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Abstract 

This research develops a MapReduce framework for automatic pattern recognition based on fault 

diagnosis by solving data imbalance problem in a cloud-based manufacturing (CBM). Fault diagnosis 

in a CBM system significantly contributes to reduce the product testing cost and enhances 

manufacturing quality. One of the major challenges facing the big data analytics in cloud-based 

manufacturing is handling of datasets, which are highly imbalanced in nature due to poor 

classification result when machine learning techniques are applied on such datasets. The framework 

proposed in this research uses a hybrid approach to deal with big dataset for smarter decisions. 

Furthermore, we compare the performance of radial basis function based Support Vector Machine 

classifier with standard techniques. Our findings suggest that the most important task in cloud-based 

manufacturing, is to predict the effect of data errors on quality due to highly imbalance unstructured 

dataset. The proposed framework is an original contribution to the body of literature, where our 

proposed MapReduce framework has been used for fault detection by managing data imbalance 

problem appropriately and relating it to firm’s profit function. The experimental results are validated 

using a case study of steel plate manufacturing fault diagnosis, with crucial performance matrices 

such as accuracy, specificity and sensitivity. A comparative study shows that the methods used in the 

proposed framework outperform the traditional ones.  

Keywords- big data analytics, class imbalance problem, radial basis function, support vector machine 

(SVM), fault diagnosis and cloud-based manufacturing.  
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1. Introduction 

The growing implementation of lean and six sigma programs has made a significant impact 

on the manufacturing industries in the last two decades. The manufacturers have witnessed 

tremendous improvements in the product quality and yield, in addition to reduction in product 

variability and waste through these programs. However, some variability is inevitable despite 

the implementation of lean techniques in most of the processing environments such as 

chemicals, pharmaceuticals, telecommunication and manufacturing of heavy equipment. In 

manufacturing environment, the Internet of Things (IOT) describes a virtual world where our 

day-to-day objects are embedded with sensors and radio tags, which make these objects 

accessible via a network as well as via transmitting of real-time data using internet. Although 

RFID tags are most favoured among the wireless transfer techniques, however several other 

tagging technologies such as barcodes, QR codes, Near Field Communication (NFC) and 

digital watermarking are extensively used in manufacturing. The implementation of such 

techniques in product and process identification generate large amount of data on a daily 

basis, resulting in large data sets. These data sets have a huge potential for generating 

knowledge to help in manufacturing decision making.  For example Andreadis (2015) 

proposed a framework, which combines social media data with live streaming process to 

optimize the computer aided design process of a product. His framework used the opinions of 

potential customers and Computer-Aided Manufacturing (CAM) for the selection of cutting 

conditions while learning from the experience of external expert technicians at the same time.  

Fault diagnosis in a manufacturing process is a practical and prevalent situation- in which the 

issue of class-imbalance is highly applicable. Condition-based maintenance techniques on 

such datasets do not work properly and as a result it is difficult to build reliable models for 

accurate fault diagnosis. Generally, most traditional machine learning algorithms would 

produce poor classification when applied to such highly imbalanced datasets. Owing to 

intricacies involved in the production activities in manufacturing industries, manufacturers 

have to resort to more granular methods, such as advanced analytics to critically examine and 

correct process flows to improve product yield.  

Advanced analytics deals with the application of statistical and other mathematical tools to 

scrutinize available business data leading to improved manufacturing practices that may 

significantly enhance productivity. In the context of the use of data mining techniques in 

manufacturing industry, pattern recognition and automated inspection come under the 

inspection category (Tiwari and Vidyarthi 2000; Lee and Lapira 2013; Lee et al. 2013; 



Choudhury et al. 2014; Tsai and Huang 2015).  Analysis of Variance (ANOVA), regression 

analysis, classification and clustering have been frequently used for analysis of quality 

control data in manufacturing sector. Statistical process control charts and principal 

component analysis are used for quality monitoring, replacement analysis and clustering of 

customer warranty data. However, one of the major emerging problems is the growing size 

and types of data in manufacturing environment and the inability of typical database tools to 

analyse these large data sets. It is generally not possible to analyse the big datasets with the 

help of simple traditional database tools and techniques.  

One of the major challenges of large datasets is how to handle data imbalance problem. Most 

of the existing machine learning techniques work best when many instances of each classes 

are approximately equal. When a number of instances of one class far exceed the other class 

the problem arises in classification due to this data imbalance. Data imbalance problem arises 

when the total number of instances of positive classes of data is far less than the total number 

of instances of negative classes of data. To solve this problem, a solution would be needed to 

identify patterns and relationships among different steps during the manufacturing process 

with which we can optimize the set of factors that have the utmost effect on the yield. Big 

data and advanced analytics have now allowed manufacturers to monitor product quality as 

well as delivery accuracy in real-time, enabling them to prioritize time sensitive orders for 

improved delivery (Rajagopal and Anand, 1999; Choudhury, Shankar and Tiwari 2006). Real 

time monitoring using machine based sensors allows manufacturers to better understand 

product usage, routine maintenance requirements and even assess product’s life. The three 

main areas where the use of big data can drastically benefit manufacturing industry include 

better forecasts of product demand, valuable information about plant performance across 

diverse metrics and quicker service and operational support to customers.  

