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A Bidirectional Target-Filtering Model of
Speech Coarticulation and Reduction: Two-Stage

Implementation for Phonetic Recognition
Li Deng, Dong Yu, and Alex Acero

Abstract—A structured generative model of speech coar-
ticulation and reduction is described with a novel two-stage
implementation. At the first stage, the dynamics of formants or
vocal tract resonances (VTRs) in fluent speech is generated using
prior information of resonance targets in the phone sequence,
in absence of acoustic data. Bidirectional temporal filtering
with finite-impulse response (FIR) is applied to the segmental
target sequence as the FIR filter’s input, where forward filtering
produces anticipatory coarticulation and backward filtering
produces regressive coarticulation. The filtering process is shown
also to result in realistic resonance-frequency undershooting or
reduction for fast-rate and low-effort speech in a contextually
assimilated manner. At the second stage, the dynamics of speech
cepstra are predicted analytically based on the FIR-filtered and
speaker-adapted VTR targets, and the prediction residuals are
modeled by Gaussian random variables with trainable param-
eters. The combined system of these two stages, thus, generates
correlated and causally related VTR and cepstral dynamics,
where phonetic reduction is represented explicitly in the hidden
resonance space and implicitly in the observed cepstral space. We
present details of model simulation demonstrating quantitative
effects of speaking rate and segment duration on the magnitude
of reduction, agreeing closely with experimental measurement
results in the acoustic-phonetic literature. This two-stage model
is implemented and applied to the TIMIT phonetic recognition
task. Using the -best ( = 2000) rescoring paradigm, the new
model, which contains only context-independent parameters, is
shown to significantly reduce the phone error rate of a standard
hidden Markov model (HMM) system under the same experi-
mental conditions.

Index Terms—Cepstral dynamics, contextual assimilation,
filtering of targets, formant dynamics, long-span context de-
pendence, phonetic recognition, phonetic reduction, resonances,
TIMIT.

I. INTRODUCTION

T
HE IMPORTANCE of incorporating structures of human

speech and language into statistical models for technology

applications has been well known, and active research in this

direction has been pursued in recent years [2], [3], [4], [6], [10],

[11], [19], [27], [31], [33]. For speech recognition applications,
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the dynamic structure of human speech has been exploited

in several ways in the past. Earlier work directly represented

speech dynamics in the observed acoustic domain [5], [16],

[19], [24]. More recent work explored the hidden structure

of speech associated with various levels in the human speech

generation process, either implicitly or explicitly [1], [3], [6],

[8], [14], [22]. Common among these hidden dynamic modeling

approaches is a target-filtering operation in some nonobservable

domain. One directional (left-to-right) target filtering has been

used in [6], [8], and [33]. It functionally approximates the

causal physical system in speech articulation that accounts for

inertia-related perseverance coarticulation, while the anticipa-

tory coarticulation is modeled at the separate phonological level

via the mechanism of nonlinear “atomic unit” overlapping or

target look-ahead [8], [29]. The research reported in this paper

simplifies the previous approach by merging the two separate

levels of coarticulation modeling into the same level of the

hidden dynamics, with bidirectional instead of uni-directional

target filtering. This functionally achieves both anticipatory

and regressive coarticulation, while leaving the phonological

units as the linear phonemic sequence and bypassing the use

of more elaborated nonlinear phonological constructs. This

bidirectional filtering approach was originally proposed in [3],

using a recursive, infinite-impulse response (IIR) filter with a

high computational complexity. The current work presents a

significantly simpler finite-impulse response (FIR) filter im-

plementation of the hidden dynamics in the specific domain

of vocal tract resonances (VTRs) or formants. In conjunction

with the second-stage mapping from the hidden resonances to

observable cepstra using a free-parameter analytical function

(instead of a neural network as in [3]), the new two-stage

model presented in this paper offers significant advantages in

model implementation and in constructing automatic recog-

nition systems that incorporate the hidden dynamic structure

of speech.

Acentralcomponent(StageI)ofthetwo-stagemodelpresented

in this paper is one that parsimoniously parameterizes the

VTR dynamics within the bidirectional FIR target filtering

framework. This is a joint model for coarticulation and reduction,

both mediated by the hidden or unobserved VTR dynamics.

