of Operational Research 90, 320�333 (1996b)

Kolisch, R., Drexl, A.: Adaptative search for solving hard project scheduling problems. Naval
Research Logistics 43, 43�23 (1996)

Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project
scheduling problem: Classi�cation and computational analysis. In: Weglarz, J. (ed.) Hand-
book on recent advances in project scheduling, pp. 147�178. Kluwer (1999)

Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of Operational Research (2005). To
appear

Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. The
International Journal of Management Science, Omega 29, 249�272 (2001)

17



Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of
resource-constrained project scheduling problems. Management Science 41, 1693�1703
(1995)

Lawrence, S.R.: Resource constrained project scheduling � A computational comparison of
heuristic scheduling techniques. Tech. rep., Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh (1985)

Lee, J.K., Kim, Y.D.: Search heuristics for resource constrained project scheduling. Journal
of the Operational Research Society 47, 678�689 (1996)

Leon, V.J., Ramamoorthy, B.: Strength and adaptability of problem-space based neighbor-
hoods for resource constrained scheduling. Operations Research Spektrum 17, 173�182
(1995)

Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained project
scheduling. European Journal of Operational Research 56(3), 370 � 379 (1992). DOI
DOI:10.1016/0377-2217(92)90320-9

Mendes, J.J.M., Gonçalves, J.F., Resende, M.G.C.: A random key based genetic algorithm
for the resource constrained project scheduling problem. Computers & Operations Research
36, 92�109 (2009)

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Manage-
ment Science 44, 714�729 (1998)

Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by
minimum cut computations. Management Science 49, 330�350 (2003)

Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained
project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and surveys in
metaheuristics, pp. 557�588. Kluwer Academic Publishers (2002)

Palpant, M., Artigues, C., Michelon, P.: LSSPER: Solving the resource�constrained project
scheduling problem with large neighbourhood search. Annals of Operations Research 131,
237�257 (2004)

Pinson, E., Prins, C., Rullier, F.: Using tabu search for solving the resource constrained
project scheduling problem. Tech. rep., Universite Catholique de l'Ouest, Angers (1994)

Schirmer, A., Riesenberg, S.: Case-based reasoning and parameterized random sampling for
project scheduling. Tech. rep., University of Kiel, Germany (1998)

Slowinski, R., Soniewicki, B., Weglarz, J.: DSS for multiobjective project scheduling. Euro-
pean Journal of Operational Research 79, 220�229 (1994)

Spears, W.M., Dejong, K.A.: On the virtues of parameterized uniform crossover. In: Pro-
ceedings of the Fourth International Conference on Genetic Algorithms, pp. 230�236 (1991)

Sprecher, A.: Scheduling resource-constrained projects competitively at modest memory re-
quirements. Management Science 46, 710�723 (2000)

Stinson, J.P., Davis, E.W., Khumawala, B.M.: Multiple resource-constrained scheduling using
branch and bound. AIIE Transactions 10, 252�259 (1978)

Stork, F., Uetz, M.: On the generation of circuits and minimal forbidden sets. Mathematical
Programming 102, 185�203 (2005)

18



Thomas, P.R., Salhi, S.: A tabu search approach for the resource constrained project schedul-
ing problem. Journal of Heuristics 4, 123�139 (1998)

Tormos, P., Lova, A.: A competitive heuristic solution technique for Resource-Constrained
Project Scheduling. Annals of Operations Research 102, 65�81 (2001)

Tormos, P., Lova, A.: Integrating heuristics for resource constrained project scheduling: One
step forward. Tech. rep., Department of Statistics and Operations Research, Universidad
Politecnica de Valencia (2003)

Valls, V., Ballestin, F., Quintanilla, M.S.: A population-based approach to the resource-
constrained project scheduling problem. Annals of Operations Research 131, 305�324
(2004)

Valls, V., Ballestin, F., Quintanilla, M.S.: Justi�cation and RCPSP: A technique that pays.
European Journal of Operational Research 165, 375�386 (2005)

Valls, V., Ballestin, J., Quintanilla, M.S.: A hybrid genetic algorithm for the RCPSP. Tech.
rep., Department of Statistics and Operations Research, University of Valencia (2003)

19