Cloud-based Manufacturing (CBM) is a recent development in manufacturing system 

which is developed from existing manufacturing models and enterprise 

information system under the support of cloud computing, virtualization and Internet of 

Things (IoT). IoT works towards improving manufacturing process, customer experience and 

energy efficiency (Li et al. 2010). Manufacturing companies have started using this paradigm 

for reconfiguring the production lines for enhancing the efficiency, reducing the product 

lifecycle costs and facilitating optimal resource allocation. CBM refers to a decentralized and 

networked manufacturing model based on enabling technologies such as cloud computing 

(software as a service (SAS), platform as a service (PAS) and technology as a service (TAS)), 

http://www.tandfonline.com/action/doSearch?Contrib=Tsai%2C+C
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IoT and service-oriented architecture (SOA). All of these are the backbone of this new 

paradigm (Xu 2012; Wu et al. 2015). 

In most of the above mentioned applications, IoT offers practical solutions to the related 

manufacturing industry problems (Kumar et al. 2005; Ravi, Shankar and Tiwari 2005; 

Khilwani et al. 2007). Dutta et al. (2013) identified a set of 39 cloud computing risks, which 

concentrated around diverse operational, organisational, technical, and legal areas. These 

risks can be used by business managers and IT experts, as a checklist for risk exploration, 

management and their control or prevention in cloud adoption. Various real-life areas such as 

health care, pharmaceuticals, telecommunications and financial trades generate enormous 

amounts of data. The foremost challenge for big data analytics in cloud manufacturing or 

virtual manufacturing is the smart handling of the vast amount of data that is highly 

asymmetric in nature.  

The class imbalance problem is recognized as an important topic in machine learning 

research. Several methods such as resizing the training set that involves oversampling of 

minority class samples and downsizing the majority class samples have been used to deal 

with imbalanced dataset problems. To deal with the issue of classification of imbalanced 

datasets, several approaches have been proposed. These approaches can be categorized into 

two groups: Data sampling solutions that modify the original training set, and algorithmic 

modifications that modify the algorithms (Wang and Japkowicz 2008; Fernandes et al. 2013). 

Several methodologies have been suggested to deal with the problems of standard learning as 

well as for ensemble techniques such as data sampling, algorithmic modification, cost-

sensitive learning etc., in the existing body of literature (He and Garcia 2009; Larose 2005).  

Major weaknesses of these methodologies are difficulty in finding an optimal separating 

hyperplane that correctly classifies data points as much as possible and separates the points of 

two classes as far as possible, by minimizing the risk of misclassifying the training samples. 

While these methods work with highly imbalanced datasets having ratios of 100 to 1 or more, 

the hyperplane classifies every instance as negative and all positive instances can be ignored 

completely by the classifier due to treated as noise. 

In this research, we propose a framework for automatic pattern recognition based fault 

diagnosis by meeting the challenge posed by data imbalance problem that exists in big 

datasets using RHadoop programming environment. Fault diagnosis in a manufacturing 

process is a practical instance in which issue of class-imbalance is highly applicable. Majority 

of the collected data from system will exhibit the normal operating behaviour while faulty 

operating behaviour is limited. Condition-based maintenance techniques on such datasets do 



not work properly and as a result it is difficult to build reliable models for the accurate fault 

diagnosis. To solve this problem, in the first phase of our proposed framework, we analyse 

several techniques to deal with data imbalance problem and then a combined radial basis 

kernel SVM and Synthetic Minority Over-sampling TEchnique (SMOTE) classifier is used to 

solve the big data imbalance problem. Furthermore, performance of this method is compared 

with traditional data imbalance solver techniques like under-sampling, SMOTE and over-

sampling. In second phase of this framework, target value of dataset is replaced by SVM 

classifier output leading the dataset then to become balanced in nature. In third and last 

phase, the modified dataset is used to train the logistic regression for automatic pattern 

recognition and to predict the faults using a steel plate manufacturing dataset in RHadoop 

programming environment.  

This paper is organized as follows: Section 2 discusses the data imbalance handling 

techniques and identifies existing research gaps by reviewing relevant literature in addition to 

the motivation for the proposed framework. Section 3 provides the description of radial basis 

kernel SVM based classifier, MapReduce programming and alternative measures of data 

imbalance, which have been adapted in our proposed framework. Section 4 presents the 

proposed framework, selection of input/output, datasets for logistic regression using 

RHadoop integration. Results are presented in Section 5. The final section discusses the 

implications of this study and provides concluding remarks. 

