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A Big Data Analysis Approach for Rail Failure
Risk Assessment

Ali Jamshidi,1 Shahrzad Faghih-Roohi,2 Siamak Hajizadeh,1 Alfredo Núñez,1,∗

Robert Babuska,2 Rolf Dollevoet,1 Zili Li,1 and Bart De Schutter2

Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail
failure could result in not only a considerable impact on train delays and maintenance costs,
but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure
by analyzing a type of rail surface defect called squats that are detected automatically among
the huge number of records from video cameras. We propose an image processing approach
for automatic detection of squats, especially severe types that are prone to rail breaks. We
measure the visual length of the squats and use them to model the failure risk. For the assess-
ment of the rail failure risk, we estimate the probability of rail failure based on the growth
of squats. Moreover, we perform severity and crack growth analyses to consider the impact
of rail traffic loads on defects in three different growth scenarios. The failure risk estimations
are provided for several samples of squats with different crack growth lengths on a busy rail
track of the Dutch railway network. The results illustrate the practicality and efficiency of the
proposed approach.
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1. INTRODUCTION

Among all transportation infrastructure, the rail-
way network is one of the most successful transport
systems for reducing transportation cost, traffic con-
gestion, and air pollution emission levels. On the one
hand, the increase in usage of the railway network re-
quires a systematic monitoring plan to keep the trains
running in a safe way as well as with the least possi-
ble disruptions.(1) On the other hand, a large amount
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of data are collected by frequent measurements from
the monitoring systems of the infrastructure and the
assets involved in the railway operations. These data
should be controlled, stored, and processed, such that
they can be employed to take all necessary actions
to guarantee the rail asset quality level desired by
the infrastructure manager.(2) The large amount of
data should be processed into actionable knowledge
within a certain time period.(3)

Risk is intuitively connected to decision making
under uncertainty.(4) Recent developments in big
data analytic for uncertainty management and risk
assessment of industrial systems have been studied
by Wu and Birge(5) and Choi et al.(6) Risk assessment
of large-scale systems is of current interest across
many application domains such as healthcare,(7) en-
vironmental safety,(8,9) transportation,(10–13) busin-
ess,(14) and product development.(15) In particular for
railway applications, risk assessment is critical for the
prediction of infrastructure health condition within a
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given time period. Continuous monitoring of railway
systems can guarantee the availability of data that
can be used to assess the risk of infrastructure fail-
ures. Also, the database constructed from continuous
monitoring of data will become larger and larger over
time. Thus, applying a big data analysis approach is
necessary in order to adequately monitor the infras-
tructure condition.(16)

Among all the railway infrastructure systems in-
volved in the train operation, the rail track plays an
important role in the railway networks. In an inten-
sively used network, a considerable amount of the
maintenance has to be allocated for the track, e.g.,
in the Dutch railway network, this amounts to al-
most half of the annual maintenance budget.(17) As
a high percentage of failures occurring in the railway
infrastructure is directly related to the rail, it is im-
portant to assess the failure risk of rails. The rail risk
assessment involves detecting the rail defects that can
potentially result in rail break and derailment in ex-
treme cases.(18–20) Rail surface defects are caused by
different factors such as fatigue due to large number
of trains passing over rail components at, especially,
welds, joints, and switches.(21) Early detection of sur-
face defects is important to mitigate disastrous conse-
quences of rail breaks. There are different methods
to diagnose the condition of rail defects, including
ultrasonic measurements,(22) eddy current testing,(23)

and guided-wave–based monitoring.(24) In general,
these methods are not able to detect defects in an
early stage of growth, i.e., not until the defects are
severe. In particular, detection of defects at the late
stage of growth imposes extra operation and mainte-
nance costs due to the fact that the only solution is to
replace the rail.