Dynamic patterns of VTRs in fluent speech, especially those

which are correlated with spectral prominences or formants

for vowel sounds, have been a subject of intensive research in

phonetics and in speech synthesis for many years [15], [17],

[18], [23], [25], [26], [30], [32]. The research has been focusing

on the central issue that the same formant values taken from the
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middle portion of a speech sound from its dynamic pattern can

correspond to different sound classes specified solely in static

terms. This inherent “static” confusion of speech classes without

dynamic aspects of speech sound specification is believed to

be one significant factor impeding current HMM-based speech

recognition for casual-style, conversational speech. The VTR

model in this paper gives dynamic specification of speech

sounds, where the observed dynamic pattern of speech becomes

the result of an interaction among phonetic context, speaking

rate/duration, and spectral rate of change as related to speaking

style [23]. In particular, our model assumes that each speech

sound is specified by a largely context-independent target

(but speaker dependent) in the VTR space, together with the

stiffness parameter specifying how VTR trajectories may be

formed in any given phonetic and prosodic environment. In the

implementation of the model, the stiffness parameter is used

to control temporal filtering of the sequentially arranged, VTR

targets, and is dependent on a range of prosodic factors, speaking

style in particular. The result of the temporal filtering, in both

forward and backward directions, gives rise to the phonetically

realized dynamic VTR patterns. A direct consequence of this

filtering operation is as follows: the shorter a segment is,

the greater the difference becomes between the filter’s input

as the target VTR values and the output as the actual VTR

values. (Note the filter output also depends on the stiffness

parameter associated with speaking style, in addition to the

dependency on the filter input.) Therefore, our model naturally

simulates the target-undershooting, or reduction phenomenon

[18], [23], [25]. Because the input to the filter is the phonetically

composed, discontinuous target sequence, which is smoothed

by the filter resulting in continuous, “reduced” trajectories, this

filter-basedmodel (StageI) represents thereductionphenomenon

in a contextually assimilated manner. That is, reduction and

coarticulation are jointly represented in the filter model. This

type of model construction has been motivated by the reduction

mechanism suggested originally in [18] and [23].

The organization of this paper as follows. In Section II, we

provide mathematical details of Stage I of the overall two-stage

model. Stage II of the model is described in Section III. This stage

takes the VTR dynamics, which are the output of Stage I, as its

input and produces the corresponding linear predictive coding

(LPC) cepstral vector as its output on a frame-by-frame basis.

Sections IV and V present simulation results for Stage I and Stage

II components of the model, respectively, and comparisons are

made between model prediction and acoustic measurements in

real speech data. In constructing a phonetic recognizer using

this two-stage model, the overall model’s output in the form

of the cepstral vector sequence is used as the observation for

the recognizer. Specific issues in the recognizer design are

discussed in Section VI, where experimental results using the

-best rescoring paradigm for the TIMIT phonetic recognition

task are presented also. The results demonstrate the superior

performance of the new system over the conventional HMM

system. Finally, in Section VII, we discuss our future direction of

research toward the goal of recognizing conversational speech,

where a continuously varying degree of phonetic reduction

and “static” sound confusion is captured by the fundamental

mechanism of target filtering as presented in this paper.

II. MODEL STAGE I: FROM RESONANCE TARGET SEQUENCE

TO RESONANCE DYNAMICS

Stage I of the coarticulation and reduction model presented in

this section is responsible for converting a sequence of VTR tar-

gets with discrete jumps at the phone segments’ boundaries into

the a smooth dynamic pattern (i.e., trajectory) across all these

boundaries. Forward as well as backward coarticulation occurs

when the bidirectional filtering and smoothing process makes

the VTR value at each time dependent on not only the VTR

target at the current phone, but also the VTR targets from the

adjacent phones. In the mean time, the filtering process automat-

ically exhibits contextually assimilated reduction when the seg-

ment’s duration is reasonably short, especially when the filter

parameter, which we call stiffness, of the filter is close to one.

Reduction is defined in this paper as VTR target undershooting,

i.e., the physically realized VTR value being away from the

VTR target. When reduction is controlled by the targets of con-

textual (left and right) segments, we say that the reduction is

contextually assimilated.

The model described in this section gives quantitative pre-

diction of the magnitude of contextually assimilated reduction.

It is constructed using a slowly time-varying, FIR filter charac-

terized by the following noncausal, vector-valued, impulse re-

sponse function:

(1)

where represents time frame, typically with a length of 10

ms each. is the “stiffness” parameter vector, one compo-

nent for each resonance order. Each component is positive and

real-valued, ranging between zero and one. In this paper, is

treated as a deterministic quantity for simplicity purposes. (In

a more comprehensive version of the model, is a Gaussian

random vector characterized by the mean vector and covari-

ance matrix.) The subscript in indicates that the stiff-

ness parameter is dependent on the segment state which

varies over time. The multiplication of two vectors in (1) is on

the component-by-component basis. in (1) is the unidirec-

tional length of the impulse response. It represents the temporal

extent of coarticulation in one temporal direction, assumed for

simplicity to be equal in length for the forward direction (antic-

ipatory coarticulation) and the backward direction (regressive

coarticulation).