2. Literature Review  

A trustworthy data is very essential for delivering the high quality manufactured products. In 

a cloud-based manufacturing environment, any delay or mistake in production process due to 

great data interconnectivity could lead to major problems in other areas of manufacturing. 

CBM requires an infrastructure for their adequate transmission between different 

workstations at all time during manufacturing process which needs assurance for reliable and 

correct data. Lee, Bagheri and Kao (2015) have proposed a concept of transforming 

manufacturing industry to the next generation using Cyber-Physical Systems (CPS) in which 

the requirements of information from all perspectives is closely monitored and then 

synchronized between physical factory floor and cyber computational space. Simani and 

Fantuzzi (2000) proposed a neural network based automatic faults diagnosis method to test a 

power plant dataset. Lo et al. (2002) used the qualitative bond graphs method integrated with 

genetic algorithm for solving the problem of fault diagnosis.  



Kumar et al. (2006) used the SVM method for quality control by using kernel distance in 

SVM. Result showed when quality characteristics are not multivariate normal then 

hyperplane is less sensitive to the noise and outliers for designing the quality control charts. 

Dong et al. (2008) proposed a method based on rough set theory and wavelet neural network 

to predict the power transformers’ faults. Mishra et al. (2009) proposed a probabilistic casual 

model for predicting the automatic fault diagnosis. In this research, rollout strategy-based 

probabilistic causal model (RSPCM) has been proposed to solve the graph-based multiple 

fault diagnosis problems but the main drawback of the proposed algorithm is that it is able to 

diagnose only those faults in dataset which have prior probabilistic knowledge.  Lau et al. 

(2010) developed a neuro–fuzzy inference system in gas phase polypropylene manufacturing 

process for predicting the online faults using ANN. Deng, Lin and Chang (2011) have used 

the multiclass SVM for fault diagnosis in the field of air defence gun. Eslamloueyan (2011) 

proposed a neural network based method for predicting the faults of Tennessee–Eastman 

process. Wang et al. (2015) proposed an approach for predicting the failure time with 

degradation sequence of mechanical devices by combining exponential regression method 

and parametric empirical Bayesian (PEB) technique. However, all these researchers have 

used the traditional data mining techniques for predicting the faults on small and balanced 

datasets. They did not apply any approach, which deals with the issue of classification of 

imbalanced dataset. With an explosive growth of data and emergence of big data in the 

current manufacturing environment, extraction of interesting knowledge from the vast 

amounts of data has become a challenge since the traditional data mining techniques are not 

suitably adaptable to the new space and time constraints. The scope of this research is to 

focus on training the machine learning algorithm for automatic pattern recognition and fault 

diagnosis by managing the imbalance data set problem.  

Kubat and Matwin (1997) developed a concept based on selective under-sampling, which did 

not consider the minority samples. They introduced a data cleaning procedure and removed 

borderline majority samples using Tomek-Links theory for under-sampling. Chawla et al. 

(2002) proposed another popular re-sampling approach: SMOTE (Synthetic Minority Over-

sampling TEchnique), in which rather than over-sampling by replacement, artificial samples 

are generated. This approach creates a new sample for each minority class sample, on the line 

joining it to its nearest minority class neighbour. To compensate the imbalance in training 

samples, Barendela et al. (2003) proposed a weighted distance function in the classification 

phase of k-NN (K-Nearest Neighbour). Batista, Monard and Bazzan (2004) proposed two 

hybrid sampling techniques 1) SMOTE and Tomek-Links and 2) SMOTE and ENN (Edited 



Nearest Neighbour). Japkowicz and Jo (2004) put forward a clusters based over-sampling 

approach, in which the majority and the minority class samples are first clustered and then 

majority class clusters are over-sampled for obtaining the largest cluster. Guo and Viktor 

(2004) proposed a boosting method with several over-sampling techniques and concluded 

that the boosting approach enhances the prediction accuracy of the classifier. Huang et al. 

(2004) also presented a Biases Minimax Probability Machine to resolve the class imbalance 

problem. Han, Wang and Mao (2005) proposed a borderline SMOTE, only technique that 

involves over-sampling the borderline minority samples prior to the application of SMOTE. 

Wang and Japkowicz (2008) also proposed a boosting algorithm in conjunction with SVM, 

which increased minority class prediction in comparison to traditional SVM. Other widely 

used methods for solving the imbalanced data problems include bagging and boosting based 

ensemble methods (Chawla et al. 2004; Hido, Kashima and Takahashi 2009; Batuwita and 

Palade 2012). Liu, Wu and Zhou (2009) also proposed a double ensemble classifier that 

involves bagging and boosting. In their study, EasyEnsemble and BalanceCascade used 

bagging in the first ensemble and later on for each bag AdaBoost was also used. To improve 

the classification performance in imbalanced datasets, Seiffert et al. (2010) combined 

sampling and ensemble techniques, RUSBoost (Random Under Sampling with Boosting). 