To address the limitations of the current mea-
surement methods, the use of video cameras installed
on trains has become popular.(25–27) The use of video
cameras avoids the error-prone, costly, and time-
consuming process of manual rail monitoring. More-
over, the videos taken from side cameras enable
the infrastructure manager to capture the real con-
dition of other track components such as fasteners,
switches, and sleepers. Using video cameras, one can
simply monitor whether the visible defects are at the
early or late stage of growth. This means that the in-
frastructure manager has the opportunity to observe
how the defect evolves over time in order to take ac-
tions at the right moment and to focus on the most
urgent places for maintenance operations. This can
lead to a significant reduction in the operation costs
induced by the defects and it can prevent potential

risks of rail breaks, reducing the risk of derailment.
Due to the large number and the high resolution of
the videos taken over the rail, an automatic detection
algorithm is required to process the huge number of
images from those videos.

The main contribution of the article is to assess
rail failure risk based on an integrated framework
that merges the information of two defect-related
variables: visual length and crack growth. There is
no similar approach in the literature for risk assess-
ment of rail failure that considers both variables. This
is due to the fact that in this case, a big data anal-
ysis problem has to be faced, as a result of which
usually railway maintenance managers look at only
one type of data and ignore the other influencing fac-
tors. We propose a risk function (Equation (1)) as a
composition of three functions: the probability func-
tion, the crack growth function, and the partially in-
versed severity function. To evaluate these functions,
we apply several techniques, including a deep convo-
lutional neural network (DCNN) for image process-
ing and defect detection, an N-step ahead prediction
model for defect severity and crack growth analysis,
and a Bayesian inference model for failure probabil-
ity estimation.

To implement our proposed framework, a par-
ticular type of surface defect in railway networks
called squat is considered in the case study. Further-
more, we give a proposed classification of the squats
in terms of the visual length. Thus, squats are clas-
sified according to different severities. These classes
can be used later for condition-based maintenance
where we have different maintenance operations for
different stages of the growth (rail grinding for light
squats and replacement for severe squats). However,
our approach can be generalized and applied for sim-
ilar cases when there is a need to analyze a huge
amount of image data for assessment of failure prob-
ability and risk function. For example, in a recent
work by Skakun,(28) satellite images have been em-
ployed to assess flood hazard risk. Moreover, in the
field of health science, abnormality detection using
image processing has become very popular.(29) There
are many cases in the literature where image data are
used to deal with risk assessment problem.(28–32) In
all these cases, as long as the focus is to detect abnor-
malities and failures among a big database of images,
the risk assessment approach proposed in this article
is applicable for merging attained information from
images.

This article is organized as follows. In Section
2, the proposed failure risk assessment model is
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Fig. 1. Flowchart of the proposed methodology.

presented, including the model framework. Section 3
addresses a real-life case study of the Dutch railway
network. Section 4 presents the results and discus-
sions. Finally, in Section 5, conclusions are presented.

2. FAILURE RISK ASSESSMENT MODEL

2.1. The Proposed Framework

In this section, we propose a failure risk frame-
work for analyzing the rail surface defects. The pro-
posed framework is depicted in Fig. 1. Video images,
ultrasonic detection,(22) and eddy current testing(23)

can all be used to detect the defects that can lead
to rail break. In this article, we rely on both the ul-
trasonic detection method and video images. On the
one hand, with ultrasonic measurement, we derive a
general characteristic of crack growth. On the other
hand, with video images, we analyze the growth of
the visual length of defects that are detected among
a huge number of rail images. Then, a sample of the
visual length of the detected defects is chosen for the
assessment of the failure risk model. The approach
can be employed for any type of rail defects.

In this framework, a large amount of image data
is automatically processed by a DCNN to detect
squats in Step 1 (see details in Section 2.4). The vi-
sual lengths of defects are measured from the de-
fect detected from the video images, and then used
for defect severity analysis in Step 2 (see details in
Section 2.2).

In Step 3, a crack growth analysis is performed
to estimate the crack growth as a function of mil-
lion gross tons (MGT) by using the data from ultra-
sonic measurements (see details in Section 2.3). In
addition, the probability of rail failure as a function
of crack growth is estimated using the crack growth
data.