In (1), is the normalization constant to ensure that the filter

weights add up to one. This is essential for the model to produce

target undershooting, instead of overshooting. To determine ,

we require that the filter coefficients sum to one

(2)

For simplicity, we make the assumption that over the temporal

span of , the stiffness parameter’s value stays

approximately constant
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That is, the adjacent segments within the temporal span of

in length which contribute to the coarticulated home segment

have the same stiffness parameter value as that of the home seg-

ment. Under this assumption, we simplify (2) to

Thus

(3)

The input to the above FIR filter as a linear system is the target

sequence, which is a function of discrete time and is subject to

abrupt jumps at the phone segments’ boundaries. Mathemati-

cally, the input is represented as a sequence of step-wise con-

stant functions with variable durations and heights

(4)

where is the unit step function, ,

are the right boundary sequence of the segments ( in total) in

the utterance, and , are the left boundary

sequence. Note the constraint on these starting and end times:

. The difference of the two boundary sequences gives

the duration sequence. , are the target vec-

tors for segment . (In a more comprehensive version of the

model, the target vector values are drawn from a statistical distri-

bution, whose parameters are automatically learned in a manner

similar to [7]).

In the work presented in this paper, we assume that both left

and right boundaries (and, hence, the durations) of all the seg-

ments in an utterance are known (e.g., those provided in TIMIT

database). However, in general cases where the current model

is used to predict the VTR frequency trajectories as the FIR

filter’s output, the boundaries in the target sequence input to the

filter are not given. They either come from a recognizer’s forced

alignment results, on which our experimental results described

in this paper are based, or need be learned automatically using

advanced algorithms in a similar spirit to that described in [22].

Given the filter’s impulse response and the input to the filter as

described previously, the filter’s output as the model’s predic-

tion for the VTR trajectories is the convolution between these

two signals. The result of the convolution within the boundaries

of the home segment is

(5)

where the input target vector’s value and the filter’s stiffness

vector’s value may take not only those associated with the cur-

rent home segment, but also those associated with the adjacent

Fig. 1. Illustrations of the various VTR quantities in model Stage-I in an
utterance with four phone segments. (a) and (b) are for the same four VTR
targets and their filtered results, but the durations of the four segments are
shorter in (b) than in (a).

segments. The latter case happens when the time in (6) goes

beyond the home segment’s boundaries; i.e., when the segment

occupied at time switches from the home segment to an

adjacent one.

A sequential concatenation of all outputs ,

in (5), each corresponding to a single segment

in the utterance, constitutes the model prediction of VTR

trajectories for the entire utterance

(6)

Note that the convolution operation carried out by the filter in the

model guarantees continuity of the trajectories at each junction

of two adjacent segments, contrasting the discontinuous jump

in the input to the filter at the same junction. This continuity is

applied to all classes of speech sounds including consonantal

closure.

The various VTR quantities in model Stage-I discussed previ-

ously are graphically illustrated in Fig. 1(a). Four segments, or

4, are sequentially concatenated with their respective VTR

targets, where one-dimensional VTR is used as the example for

simplicity. The smoothed curve, , is the result of FIR fil-

tering, which runs over the entire duration of the four segments.

The separate segment-bounded portions of the curve are denoted

with subscript . Fig. 1(b) shows the same VTR targets and their

filtered results, but the durations of the segments are shorter.

III. MODEL STAGE II: FROM RESONANCE DYNAMICS

TO CEPSTRUM DYNAMICS

We now present Stage II of the overall coarticulation and re-

duction model, which is responsible for converting the VTR

vector at each time frame into a corresponding vector of

LPC cepstra . Thus, the smooth dynamic pattern of as

the output from Stage I is mapped to a dynamic pattern of ,

which is typically less smooth, reflecting quantal properties in

speech production [28]. The mapping, as has been implemented,

is in a memoryless fashion (i.e., no temporal smoothing), and is

statistical rather than deterministic.
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To describe this mapping function, we decompose the VTR

vector into a set of resonant frequencies and bandwidth .

That is, let

where ...
and ...

The choice of the highest resonance order in the current im-

plementation of model Stage II is based on a compromise be-

tween the accuracy of the model prediction for data and the pho-

netically meaningful information contained in the resonances

lower than order . The larger the is, the greater is the model

prediction accuracy on speech acoustics but the less useful in-

formation is contained in the higher resonances pertaining to

phonetic discrimination. This compromise leads to the empir-

ical choice of 4 in the current model implementation.