Nonetheless, they concluded that making the dataset completely balanced results in inferior 

performance than having the imbalanced one. Farquad and Bose (2012) proposed a support 

vector machine (SVM) based approach to deal with class imbalance problem and proved that 

SVM can be used for reducing the noise in training data. 

All above methods produce some unexpected problems when dealing with class imbalance 

problems. For example, under-sampling may eliminate some minority class data which is 

potentially very important for learning process. Over-sampling method may increase the 

probability of overfitting while dealing the imbalanced dataset. Furthermore, all ensemble 

methods based on Boosting and Bagging might abandon some useful data because they use 

sampling methods to obtain the balanced data in each iteration so they might suffer from 

overfitting as well. All these methods would perturb original class distribution of this data 

either adding the minority class or deleting the majority class instances. For the cost-sensitive 

learning methods like EasyEnsemble, BalanceCascade  and  RUSBoost it is very difficult to 

get the accurate misclassification cost. If classification results are not stable then different 

misclassification cost gives different induction results.  

Farquad, Ravi and Raju (2014) used a hybrid approach based on balanced data for churn 

prediction using Naive bayesian classifier. Barua et al. (2014) proposed a novel over-



sampling method for hard to classify samples that involved identification of the most 

informative minority class samples. In this method, weights were assigned to each minority 

sample in accordance with their distance from the majority class samples, and then using 

these, weighted samples synthetic samples were generated. However, the above-mentioned 

methods may not deliver desired performance while dealing with class imbalance problems. 

For example, methods involving under-sampling may omit some valuable data that could be 

crucial for a learning process, whereas methods involving over-sampling may enhance the 

likelihood of over-fitting during the induction process. Moreover, ensemble methods 

involving bagging and boosting might also exclude some useful data during sampling in 

order to acquire balance data else may lead to over-fitting in the training process. Hence, 

these two kinds of methods would perturb the original class distribution of the imbalanced 

data either by deleting the majority class instances or by adding the minority class instances. 

Rio et al. (2014) analyse the performance of different techniques to deal with imbalanced 

dataset using random forest classifier and MapReduce programming environment.  

Previously we have discussed that separating hyperplane of a SVM model, which is 

developed with the imbalanced dataset can be skewed towards minority class and generally 

this skewness can play an important role for degrading the performance of this model. When 

we want to apply highly effective detection ability on the objective function of SVM for only 

one class such as credit card fraud detection problem or diagnosing a disease, we are not able 

to give a measure of the detection ability of a separating hyperplane. The standard algorithms, 

e.g. Adaboost, BalanceCascade and RUSBoost increase the weights of misclassified 

instances and decrease correctly classified using the same proportion, without considering the 

imbalance of the dataset. Thus, traditional boosting algorithms do not perform well on the 

minority class. Our proposed hybrid approach SMOTE+ SVM is quite different from all 

conventional data imbalance methods because it handles the class imbalance problems by 

converting imbalanced binary learning process into multiple balanced learning processes and 

does not change the original data class distribution. The first part of this hybrid approach 

focuses on maximizing the margin and the second part attempts to minimize the penalty term 

which corresponds to misclassifications. 

The proposed method is based on hybrid SMOTE and radial basis function based kernel 

SVM approach, which is further modified using R-Hadoop integration especially to deal with 

imbalanced datasets and to make it applicable to big data analytics simultaneously. 

 



3. Approaches to deal with imbalance problem 

This section discusses different approaches adopted in this research to deal with imbalance 

problem. In addition, it also provides some contextual information regarding Big Data and 

Hadoop MapReduce Programming Framework environment.  

3.1 SMOTE 

Chawla et al. (2002) proposed SMOTE (Synthetic Minority Over-sampling TEchnique) 

which is an over-sampling based approach in which minority class is over-sampled by 

creating the “synthetic” examples preferably by over-sampling with replacement. Minority 

class is oversampled by using each minority class sample and introducing synthetic examples 

along the line segments joining of the k-minority class nearest neighbours. We take the 

difference between feature vector under consideration and then work with the nearest 

neighbour. Then we multiply this difference by a random number whose value is between 0 

and 1, and finally the feature vector under consideration is added to it.  

3.2 Radial basis function kernel of Support Vector Machine (SVM) 

Support vectors are the set of training samples which are extracted by the algorithm used to 

find optimal hyperplane. Distance between separating hyperplane and closest data point is 

called separation margin.  The goal of SVM is to find the optimal hyperplane that maximizes 

the separation margin. In machine learning, radial basis function kernel (Gaussian) or RBF 

kernel is the most used kernel function in different learning algorithms. Gaussian kernel has 

full-covariance structure and it requires (𝐷𝐷 + 3)/2 parameters to be learned where D= distance 

between input vector x and prototype vector (Bishop 1995). RBF kernel on two different 

samples x and x', represented as the feature vectors in the some input space is defined as-  
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3.3 Big Data, Hadoop MapReduce Programming Framework  

3.3.1 Big Data  

When a dataset becomes so large that there is no possibility to analyse, process and visualize 

this dataset with the help of simple database tools then the dataset becomes big data. Big data 

can be characterized by the following 5Vs of data: Volume, Variety, Velocity, Variability and 

Veracity. 