Finally, we propose to assess the risk of rail fail-
ure with the composition of the probability function,
the crack growth function, and the partially inversed
severity function:

Risk ∝ FProb(FC(FS,inv.(V1, V2))), (1)

where V1 and V2 are two consecutive measurements
of visual length for a defect, detected by analysis of
image data, and FS,inv. relates V1 and V2 to MGT.
Function FC relates the estimate of MGT to crack
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growth, and function FProb estimates the probabil-
ity of failure based on the estimate of crack growth.
Thus, the risk is approximated relying on the failure
probability achieved in Equation (1). It means that
the failure probability represents the risk of failure
within a given MGT.

2.2. Severity Analysis

This section aims to model the visual length of
defects based on the MGT. MGT is a measurement
unit to show the total weight of freight and passen-
ger trains that pass over a given track in a given time
horizon. Thus, the MGT can directly influence the
growth of defects in the sense that an increase in the
MGT accelerates the defect evolution process and
the tracks with a lower train occupation are expected
to have a lower degradation rate than the busy tracks.

The defects are automatically detected using the
image processing method described in Section 2.4.
We measure the visual lengths of the detected defects
to use in severity analysis. We consider visual length
as an indicator of a defect severity. Analysis of rail
image data shows that the visual length of defects can
grow with different rates as the MGT increases.

To capture the dynamics of the growth, we keep
track of the growth for each individual squat to de-
termine the increase of the visual length in each
MGT step. A generic function is used to model the
growth. The function can be applied relying on dif-
ferent methods where two consecutive data measure-
ments are available. We present the benefits of using
an N-step ahead prediction model for the prediction
of squats growth in our recent studies. For details, see
Jamshidi et al.(33,34)

Thus, considering index as an MGT increment
counter, we use an N-step ahead prediction model
to describe the growth of visual length at different
growth scenarios h = h1, h2, . . . , hH:

⎧

⎨

⎩

V̂h
i (m + 1) = Fh

S

(

V̂h
i (m), Mh(m)

)

,

V̂h
i (0) = Vh

i (0),
m = 0, 1, . . ., N − 1,

(2)

where V̂h
i (m) is the estimate of the visual length for

each individual squat i at step m assuming scenario h,
Mh(m) is the total amount of MGT in step m, Fh

S (.) is
the one-step ahead prediction function, and Vh

i (0) is
the visual length measurement at the current step.

By partial inversion of Fh
S (.), we get Fh

S,inv.
as a

function of the visual length in two consecutive MGT
steps. In case of scarce data for the total amount of

MGT in each step, an approximation can be made
for the prediction model (2):

V̂h
i (m + 1) = Fh

S,approx.

(

V̂h
i (m)

)

. (3)

A fixed increment of the MGT is selected to keep
track of the growth of the visual length. Then, we ap-
ply function Fh

S,approx.
in an N-step ahead fashion to

reconstruct Fh
S . This yields the relation between vi-

sual length and MGT at step m. Once Fh
S is formu-

lated, we can partially inverse it to get Fh
S,inv.

as fol-
lows:

MGTh(m) = Fh
S,inv.

(

V̂h
i (m + 1), V̂h

i (m)
)

. (4)

2.3. Crack Growth Analysis

2.3.1. Crack Growth with MGT

The crack growth of defects is an important fac-
tor in rail breaks. Independent of the defect severity,
the growth of the crack length depends on the traf-
fic load (MGT). The idea in this article is to analyze
the data measured by ultrasonic detection technique
and to present a function for estimation of the crack
growth over the MGT:(33,34)

�L̂h
i (m) = Fh

C

(

M̂h(m)
)

, m = 0, 1, . . ., N − 1, (5)

where �L̂h
i (m) is the estimate of the crack growth

length for defect i at MGT step m assuming scenario
h and Fh

C(.) is the crack growth function. We will use
a similar approach as described in Section 2.2 to as-
sess the crack growth function.