Then, the statistical mapping from VTRs to cepstra, which

constitutes Stage II of the model, is represented by

(7)

where is a subsegment-dependent, zero-mean Gaussian

random vector: , and is a sub-

segment-dependent bias vector for the nonlinear predictive

function . A subsegment of a phone is defined to be a

consecutive temporal portion of the phone segment. Linear

concatenation of several subsegments constitutes a phone

segment.

In (7), the output of the mapping function has the fol-

lowing parameter-free, analytical form for its th vector com-

ponent (i.e., th-order cepstrum):

o (8)

where denotes sampling frequency of the speech signal. For

TIMIT data which we have used in experiments, we have

16000 Hz. A step-by-step derivation of this analytical form can

be found in [12].

Note that in (7) the terms can be regarded as the

nonlinear prediction residual which is random and are depen-

dent on the subsegment. This differs from the VTR input to the

nonlinear function, which is dependent on a segment instead of

on a subsegment. The finer subsegmental modeling of the pre-

diction residual is based on our empirical observation that the

accuracy of the nonlinear prediction for real speech data typi-

cally varies systematically within a phone segment. This is es-

pecially true for nonstationary phones such as stop consonants,

and is less so for vowels.

IV. RESULTS ON MODEL PREDICTION FOR RESONANCE

DYNAMICS AND REDUCTION

In this section, we present the model simulation results,

demonstrating contextually assimilated reduction. We further

Fig. 2. Spectrogram of three renditions of /iy aa iy/ by one author, with an
increasingly higher speaking rate and increasingly lower speaking efforts. The
horizontal label is time, and the vertical one is frequency.

compare these results with the corresponding results from direct

measurements of reduction in the acoustic-phonetic literature.

To illustrate VTR frequency or formant undershooting, we

first show the spectrogram of three renditions of a three-seg-

ment /iy aa iy/ (uttered by the lead author of this paper) in Fig. 2.

From left to right, the speaking rate increases and speaking ef-

fort decreases, with the durations of the /aa/’s decreasing from

approximately 230 ms to 130 ms. Formant target undershooting

for and is clearly visible in the spectrogram, where au-

tomatically tracked formants (using the technique described in

[12]) are superimposed (as the solid lines in Fig. 2) to aid iden-

tification of the formant trajectories. (The dashed lines are the

initial estimates, which are then refined to give the solid lines.)

A. Effects of Stiffness Parameter on Reduction

The same kind of target undershooting for and as in

Fig. 2 is exhibited in the model prediction, shown in Fig. 3,

where we also illustrate the effects of the FIR filter’s stiffness

parameter on the magnitude of formant undershooting or reduc-

tion. The model prediction is the FIR filter’s output for and

according to in (6). Fig. 3(a)–(c) corresponds to the use of

the stiffness parameter value (the same for each formant vector

component) set at 0.85, 0.75 and 0.65, respectively, where

in each plot the slower /iy aa iy/ sounds (with the duration of /aa/

set at 230 ms or 23 frames) are followed by the faster /iy aa iy/

sounds (with the duration of /aa/ set at 130 ms or 13 frames).

and targets for /iy/ and /aa/ are set appropriately in the model

also. Comparing the three plots, we have the model’s quantita-

tive prediction for the magnitude of reduction in the faster /aa/

that is decreasing as the value decreases.

In Fig. 4(a)–(c), we show the same model prediction as in

Fig. 3 but for different sounds /iy eh iy/, where the targets for

/eh/ are much closer to those of the adjacent sound /iy/ than

in the previous case for /aa/. As such, the absolute amount of

reduction becomes smaller. However, the same effect of the filter

parameter’s value on the size of reduction is shown as for the

previous sounds /iy aa iy/.

B. Effects of Speaking Rate on Reduction

In Fig. 5, we show the effects of speaking rate, measured as

the inverse of the sound segment’s duration, on the magnitude
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Fig. 3. f and f formant or VTR frequency trajectories produced from the
model (g(k) in (6)) for a slow /iy aa iy/ followed by a fast /iy aa iy/. (a)–(c)
correspond to the use of the stiffness parameter values of  = 0.85, 0.75, and
0.65, respectively. The amount of formant undershooting or reduction during
the fast /aa/ is decreasing as the  value decreases. The dashed lines indicate the
formant target values and their switch at the segment boundaries.

Fig. 4. Same as Fig. 3 except for the /iy eh iy/ sounds. Note that the f and f

target values for /eh/ are closer to /iy/ than those for /aa/.

of formant undershooting. Subplots (a), (b), and (c) correspond

to three decreasing durations of the sound /aa/ in the /iy aa iy/

sound sequence. They illustrate an increasing amount of the re-

duction with the decreasing duration or increasing speaking rate.