Volume is the size of data which determines the value and potential of the data in Exabyte, 

Yottabyte and Zettabyte.  

Variety can be either structured, semi-structured or unstructured in nature depending upon 

collection of datasets. 

Velocity - Velocity refers to the speed of generation of data or how fast datasets are 

generated and processed to meet the challenges and demands of the environment.  

Variability - Variability refers to inconsistency which may be exhibited by the data at times 

requiring more care in handling and managing data effectively. 

Veracity – Veracity refers to the correctness/quality of data. The quality of the data being 

captured can vary greatly. Accuracy of analysis depends on the veracity of the source data. 

 

3.3.2 MapReduce framework for training 

In this section, we describe MapReduce framework for taking a simple example of word 

count big data classification. Figure 1 shows, the MapReduce framework based on word 

count classification system, which consists of six important functions: input, splitting, 

mapping, shuffling reducing and result. The overall operation of map-reduce architecture is 

given by  

Datasets → Splitting → Mapping → Shuffling → Reducing → Result 

A big dataset is firstly divided into number of subsets which contains many attributes. 

Generally, map phase is written by the user. It takes an input pair and generates the set of 

intermediate key/value pairs. From the logic perspective, all data is treated as a Key (K) and 

Value (V) pair. A Hadoop cluster is specifically designed for storing and analysing large 

amount of unstructured data. A Hadoop cluster distributes the data analysis workload across 

http://searchstorage.techtarget.com/video/Understanding-storage-in-the-Hadoop-cluster


multiple cluster nodes that work to process the data in parallel way. The reason why Hadoop 

is well suited to this type of data is because Hadoop works by breaking the data into pieces 

and assigning each "piece" to a specific cluster node for analysis. Another benefit to Hadoop 

clusters is scalability and cost. When a piece of data is sent to a node for analysis, the data is 

also replicated to other cluster nodes. That way, if a node fails, additional copies of the node's 

data exist elsewhere in the cluster, and the data can still be analysed. We can understand the 

MapReduce process of word count program as shown in figure 1. 
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                   Input                                     Splitting                                   Mapping                             Shuffling                  Reducing              Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Overall operation of MapReduce architecture with word count example 
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3.4 Alternative measures of data imbalance 

Accuracy is mainly used to compare the performance of classifiers and predictive models, 

especially with the balanced datasets. For imbalanced datasets, accuracy generally will not be 

appropriate because prediction model can achieve the high accuracy but fails to recognize the 

minority class examples. So other evaluation measures need to be defined. 

 

Confusion Matrix 

Suppose N= 175  Predicted Class 

 

                         Actual (No) 

                         Actual(Yes) 

No Yes 

50 (TP) 20   (FN) 

5   (FP) 100 (TN) 

                                                                      Confusion Matrix 

In this confusion matrix out of 175 manufacturing cases, the classifier predicted “Yes”-120 times and 

“No”- 55 times but in reality 105 cases in this sample have the manufacturing faults and 70 do not. 

This is the basic understanding of confusion matrix. 

True positive (TP): Number of positive instances correctly predicted. 

False negative (FN): Number of positive instances wrongly predicted as negative. 

False positive (FP): Number of negative instances wrongly predicted as positive 

True negative (TN): Number of negative instances correctly predicted. 

From the confusion matrix the following measures can be derived: 

True positive rate (TPR) 

                     
TP

TPR
TP FN

=
+

                                                                               (3)                                                            

True negative rate (TNR)  

                     
TN

TNR
TN FP

=
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False positive rate (FPR)  
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=
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No.of TP+ FN + No. of TN +FP
                                                        (9)                                                                                          
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. .
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No of TP No of TN
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+
                                                                                        (10) 

 

.

. .

No of TN
Specificity

No of FP No of TN
=

+
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( ) ( * )Geometric Mean GM Sensitivity Specificity=                                               (12)          

Likelihood ratio- it is used to the utility of tests how much likely any patient who tests 

positive has the disease compared with the one who tests negative. 

1

Sensitivity
Likelihood Ratio

Specificity
=

−
                                                            (13) 

The proposed framework as discussed in the next section uses above-mentioned techniques 

and results can be seen in the form of confusion matrix, performance table and error report in 

Table 2, 3 and 4.  