2.3.2. Failure Probability

Regarding the crack growth data, assume the
crack growth length is � L, containing total I mea-
surements (� L1,� L2, . . .,� LI). Then the failure
event can be defined as:

I
⋃

i=1

{� Li > di } , (6)

where di is the critical level for the ith measure-
ment. This formula implies that a failure occurs if the
crack growth length exceeds the critical level. Logis-
tic function is appropriate for these data since the
variable is binomial, meaning that the system fails
if the measurement value satisfies Equation (6), oth-
erwise no failure.(35) Therefore, a logistic function is
considered for the likelihood of rail failure probabil-
ity f (� L|(a, b)) with parameters a (intercept) and b

(slope).
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Recently, the Bayesian inference model has been
employed extensively to assess model uncertainty
and robustness for stochastic data behaviors.(36–38)

Using a Bayesian inference model, variations of the
model parameters can be considered as a step-wise
degradation process. According to Bayes theorem,
if prior knowledge about the parameter θ = (a, b)
is represented by its probability density distribution
π0(θ), and if the statistical observations of crack
growth length have likelihood f (� L|θ), then rail
failure probability can be expressed as posterior dis-
tribution π :

π(θ |� L)=
f (� L|θ)π0(θ)

f (θ)
∝ f (� L|θ)π0(θ). (7)

Typically, Monte Carlo methods are used in
Bayesian data analysis to derive the posterior
distribution.(39,40) The aim of using a Monte Carlo
method is to generate random samples from the pos-
terior distribution in order to use them when it is im-
possible to analytically compute the posterior distri-
bution. Among all the Monte Carlo methods, slice
sampling is easier to implement as only the posterior
needs to be specified.(41,42) The slice sampling algo-
rithm selects samples uniformly from the region un-
der the density function. Therefore, in this article,
a slice sampling algorithm is selected to capture the
failure probability function.

2.4. Analysis of Rail Image Data

We consider a railway health monitoring situa-
tion where a huge amount of video data are regularly
collected. Subsequently, the video data need to be
analyzed in order to detect defects with a potential
risk of rail break. The data are collected by a set of
high-frame-rate cameras that are mounted on a mea-
surement train. The video recordings cover the en-
tire length of the measured distance on the rail track.
The mounted cameras capture the rails from several
angles to look at different components. The top view
camera is aimed at the rail surface defects, with each
frame covering a length of 15 cm of the track along
the longitudinal direction. The recordings are pre-
processed into video compilations where consecutive
frames have a few millimeters of overlap and the ef-
fects of variations in the train speed are removed.
Recordings made from (bi)monthly measurements of
roughly 6,500 km of rail amount to producing thou-
sands of gigabytes. Every 4 gigabytes of data cover
16 km of rail track. As a result, for recording videos

of the whole Dutch rail network, almost 10 terabytes
of data are required per year.

To be able to automatically extract defect infor-
mation from the data, we train and apply a DCNN(43)

to detect and classify the defects. Recently, applica-
tion of DCNN has become very popular in the do-
main of big data due to the increases in the size
of available training sets and algorithmic advances
such as the use of piece-wise linear units and dropout
training.(44–46) By passing through a number of con-
volutional layers, the images are fed to the DCNN to
train a set of shared neuron weights, referred to as
filters. Convolution filters detect distinguishing fea-
tures and form what is called a feature map. We use
rectified linear unit (ReLU)(47) activation functions
after the convolution steps, and max-pooling lay-
ers to efficiently down-sample the outcome of each
layer. Moreover, to prevent overfitting to the train-
ing data, we use dropout layers before each convo-
lutional layer. Overfitting occurs when a classifier is
fitted too closely to the sample data set that is unable
to accurately describe the entire population, result-
ing in a high error over the test data. The dropout
layer is known to prevent this by randomly disabling
some activation from the previous layer.(48) The con-
volutional and pooling layer are finally attached to a
sequence of three fully connected layers to get class
predictions.

The DCNN is trained by iterative feed forward
of the training examples through the network and
by calculating the error with respect to the desired
outcome. The error and its gradient are then eval-
uated at the last layer of the network and back-
propagated through all the layers to adjust all the
weights. Repeating this process until decreasing the
error to a certain limit is called the gradient descent
algorithm.(47) We use a widely applied variation of
the algorithm where on each iteration, the error and
gradients are calculated using a randomly selected set
of training examples usually called a mini-batch.(47)

3. CASE STUDY

In this section, a track from the Dutch railway
network is considered to illustrate the capabilities
of the proposed methodology. Track availability can
be affected by rail surface defects. Among all types
of rail surface defects, like rail corrugation, head
checks, shatter cracking, vertical splits, head hori-
zontal splits, and wheel burns, squats play an impor-
tant role in having a significant impact on the health



6 Jamshidi et al.

Fig. 2. Architecture of the proposed DCNN model.

condition of the track. Therefore, our main focus is
on detecting the squats in this case study.