Symbol “x” in Fig. 5 indicates the and formant values at

the central portions of vowels /aa/, which are predicted from

the model and are used to quantify the magnitude of reduc-

tion. These values (separately for and ) for /aa/ are plotted

against the inversed duration in Fig. 6, together with the corre-

sponding values for /eh/ (i.e., IPA ) in the /iy eh iy/ sound se-

quence. The most interesting observation is that as the speaking

rate increases, the distinction between vowels /aa/ and /eh/ grad-

ually diminishes if their static formant values extracted from the

dynamic patterns are used as the sole measure for the difference

between the sounds. We refer to this phenomenon as “static”

sound confusion induced by increased speaking rate (or/and by

a greater degree of sloppiness in speaking).

C. Comparisons With Formant Measurement Data

The “static” sound confusion between /aa/ and /eh/ quantita-

tively predicted by the model as shown in Fig. 6 is consistent

with the formant measurement data published in [25], where

thousands of natural sound tokens were used to investigate the

Fig. 5. f and f formant trajectories produced from the model for three
different durations of /aa/ in the /iy aa iy/ sounds. (a) 25 frames (250 ms). (b)
20 frames. (c) 15 frames. The same  value of 0.85 is used. The amount of
target undershooting increases as the duration is shortened or the speaking rate
is increased. Symbol “x” indicates the f and f formant values at the central
portions of vowels of /aa/.

Fig. 6. Relationship, based on model prediction, between the f and f
formant values at the central portions of vowels and the speaking rate. Vowel
/aa/ is in the carry-phrase /iy aa iy/, and vowel /eh/ in /iy eh iy/. Note that as the
speaking rate increases, the distinction between vowels /aa/ and /eh/ measured
by the difference between their static formant values gradually diminishes. The
same  value of 0.9 is used in generating all points in the figure.

relationship between the degree of formant undershooting and

speaking rate.1 We reorganized and replotted the raw data from

[25] in Fig. 7, in the same formant as Fig. 6. While the mea-

sures of speaking rate differ between the measurement data and

model prediction and cannot be easily converted to each other,

they are generally consistent with each other.2 The similar trend

for the greater degree of “static” sound confusion as speaking

rate increases is shown clearly from both the measurement data

(Fig. 7) and prediction (Fig. 6).

D. Model Prediction of VTR Trajectories for Real Speech

Utterances

We have used Stage I of the model to predict actual VTR fre-

quency trajectories for speech utterances from TIMIT database.

Only the phone identities and their boundaries are input to the

1We are grateful to Dr. M. Pitermann for providing us with raw data of formant
measurements published in [25], which allows us to do the replotting.

2We again thank Dr. M. Pitermann for useful discussions on this point.
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Fig. 7. Formant measurement data from literature are reorganized and plotted,
showing similar trends to the model prediction under similar conditions.

model for the prediction, and no use is made of speech acous-

tics; i.e., only Stage I of the model, and not Stage II, is used. This

differs from the task of formant or VTR tracking where speech

acoustics is always used [12].

Given the phone sequence in any utterance, we first break up

the compound phones (affricates and diphthongs) into their con-

stituents. Then we obtain the initial VTR target values based on

limited context dependency by table lookup (see details in [9,

Ch. 13]). Then automatic and iterative target adaptation is per-

formed for each phone-like unit based on the difference between

the results of a VTR tracker (described in [11]) and the VTR

prediction from the FIR filter model. (This iterative adaptation

algorithm will not be described in this paper due to space limita-

tion.) Note these target values are provided not only to vowels,

but also to consonants for which the resonance frequency targets

are used with weak or no acoustic manifestation. The converged

target values, together with the phone boundaries provided from

the TIMIT database, form the input to the FIR filter in Stage I

of the model and the output of the filter gives the predicted VTR

frequency trajectories.

Three example utterances from TIMIT (SI1039, SI1669, and

SI2299) are shown in Figs. 8–10. The step-wise dashed lines

( / / / ) are the target sequences as inputs to the FIR filter,

and the continuous lines ( / / / ) are the outputs of the

filter as the predicted VTR frequency trajectories. Parameters

and are fixed and not automatically learned. To facilitate

assessment of the accuracy in the prediction, the inputs and out-

puts are superimposed on the spectrograms of these utterances,

where the true resonances are shown as the dark bands. For the

majority of frames, the filter’s output either coincides or is close

to the true VTR frequencies, even though no acoustic informa-

tion is used. Also, comparing the input and output of the filter,

we observe only a rather mild degree of target undershooting or

reduction in these and many other TIMIT utterances we have

examined but not shown here.