4. Proposed framework and RHadoop model development  
 

4.1 Framework of this research 

 

      Figure 2 presents the MapReduce framework of train machine learning for automatic fault 

detection based on balanced data using Big Data Analytics. The proposed framework uses a 

two phase hybrid balancing approach for solving big data imbalance problem based on 

SMOTE+ Radial basis Kernel function support vector machine (SVM). SMOTE generally 

over-samples the minority class by calculating n numbers of nearest neighbours and generate 

the synthetic samples. In the first phase we apply the SMOTE technique on the available 

unbalanced data. It oversamples the minority class and then Radial basis Kernel function 



support vector machine (SVM) is trained with best prediction accuracy. In the second phase 

we replace the target value in the unbalanced dataset by the predicted value of trained Radial 

basis Kernel function SVM then available unbalanced data is modified and we obtain the 

balanced data. Now we use this balanced data to train the machine learning for automatic 

fault pattern recognition on a case study based on steel plate manufacturing dataset. 

According to the existing situation analytics manager can add some more needed dimensions 

in the balanced dataset and then manufacturing industries can use this dataset for making 

better forecasts of product demand and supply, valuable information about plant performance 

across diverse metrics and providing quicker service and operational support to customers.  

4.2 Benefits of Big Data Analytics framework 

LNS Research and MESA International completed a survey in 2014 to see the role of big data 

for improving the manufacturing performance. The findings of this survey are- Better 

forecasting of production and product demand, faster after sales service and support to 

customers and better understanding of plant performance across multiple metrics- these 

constitute the top three areas where the big data analytics can improve the performance of 

manufacturing process (Goodwin 2014). Demand forecasting is the prediction process of 

what will be the level of company's existing product sales. If we have a large historical 

dataset then it would be best to determine the demand forecast using quantitative approach 

like time series models. The inputs from sales and marketing, finance, and production should 

be considered for these models. In this model, forecasting is based only on past values and we 

assume that factors that influence the past, the present and the future sales of products will 

continue. Now a days the majority of businesses realize that the new goal is to deliver 

performance and responsiveness as quickly as possible because companies want clean and 

balanced dataset to make enhanced business decisions in real time but also want to lower cost 

and improve operational efficiency. They are focusing on the speed of real-time business by 

http://blog.lnsresearch.com/blog/bid/194972/Attitudes-on-How-Big-Data-will-Affect-Manufacturing-Performance-DATA


using big data and predictive analytics. Big data analytics is playing an important role to 

solve the problems like data integration, performance, scalability and quality. Using big data 

analytics manufacturing companies are able to unify the daily production activities to the 

financial performance of the manufacturer. Manufacturers are able to make trade-offs on 

which suppliers receive the most time-sensitive orders. Using sensors collected data on all 

machines in a production unit provides immediate visibility into how each is operating. 

Manufacturers can monitor quality, training variances and performance by each machine and 

each operator in real time. By converting daily/hourly production to financial metrics, 

manufacturing companies can maximize their profitability by using big data and advance 

analytics. 

4.3 Dataset description and Model Validation 

 

Steel plate’s faults dataset:  Buscema, Terzi and Tastle (2010) used this data for making a 

new meta-classifier and then Frank and Asuncion (2010) uploaded this data on UCI Machine 

Learning Repository. Steel Plates Faults Data Set classifies the steel plates’ faults into 7 

different categories: Pastry, Z_Scratch, K_Scatch, Stains, Dirtiness, Bumps and Other Faults. 

The goal of this job was to train the machine learning for automatic pattern recognition. The 

dataset have 1941 instances labelled by different fault types. Each instance of the dataset has 

27 independent variables and one fault type. 
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Figure 2. Proposed MapReduce Framework of train machine learning for automatic fault detection based on balanced data using Big data 

analytics 
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5. RHadoop Integration Program Result & Discussion  

     We propose a two phase hybrid balancing method for solving big data imbalance problem 

based on SMOTE and radial basis function (RBF) kernel based SVM. SMOTE generally 

over-samples the minority class by calculating n numbers of nearest neighbours and generates 

the synthetic samples. In this case, we used 50 nearest neighbours. In the first phase, SMOTE 

technique has been applied on the available imbalanced data. It oversamples the minority 

class and then RBF based SVM is trained with best prediction accuracy. In the second phase, 

we replace the target value in the imbalanced dataset by the predicted value of trained SVM. 

Now available imbalanced data is modified and as a result the balanced dataset is obtained. 

To illustrate the effectiveness of the proposed approach, we use a steel plate manufacturing 

dataset, which is highly imbalanced in nature and has (90:10) ratio for the class distribution.. 

After applying the MapReduce code of RHadoop integration program on required dataset, 

our research framework will be able to answers some of the following questions:  

- What are the main causes of late deliveries? 

- What at areas for knowledge gaps in the production process?  

- How to best predict breakdowns and breakouts?  

- When is the high delay period during production? 

- What are the financial implications of late deliveries? 

- What are the effects of data errors on quality and late deliveries? 