We select a sample from these data that con-
tains recordings over a track in the north of the
Netherlands from Zwolle to Groningen correspond-
ing to approximately 300,000 captured frames. Two
successive measurements of the same location along
the track are matched together using the available
time and geographic data. In total, 4,220 samples
are labeled and used for training and testing of the
neural network model. Of the total set of samples,
3,170 are normal rail samples and roughly 1,000 are
squats.

The proposed DCNN architecture for analyz-
ing this number of image frames is presented in
Fig. 2. Initially the input images are down-scaled to
375×275 pixels and converted into gray scale. The se-
quence of three fully connected layers translates the
extracted high-level features from the previous layers
into three classes representing the normal rail, trivial
defects (seed squats), and squats.

Trivial defects appear in the form of spots
or small damages to the rail head, while squats
are usually defects that are fully grown indenta-
tions and deformations of the rail surface. The nor-
mal class includes all other components such as
plain rails, switches, welds, and possible nondefect
contaminations.

To train the network, a set of manually labeled
examples is collected from several locations along
the measured track and is compiled into a training
set for each one of the three classes. The network is
trained once and then is used for multiple time pre-
dictions. The training time is 40 hours per 1,500 ex-
amples. Once the network is trained, it is used to find
squats in the large pool of previously unseen sam-
ples (prediction). These samples are collected from
other monitoring sessions. Unlike the training time,
the prediction time is insignificant (30 seconds per

Light Squat Medium Squat Severe Squat

Fig. 3. A sample of squats in different classes of severity, the red
arrows show the evolution of the crack when it gets severe.

15,000 examples). The prediction result then has an
average binary accuracy of 96.9% (squat vs. nor-
mal) when training on 80% of the labeled data set
and testing on the remaining 20%. By putting a high
acceptance threshold on the network output re-
sponse, we opt to detect the correct cases of squats,
trivial defects, and the normal cases.

Hence, after training and testing, we use the
model to predict the severity of squats from the large
amounts of available unlabeled data, from which we
choose 109 detected squats for manual measurement
of visual lengths in the track Zwolle–Groningen.
Then, the samples are used in the next step where the
growth of visual lengths is considered as described
in Section 2.2. Here, squats with a visual length be-
low 15 mm are considered as light squats, in which
cracks have not appeared yet (surface initiation is as-
sumed, and we cannot see beneath the surface from
the image). Squats with visual length ranging from 15
to 30 mm are considered to be at the medium stage of
growth. The medium squats evolve to severe squats
when the network of cracks spreads further. Fig. 3
shows reference photos of squats ranging from light
to severe together with crack evolution.

Light squats will evolve into medium or severe
squats after repeated train passes. Once the squat
is severe, the squat will evolve into a defect with
surface-initiated cracks growing along the depth be-
neath the rail surface.(49)
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Fig. 4. Estimation of the visual length of the squats for m = 1, and based on real data.

Following the detection of squats by image pro-
cessing, we apply the approach as described in Sec-
tion 2.2 for this particular case to construct a severity
function. From real data of visual length, we estimate
Fh

S,approx.
from Equation (3).

Fig. 4 shows the relation between two consecu-
tive measurements of visual length for a fixed value
of MGT step (m = 1). Relying on the physical under-
standing of how a squat grows, we fit a polynomial re-
gression model of degree 3, using the least-absolute
residual method,(50) to represent the stochasticity of
the growth. The residual plot together with the R-
square value of 0.9778 determines how well the poly-
nomial model fits the data. We consider the fit model
as an average growth scenario, and the three-sigma
control limits as slow and fast scenarios.

We use the estimated function of Fig. 4 for eight-
step ahead prediction, and consider a fixed MGT
increment of 3.01 in each step. As a result, a model-
based prediction function for the visual lengths ver-
sus MGT is depicted in Fig. 5, considering the three
scenarios of average (a), fast (b), and slow (c).