V. RESULTS ON MODEL PREDICTION

FOR CEPSTRUM DYNAMICS

The predicted VTR dynamics by model Stage I in Figs. 8–10

are fed into model Stage II, to produce the predicted LPC

Fig. 8. f /f /f /f VTR frequency trajectories (smooth lines) generated
from the FIR model (Stage I) using the phone sequence and duration of a
speech utterance (SI1039) taken from the TIMIT database. The target sequence
is shown as stepwise lines, switching at the phone boundaries labeled in the
database. They are superimposed on the utterance’s spectrogram. The utterance
is “He has never, himself, done anything for which to be hated – which of us

has. ”

Fig. 9. Same as Fig. 8 except with another utterance “Be excited and don’t

identify yourself” (SI1669).

Fig. 10. Same as Fig. 8 except with the third utterance “Sometimes, he

coincided with my father’s being at home” (SI2299).

cepstra in Figs. 11–13, respectively, for the previous three
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Fig. 11. LPC cepstra with order one (C1), two (C2), and three (C3) predicted
from the Stage II of the model (solid lines) using the input from the FIR model’s
output for utterance SI1039. Dashed lines are the LPC cepstral data C1, C2, and
C3 computed directly from the waveform.

Fig. 12. Same as Fig. 11 except with the second utterance (SI2299).

Fig. 13. Same as Fig. 11 except with the third utterance (SI1669).

example TIMIT utterances. Note that the model prediction

includes residual means, which are trained from the full TIMIT

data set using an hidden Markov model toolkit (HTK) tool.

The zero-mean random component of the residual is ignored

in these figures. The residual means for the substates (three

for each phone) are added sequentially to the output of the

nonlinear function (8), assuming each substate occupies three

equal-length sub-segments of the entire phone segment length

provided by TIMIT database. To avoid display cluttering,

Fig. 14. Block diagram for the N -best evaluation procedure.

only LPC cepstra with orders one (C1), two (C2), and three

(C3) are shown here, as the solid lines. Dashed lines are the

LPC cepstral data C1, C2, and C3 computed directly from the

waveforms of the same utterances for comparison purposes.

The data and the model prediction generally agree with each

other, somewhat better for lower order cepstra than for higher

order ones. We found that these discrepancies are generally

within the variances of the prediction residuals automatically

trained from the entire TIMIT training set (using an HTK tool

for monophone HMM training).

VI. APPLICATIONS TO PHONETIC RECOGNITION

A. Recognizer Design

In the two-stage implementation of the coarticulation and

reduction model presented so far, we ignore the variability in

the VTR dynamics in the prediction of the cepstrum dynamics.

This significantly simplifies the application of the model as

a phonetic recognizer. That is, given any phone sequence

with possible phone segmentation (e.g., derived from -best

hypotheses), model Stage I generates deterministic VTR tra-

jectories. Feeding these into probabilistic model Stage II, a

likelihood can be computed using the Gaussian assumption

of the cepstral residual. This scoring mechanism allows the

recognizer to perform -best rescoring in a straightforward

manner. The block diagram for the recognizer that executes the

-best evaluation procedure is shown in Fig. 14, where Stage-I

and Stage-II of the model for each of the -best hypotheses

are represented by the blocks labeled as “FIR (filter)” and

“nonlinear mapping,” respectively. The “table lookup” block

represents the construction process for forming the VTR target

sequence, using the target values stored in the table that are

trained in advance.

In the recognizer evaluation procedure, shown as the oper-

ation following the “nonlinear mapping” block in Fig. 14, the

nonlinear prediction of LPC cepstra according to (8) is directly

subtracted from the LPC cepstral data as the recognizer’s

input acoustic features. This difference, separately for each

of the -best hypotheses computed from a state-of-the-art

triphone HMM, forms the residual sequence that follows a

monophone Gaussian HMM. We use an HTK tool (Hvite)

to directly compute the likelihood for the residual sequence,

which is exactly the same as the likelihood for the original LPC
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cepstral data sequence, given each of the -best hypotheses.

This likelihood computation operation is shown in the blocks

labeled as “Gaussian score” in Fig. 14. The results of this set of

computations are reranked as the recognizer’s final output for

the recognition accuracy determination, which we will present

shortly.