 

Table-1 presents the result of distribution ratio of classes before and after pre-processing 

using this two phase hybrid SMOTE and RBF based SVM. Column 5 and 6 in Table 1 

present the distribution ratio of majority and minority class instances before and after pre-

processing using the hybrid approach. Table 2 presents the results when the best hybrid 

method is selected and then it trained by SVM and we show the results in terms of sensitivity, 

specificity, accuracy, geometric mean and likelihood ratio. It is observed from the results that 

pre-processing of data using the hybrid SMOTO+ Radial SVM gives the better prediction of 

minority class instances in terms of accuracy and GM. In last phase, this modified data is 

used for training the different machine learning algorithms on a case study of steel plate 

manufacturing dataset for predicting the faults and automatic patterns in “Yes” or “No” form 

by RHadoop integration. 



We can easily see these value in Lift charts, ROC curve and confusion matrix. Lift is the 

measure of a predictive model calculated as ratio between obtained results with and without 

predictive model. The Figure 3 and 5 shows a lift curve which indicating the perfect 

separation of the types ‘fault cases’ and ‘no fault cases’ detected by prediction model on steel 

plate manufacturing dataset. Receiver operating characteristic (ROC) curve which is shown 

in figure 4 and 6 is a plot that provide the performance of a binary classifier system when its 

discrimination threshold is varied. The graphical plot is drawn by plotting the true positive 

rate  against the false positive rate at different threshold settings. The true-positive rate is also 

known as sensitivity and false-positive rate is also known as the fall-out and can be calculated 

as (1 - specificity). Confusion matrix, also known as an error matrix, is a specific table that is 

used for visualization of the performance of supervised or unsupervised algorithm.  Each 

column of the confusion matrix represents the predicted class and each row represents actual 

class instances. When classifier gives probability of each class then we use the lift curve in 

prediction. Graph is built with cumulative number of cases (probability in descending order) 

on x- axis and number of true positive on y- axis. True positive are observations that are 

correctly classified. ROC (Receiver Operating Characteristics) curve uses the same variable 

on y-axis as used in lift chart (but is expressed as a percentage of maximum) and on x- axis it 

shows true negative (number of not important class members which is classified correctly) 

for the different cut-off levels. 

Table1. Ratio before and after Pre-processing using Hybrid SMOTE+ Radial Basis Kernel function 

SVM 

Data Technique Total 

Instances 

Non 

Fault 

Cases 

Fault Cases 

(Z-Scratch) 

Ratio Ratio after Pre-

processing using 

Hybrid 

SMOTE+ 

Radial Basis 

Kernel function 

SVM 

Original Data 1941 1751 190 90:10 78:22 

StratifiedRemoveFold 195 176 19 89:11 79:21 

50% Under-sampling 970 876 94 88:12 80:20 

SMOTE 2300 1760 540 67:33 56:44 

200 % Over-sampling 8764 7104 1660 77:23 65:35 

Kernel Filter 195 170 25 86:14 75:25 

 

 

https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Information_retrieval#Fall-out
https://en.wikipedia.org/wiki/Specificity_(tests)


Table 2. Result obtained after applying proposed Imbalanced approach using SVM 

 

Data Balance 

Technique 

Accuracy  Sensitivity  Specificity  Geometric 

Mean (GM) 

Likelihood 

Ratio 

Original Data 93.89 96.55 81.89 88.91 511.5 

StratifiedRemoveFold 85.37 96.49 53.06 71.56 205.5 

50% Under-sampling 87.30 97.68 56.63 74.37 225.4 

SMOTE 85.96 92.10 76.91 84.16 398.8 

200 % Over-sampling 96.84 97.43 89.18 93.21 900.4 

Kernel Filter 82.01 94.84 43.87 64.50 168.9 

 

5.1 Logistic Regression for Predicting faults  

RHadoop is a collection of five R packages and it is used for integration of R with Hadoop 

and allow users to analyse data with Hadoop. RHadoop is an open source distribution of 

Revolution Analytics. For more information on RHadoop, visit 

https://github.com/RevolutionAnalytics/RHadoop/wiki.Now. 

There can be only one dependent variable in the logistic regression. Logistic regression 

applies the maximum likelihood estimation after transforming dependent variable into a 

logistic variable. The dependent variable in logistic regression is generally dichotomous in 

nature and dependent variable can take the value 1 with the probability q and value 0 with the 

probability 1-q. In this paper we use the binary prediction of faults ‘Yes’ and ‘No’. We 

analyse the estimation results of logistic regression by using lift curve in RHadoop 

programming environment. Lift is the measure of a predictive model calculated as ratio 

between obtained results with and without predictive model. The Figure 3 and 5 shows a lift 

curve which indicating the perfect separation of the types ‘fault cases’ and ‘no fault cases’ 

detected by prediction model. These figures also represent the situation where no separation 

between the instances has been done. This type of problem occurs when fault probabilities 

are random in nature. We performed logistic regression with R and Hadoop integration on 

steel plates manufacturing dataset and obtained the result in Table 3 and 4. 
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Table 3. Confusion Matrix of Logistic Regression analysis on Training data score 

 

Training Data Score 

                 Residual DF          1252 Confusion Matrix 

Residual Dev.        331.2047  Predicted Class 

                 Iterations Used     7 Actual Class True False 

Multiple R²            0.723074 True 199 28 

 False 30 1022 

 