The dotted line shows the upper bound of the es-
timation for visual length, i.e., it is very rare to ob-
serve a squat with a length over the upper bound in
reality.

Assuming Vh
i (m) = 0, the visual length at MGT

step m + 1 at the fast scenario reaches the upper
bound with an MGT (MGTh1

= 15.06) lower than at
the average scenario (MGTh3

= 21.83) and at the slow
scenario (MGTh2

= 51.32). It means that the degrada-
tion process in the fast scenario is more accelerated
than in the average and slow scenarios as the traffic
load on rail increases.

As described in Section 2.3.1, we estimate the
crack growth function, Fh

C(·), by relying on ultra-
sonic measurement data. The model-based relation
between the crack growth length and MGT is shown
in Fig. 6. In addition, three different scenarios are
considered to capture the crack growth dynamics, in-
cluding the average scenario, the slow scenario, and
the fast scenario. As seen in the figure, at the fast sce-
nario, crack propagation of the squat at a given MGT
is significantly faster than squats in the average and
slow scenarios. For example, at MGT = 10.36, it is
estimated that the crack length of a squat grows 1
mm in the slow scenario, 2 mm in the average sce-
nario, and 8 mm in the fast scenario. We can assess
the risk of rail failure considering any of the different
scenarios of crack growth length.

In the failure probability model, we consider that
a rail is prone to fail when a squat reaches a crack
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Fig. 5. Growth of squat visual length over MGT for the following model-based growth scenarios: (a) average, (b) fast, (c) slow; the dotted
line depicts an upper bound of squat visual length.

Fig. 6. A model-based relation between
crack growth length and MGT.

length of 9 mm. The crack length of each squat is
measured to see how it has grown over MGT, and
how many cracks have reached a length of 9 mm or
even more.

We use normal priors for the regression pa-
rameters (a, b). Relying on the data for the crack
growth length, the parameters are estimated by a
slice sampling algorithm considering 1,000 samples.
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Fig. 7. Posterior distributions of regression parameter a.
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Fig. 8. Posterior distributions of regression parameter b.

Fig. 9. Probability of rail failure based on the growth of crack length.

Respectively, Fig. 7 and Fig. 8 show how the mean
of the parameter a and b varies over the samples and
converges to a constant value. As seen in the figures,
the posterior means of parameters converge to a sta-
tionary status after the first 50 samples.

4. RESULTS AND DISCUSSION

For a detected squat with measured visual
lengths in one MGT step, we estimate the risk of
rail failure as follows. From the model in Fig. 5,
we estimate the MGT for the visual lengths in two
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Groningen

Zwolle

8 mm 14 mm

16 mm 28 mm

42 mm 57 mm

37 mm 51 mm

54 mm

= 0.064

= 0.102

= 0.289

= 0.282

= 0.242
41 mm

Fig. 10. A sample of failure risk estimates for
5 squats over the track.

consecutive measurements. Then, from the model in
Fig. 6, we find the crack growth length for the esti-
mated MGT. Finally, we estimate the failure proba-
bility from the crack growth length in Fig. 9.

The failure probability plot represents how prob-
able a squat fails in the next MGT step when the
crack growth length is given. As an example, if the
crack length of a squat increases 6 mm for MGT =

7.04, the probability that the squat could lead to a
rail break is roughly 0.82.

In Fig. 10, a sample of five squats is visualized,
and the estimates of failure probability from the
given visual lengths are presented.

For instance, the squat with V1 = 42 mm and
V2 = 57 mm will cause a rail break with a probabil-

ity of 28.9% in next MGT step, if no maintenance ac-
tion is operated. However, no serious failure threat-
ens the squat at the early stage and the failure prob-
ability is then almost 10% (see the squat with 16 mm
in visual length). In Table I, more samples of squats
are presented.