One specific aspect of the recognizer design that we have de-

veloped in this work is to naturally incorporate the delta and ac-

celeration features into the recognizer. We first decompose the

LPC cepstral feature differentials (delta and acceleration) for

each frame in the data into the part that can be predicted from

the VTR [according to (8)] and the part that cannot be predicted

[i.e., the residual terms in (7)]. Thus, the basic

Stage-II model as described in (7) is expanded to ones that con-

sist of delta and acceleration components as well. For the pre-

dictable part in these new components, we directly compute the

frame differentials of the predicted LPC cepstral values from

(8). For the unpredictable part that cannot make use of any infor-

mation from the model, we train the delta and acceleration pa-

rameters of means and variances for the residuals using the cor-

responding frame-differential LPC cepstral training data. One

desirable property of this technique for treating delta and accel-

eration features is that in the degenerative case where the pre-

dictive model component (8) is removed by setting it to zero, the

recognizer automatically becomes a conventional (monophone)

HMM system.

B. Recognizer Training

To compute the previous residual likelihood requires that

residual means and variances of each substate of each phone

in the -best hypotheses be known. These (monophone) pa-

rameters are trained automatically from the TIMIT training set.

Again, given the training script, including both phone sequences

and phone boundaries, model Stage I generates deterministic

VTR trajectories and model Stage II generates predicted cep-

stral trajectories. Subtracting the predicted cepstral trajectories

from the cepstral training data on a frame-by-frame basis gives

residuals for the training set. Treating these residuals as the

“training data,” we apply an HTK tool to train a set of residual

monophone HMMs. The mean and variance parameters of

these models are used for -best rescoring as described in the

preceding subsection.

Because our current simplistic two-stage implementation

of the model ignores the VTR variability across speakers and

across utterances, it is necessary to provide reasonably accurate

VTR targets in order to obtain a high likelihood for the correct

phone sequence. To achieve this, we have developed and ap-

plied an iterative target training and adaptation technique for

each of the -best hypotheses before the rescoring process

takes place as described previously.

Finally, the parameters in model Stage I, and are empir-

ically set for the TIMIT experiments. They are determined by

fitting the model prediction to the formant data in training utter-

ances. It is found that the fixed values of 7 and 0.6 al-

ready provide good fit to the data for most of the TIMIT training

data we have examined. It appears that these parameters may not

need to be made as dependent on phones, on speakers, or utter-

ances for the TIMIT data.3

C. Phonetic Recognition Task and Results

The phonetic recognition experiments which we carried out

to evaluate our two-stage coarticulatory model are based on

the widely used TIMIT database. We built two-stage acoustic

models using the standard 61 label set, which are folded into 48

classes, in training the residual means and variances for each

subsegment of each class. VTR targets are trained and then

adapted for each phone segment instead of subsegment. For

diphthongs and affricates, two separate targets are trained, as-

suming one target following another. Phonetic recognition er-

rors are tabulated using the 39 labels adopted by many other

researchers to report recognition results. Model parameters are

trained on the designated training set of 462 speakers, and re-

sults are reported on the standard core test set with a total of

192 utterances by 24 speakers.4

We use the -best rescoring paradigm to evaluate the new

two-stage coarticulatory model. For each of the 192 core test

utterances, we use a standard triphone HMM with a decision

tree to generate a very large -best list where 2000. A

biphone language model is used to generate this -best list in

order to improve the quality of the list as much as possible. Also,

Mel-frequency cepstral coefficients with delta and acceleration

features are used in generating this -best list. The reason why

a language model and Mel-frequency warping are used for the

HMM to generate the -best list is because we desire to create

the list with the highest quality possible in order to provide the

richest set of candidates possible for scoring the new recognizer

based on the two-stage, target-filtering model. The oracle phone

error rate is about 17% for the full top 2000 list. Although the

use of Mel-frequency warping for cepstral features is known to

benefit the HMM performance, it has not been used for the two-

stage, target-filtering model. This is because of the requirement

for model Stage-II to generate not the LPC cepstrum as in (8)

but its Mel-warped version. No simple analytical form of the

mapping function is available and to predict the Mel-warped

cepstra requires more complicated model Stage-II than the one

presented in this paper.

With the use of a flat phone language model and of the LPC

cepstra (including delta and acceleration) as features, the phone

recognition accuracy for the standard triphone HMM is 64%, as

shown at the top row in Table I. This baseline result is produced

by a full decoder in HTK. Under the above experimental con-

ditions, we evaluate the top-one accuracy (100% minus substi-

tution, deletion, and insertion errors) using the 2000 best

list for our new coarticulatory model. It gives 71.91%, signifi-

cantly higher than the triphone HMM (22% relative error rate

reduction), despite the use of only context independent model

parameters. To assess the effect of using the -best list gen-

erated by the HMM which is substantially different from the

new model, i.e., the effect of combining different recognition

3This is not the case, however, for other speech data such as Switchboard that
we have examined.