Table 4. Performance Table and Error report of Logistic Regression analysis on Training data and 

Validation data score 

 

Training Data Score (Error Report) Validation data score (Error Report) 

Class Cases Errors % Error Class Cases Errors % Errors 

True 227 28 12.33480176 True 153 24 15.68627451 

False 1052 30 2.851711027 False 699 18 2.575107296 

Overall 1279 58 4.534792807 Overall 852 42 4.929577465 

Training Data Score (Performance) Validation Data Score (Performance) 

Success Class Yes Success Class Yes 

Precision 0.868996 Precision 0.877551 

Recall (Sensitivity) 0.876652 Recall (Sensitivity) 0.843137 

Specificity 0.971483 Specificity 0.974249 

F1-Score 0.872807 F1-Score 0.862422 

 

 

 

 

 

 

 



 

Figure 3. Lift chart for Logistic Regression Classifier on Training dataset 

Figure 4. ROC curve for Logistic Regression Classifier on Training dataset 

 

The ROC provides critical acumen into the relative adjustments between the true positives 

and the false positives. The ROC depicts the association between the percentage of faults that 

are correctly predicted as faults, and the percentage of non-faults that are wrongfully 

predicted as faults. A standard ROC curve constitutes of several points, where each point 

corresponds either to a prediction result or to an instance of confusion matrix. ROC curve for 

Logistic regression on training and validation data has been shown in Figure 4 and 6. 



  

 

Figure 5. Lift chart for Logistic Regression Classifier on Validation dataset 

 

Figure 6. ROC curve for Logistic Regression Classifier on Validation dataset 

 

In case of ROC curves, the best performing model would be the one where the ROC curve 

passes through or close to (0,1). In such scenario, the model would have a 100% sensitivity 

(no false negatives) and a remarkable 100% specificity (no false positives). In cases of 

models such as the logistic regression models, instead of binary class decisions (fault or non-

fault), a rank or a score is produced, which necessitates the use of a threshold value as a 



binary classifier. If the output of the classifier is greater than the threshold, it would be 

classified as fault, otherwise it would fall under the non-fault category. The area under the 

ROC curve, denoted as AUC, is also used as a performance metric where it represents the 

probability of a correct discrimination between instances of fault and non-fault. The AUC 

values may vary somewhere from 0.0 to 1.0, and greater the AUC value, better would be the 

performance of the model. In general, models with AUC values greater than 0.5 are 

considered better than random models. 

 

 

6.  Conclusion and future direction 

      In the recent times, big data is at the juncture of a major breakthrough due to the 

exponential growth and availability of data. The traditional data mining approaches and 

software are unable to deal with the massive amounts of generated data. The objective of this 

study was to develop a MapReduce framework for automatic pattern recognition based on 

fault diagnosis by solving data imbalance problem in cloud-based manufacturing on steel 

plate manufacturing dataset. In a mature CBM system, the occurrence of fault conditions is 

few and far between. Fault diagnosis in a manufacturing process is a practical instance where 

issue of class-imbalanced is highly applicable. Majority of the collected data from system 

will exhibit the normal operating behaviour while faulty operating condition is limited. 

Condition-based maintenance on such datasets does not work properly and makes it difficult 

to build the reliable models for the accurate fault diagnosis. It is widely accepted that most of 

the machine learning algorithms are somewhat biased towards the majority class while 

dealing with the unbalanced big datasets. We evaluated our proposed hybrid method on steel 

plate manufacturing dataset and have shown the promising results. Although there was some 

loss in accuracy of result obtained after applying proposed imbalanced approach but 

generally a trade-off exist between performance and cost. In the present study, we analysed 

the efficiency of a hybrid SMOTE+ RBF-SVM Classifier in dealing with an imbalanced 

dataset. For the empirical analysis, we used the steel plate manufacturing fault diagnosis 

dataset, which is highly imbalanced in nature and has a class distribution ratio of 90:10. The 

methodology proposed in our study followed a two-phase approach. During the first phase, 

hybrid SMOTE+ RBF-SVM Classifier was used to replace the target values of the training 

data by the corresponding predictions of the classifier. In the second phase the balanced data 

was used to train the Logistic Regression. The intelligent approaches used in the first phase of 



our study exhibited better learning about the minority class instances from the modified 

training data, and also made better predictions regarding the minority class instances in the 

unseen test data. Using the modified dataset, the performance of logistic regression also 

improved exceptionally in our study because class distribution ratio has improved from 90:10 

to 78:22. Until now most of the previous studies have focused on simple feature selection 

using only pre-defined approach. If we can execute a number of dissimilar types feature 

selection approaches and then sequentially combine selection outcomes, then we can 

complement the errors made by the singular approach and we can also improve the 

performance of classifier. In future direction, it is very crucial to study described challenges 

in depth so that performance of classifier can be greatly improved with new methods. 
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