The table includes 64 samples of squats with their
measurements of visual length for two MGT steps.
As expected, the squat at the severe stage will be
prone to a rail break if no operation is carried out on
the rail within a given MGT step. For example, there
is a 53% chance of failure for the 64th squat in which
the crack growth length is 4.10 mm within the given
MGT step. The estimated risk values for the squats
at the late stage indicate the need for immediate rail
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Table I. Failure Risk Estimation for a Sample of Squats, Detected on the Track Zwelle–Groningen

Squat V1 V2 � L FProb Squat V1 V2 � L FProb

1 3.65 4.56 0.02 0.055 33 16.41 21.87 0.48 0.079
2 8.20 9.11 0.03 0.056 34 10.03 14.58 0.42 0.076
3 3.65 5.47 0.05 0.057 35 6.38 19.14 0.46 0.078
4 7.29 9.11 0.05 0.057 36 8.20 21.87 0.48 0.079
5 3.65 6.38 0.08 0.058 37 17.32 23.70 0.55 0.083
6 5.47 8.20 0.09 0.059 38 7.29 20.96 0.49 0.080
7 6.38 9.11 0.09 0.059 39 6.38 20.96 0.53 0.082
8 4.56 8.20 0.10 0.060 40 9.11 27.34 0.63 0.087
9 5.47 9.11 0.11 0.060 41 11.85 18.23 0.60 0.085

10 2.73 7.29 0.13 0.061 42 8.20 30.08 0.78 0.095
11 3.65 8.20 0.13 0.061 43 14.58 23.70 0.77 0.094
12 4.56 9.11 0.14 0.061 44 28.25 31.90 0.95 0.104
13 2.73 8.20 0.15 0.062 45 11.85 21.87 0.90 0.101
14 5.47 10.03 0.15 0.062 46 10.03 20.96 0.94 0.103
15 6.38 11.85 0.17 0.063 47 14.58 30.08 1.17 0.122
16 7.29 12.76 0.19 0.064 48 30.99 37.37 1.55 0.156
17 3.65 10.03 0.19 0.064 49 13.67 30.99 1.31 0.134
18 4.56 10.94 0.19 0.064 50 12.76 29.16 1.29 0.133
19 5.47 11.85 0.21 0.065 51 10.03 24.61 1.20 0.125
20 8.20 14.58 0.21 0.065 52 20.05 24.61 1.48 0.151
21 10.03 12.76 0.25 0.067 53 13.67 34.63 1.48 0.151
22 2.73 10.94 0.24 0.067 54 24.61 31.90 1.91 0.190
23 6.38 13.67 0.24 0.067 55 31.90 41.92 2.23 0.231
24 7.29 14.58 0.24 0.067 56 10.94 40.10 1.95 0.194
25 6.38 14.58 0.27 0.068 57 22.78 30.99 2.35 0.248
26 3.65 12.76 0.27 0.068 58 24.61 34.63 2.56 0.277
27 9.11 18.23 0.29 0.069 59 27.34 38.28 2.62 0.286
28 2.73 13.67 0.34 0.072 60 39.19 55.59 3.05 0.348
29 6.38 16.41 0.34 0.072 61 23.70 35.54 3.09 0.355
30 8.20 19.14 0.38 0.074 62 33.72 52.86 3.69 0.461
31 17.32 22.78 0.46 0.078 63 28.25 46.48 3.87 0.493
32 8.20 20.96 0.44 0.077 64 30.99 51.04 4.10 0.532

replacements. For the squats at early stage, a grind-
ing operation is suggested to postpone rail failure by
treating the squats.

5. CONCLUSIONS

In this article, we present a methodology for the
risk assessment of rail failure for a type of rail sur-
face defects called squats. A big data analysis ap-
proach is used to automatically detect squats from
rail images. The visual lengths of squats are mea-
sured in order to use them in the severity analysis
model, which captures the growth of visual length
over MGT increments. In addition, due to the influ-
ence of crack growth on estimation of the failure risk,
a crack growth analysis based on MGT has been per-
formed. At the end, a Bayesian model is employed
to estimate the failure probability. By relying on the
estimated failure risk, the infrastructure manager is

able to take actions at the right time and the right
place in order to prevent unexpected consequences
induced by rail breaks. While this article is focused
on the analysis of squats, the results can also be ap-
plicable for the analysis of other types of rail defects.
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