4We thank Dr. J. Glass of MIT who prompted us to use the core test set, and
provided us with the file list, for the evaluation.
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TABLE I
PHONETIC RECOGNITION ACCURACY ON TIMIT CORE TEST SET (192

UTTERANCES) USING THE BI-DIRECTIONAL TARGET-FILTERING MODEL OF

SPEECH COARTICULATION WITH A TWO-STAGE IMPLEMENTATION

(LABELED AS “NEW MODEL”) IN COMPARISON WITH A CONVENTIONAL

RECOGNIZER (LABELED AS “TRIPHONE-HMM”). NO LANGUAGE MODEL

IS USED, AND THE FEATURES FOR BOTH SYSTEMS ARE THE SAME

LPC CEPSTRA. THE HMMS MEAN AND VARIANCE PARAMETERS ARE

CONDITIONED ON TRIPHONES CLUSTERED BY DECISION TREE, USING THE

STANDARD HTK TOOLS. THE NEW MODEL IS PARAMETERIZED BY

CONTEXT-INDEPENDENT, SEGMENT-SPECIFIC VTR TARGET VECTORS, AND BY

THE CONTEXT-INDEPENDENT, SUBSEGMENT-SPECIFIC RESIDUAL MEANS AND

VARIANCES. N -BEST RESCORING IS USED FOR THE NEW MODEL, WITH

WIDELY VARYING SIZES OF N TO ASSESS THE ROVER EFFECT

systems (as related to the ROVER effect5), we rescore our new

model using a varying size in the -best list. The top-one

accuracies are listed in the remaining rows in Table I. As can

be seen, the ROVER effect is relatively minor, and it is virtu-

ally eliminated by using large -best lists for being between

1000 and 2000. The converging accuracy of 71.91% is, thus,

established that is not biased by the ROVER effect. Note that

the previous results are obtained with no use of combination

between the original HMM scores and the new model’s scores.

The new model’s scores are used alone to do reordering of the

-best list

VII. SUMMARY AND CONCLUSION

In this paper, we first presented a quantitative model for

predicting VTR dynamics, accounting for the related reduction

and “static” speech sound confusion phenomena. This model

is based on bidirectional filtering of phone-dependent, VTR

target sequences implemented with a temporally symmetric

FIR digital filter. This forms Stage I of an overall two-stage

speech generation model, where the final Stage II takes the

output of Stage I as its input and generates the LPC cepstra via

a parameter-free, analytical nonlinear prediction function. The

errors of this nonlinear prediction for the LPC cepstral speech

data are represented by phone-subsegment dependent Gaussian

random variables, whose parameters are automatically trained

from a set of phonetically labeled training data.

We present details of model simulation that demonstrates

quantitative effects of speaking rate and segment duration on

the magnitude of reduction. Both VTR dynamics and cepstral

dynamics as outputs from model Stage I and Stage II, respec-

tively, are compared with and shown to be close to real speech

data.

5The strict ROVER effect refers to that for combining system outputs [13].
Here we have a slightly different condition of combining two different system
properties at an intermediate level.

A phonetic recognizer is constructed using this new genera-

tive model of speech dynamics, and is evaluated in the standard

TIMIT phonetic recognition task. -best rescoring is used for

the evaluation, with varying size of from 100 to 2000. We

demonstrate 22% error rate reduction using the new model com-

pared with the standard HMM under the following three iden-

tical conditions: 1) the same input feature parameters of LPC

cepstra to the recognizers; 2) the same full set of TIMIT training

data; and 3) the same flat language models. This significant per-

formance gain is validated after removing the ROVER effect by

using an increasingly larger size of -best lists where a con-

verging recognition accuracy is observed.

The development of the model presented in this paper is moti-

vated by phonetic theories and experiments on sound reduction

in free-style speech. We intend to use the model as one major

source of a priori knowledge about the speech structure for au-

tomatic recognition of conversational speech. We have accumu-

lated evidence that the strong reduction and “static” sound con-

fusion in this mixed style of speech, ranging widely in the hyper-

hypo speaking continuum, are responsible for many recognition

errors by state-of-the-art automatic systems. The new model is

demonstrated in simulation experiments to be capable of re-

solving the confusion with dynamic speech specification, thus,

it would be more useful for conversational speech. conversa-

tional speech recognition. Our future research in this direction

involves relaxing the current simplifying assumption of deter-

ministic VTR dynamics at Stage I of the model, aiming at an

integrated solution that simultaneously takes into account the in-

evitable variabilities in both hidden VTR and observed acoustic

domains. We are currently also working on extending the LPC

cepstral features to the Mel-warped features within the same

generative modeling framework as presented in this paper.
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