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Abstract—In this paper, we propose an offloading scheme to
transfer massive stored sensor data from rolling stock to railway
data centers. We apply a delayed offloading strategy for non-
critical stored data assuming that the critical data has been
already separated through an appropriate edge processing task
and has been sent via a real-time communication such as cellular
networks. We propose train stations as potential and feasible
spots for data offloading via available wireless local area networks
(WLAN) such as existing WiFi network at stations. Thus, stations
will not only be the places of passenger exchange but also
data exchange. We develop an analytical model customized for
the proposed offloading strategy in rail applications. Then we
validate the performance of our model through simulation in
various scenarios in Omnet. The simulation results shows an
accuracy of %98.67 for the proposed analytical model with
reference to the simulation results in Omnetpp. Additionally, by
using our proposed scheme, we can theoretically offload up to
5.43 GB per each stopping station.

Index Terms—big sensor data, delayed offloading, IEEE 802.11

I. INTRODUCTION

Future trains will be equipped with many sensors that

continuously sense and generate massive IoT (internet of

things) data [1]. According to [1], the amount of sensor data

produced by only one sensor for sensing the vibration of just

one wheel bearing in a train will be as huge as 10 TB during

eight operating hours. Thus, for a train with many parts that

will be sensed by wide variety of sensors [2], the created data

amount will be extremely massive and transmission of such

data into data centers will be a challenge.

Based on the risks for passengers and rail equipment, the

collected sensor data is classified into two classes including

critical data and non-critical data. The critical data can cause

serious damages for both people or rolling stocks and should

be declared immediately. However, the non-critical data is

used for long time analysis and can be evaluated by delay.

As trains operate in normal conditions for most of the time,

the amount of critical data is tiny and the main part of

sensor data is composed of non-critical data. Therefore, if

we could classify the sensor data through an appropriate

edge processing task (this is the subject of our another work
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will be able to employ different communication strategies to

transfer critical and non-critical data to railway data centers.

In this case, it is feasible to send the tiny amount of critical

data in a real-time manner (e.g. via cellular networks) while

temporarily store the non-critical data and deliver it later

via an appropriate offloading strategy [3]. In this way, we

will significantly reduce the data traffic over expensive and

infrastructure-based communication networks (such as cellular

or satellite networks) by offloading the massive part of data

through an available cheap WLAN’s channel such as WiFi

networks at stations (which approximately has no cost).

This is the idea behind our current work which based on

that, we propose train stations as potential spots to offload the

delay-tolerant non-critical sensor data. In this way, stations as

grounded infrastructure, has the feasibility to provide more

powerful computation and communication capabilities for our

offloading task. Additionally, if we employ the available

channels of WLAN in stations, this will cause large cost

saving because we will no longer need to install any rail/road

side units (RSU). The proposed offloading method will be a

train-to-station (T2S) communication between on-board units

(OBU) in trains and a data sink system in stations.

Therefore, the main contributions of this paper is:

• we propose a novel scheme for offloading of delay-

tolerant part of IoT data in rail networks,

• we develop an analytical model for the proposed offload-

ing scheme that can model the data offloading task for

passing stations as well as stopping stations,

• we provide an integrated equation that can estimate the

total offloading capacity for a given train during its trip

between two terminals including stopping and passing

stations

• we embedded the offloading model with a rate control

algorithm that enables the data to be offloaded even with

the minimum WiFi signal power and therefore, makes the

offloading capacity maximum.

The rest of the paper is organized as follows. Firstly, a short

literature review is presented in Section II. Then, we explain

our proposed offloading scheme in Section III. In Section IV,

we develop an analytical model for the proposed offloading



task. The simulation results will be presented in Section V

and we conclude the paper in Section VI.

Fig. 1. Overall diagram of the proposed station-based offloading scenario

II. RELATED WORK

Generally, there are two strategies for mobile data offloading

via WLAN’s including opportunistic and delayed offloading

[4]. Opportunistic offloading is applied when a vehicle or a

user passes an offloading spot in an opportunistic manner.

However, the delayed strategy is for the cases that data

transmission can be delayed until it meets a WLAN access

point (AP). Based on the scope of our current approach, we

review the delayed offloading strategy in the following.

Authors in [5] developed an analytical model for delayed

offloading of mobile users via an available WiFi network

aiming to maximize the offloading capacity. However, they

assumed a fixed data rate for the required WLAN and have

not considered the variations of wireless channel states due to

user mobility.

Kashihara in [6] has employed a high speed short range

communication such as Transfer Jet to collect data from users

at bus stops and then offloaded the stored data via fiber optic

at terminals. Therefore, the whole collected data must be

delayed until bus reaches a terminal and the author has not

provided any solution for data offloading at through bus stops.

Furthermore, he has only discussed “stopping” bus stops and

has not considered “passing” bus stops as extra potential spots

for data exchange.

Huang et. al. in [7] have proposed IEEE802.11p WiFi

network as an alternative communication method to cellular

network for data offloading. This approach fits to small-

scale data offloading and does not suit to the offloading of

large amount of data due to low throughput of IEEE802.11p

standard.

Due to the above issues, we proposed an analytical model

that does not only employ stopping stations for data offloading

in rail networks, but it will also consider the passing stations

to maximize the data offloading capacity. This will also restrict

the offloading delays to the short trip time between two

consecutive stations rather than long-time journeys among

terminals. Additionally, our proposed model will utilize a

dynamic data rate scheme vs. fixed data rate for data offloading

using a an appropriate rate control algorithm that enables the

offloading task to be feasible even with poor WiFi signals. Our

approach will also use IEEE802.11ac-based WiFi networks

that: 1) are currently available in train stations and do not

need to install any extra infrastructure, 2) can theoretically

provide high throughput up to 2.34 Gbps, and 3) is potential

to be upgraded by new rapid offloading technologies such as

IEEE802.11ay.

III. THE PROPOSED OFFLOADING SCHEME

Figure 1 illustrates the overall diagram of our proposed

station-based offloading scenario. In order to obtain an offload-

ing model that can estimate the offloading capacity of each

station, we need to estimate the two following parameters:

1) WiFi1 contact duration, which is the time of presence of

a train inside of WiFi communication zone of a given

station, and

2) feasible data throughput of offloading session during

such WiFi contact duration

For the short range WiFi networks, the contact duration is

limited to the duration that trains are sufficiently close to the

stations. The main opportunity that can be considered as the

contact duration is trains dwelling times for passenger ex-

change at stations. To increase the efficiency of our offloading

task, we add three more time slots for the contact duration.

These time slots include when a train is close enough to a

station during entering, leaving or passing such station. In fact,

our target is to start each offloading session as soon as a train

reaches the WLAN communication zone (i.e. upon detecting

strong enough beacons from WiFi AP’s at the stations).

The dwelling time of a train at each station is an stochastic

parameter that varies between a lower and upper bounds [8].

The lower bound, which for each type of train with a given

number of doors is the minimum time required for opening and

closing its all doors, is a definite quantity. However, the upper

bound, which is required for safely exchanging passengers,

is variable based on several parameters such as station type,

train specifications and hour/day of operation (e.g. peak or off-

peak times and weekdays or weekends) [8]. The other time

slots are also variable and depend on the speed of train when

entering, leaving or passing through a station. Although these

time slots are not so long based on the short range of WiFi

networks, the amount of offloaded data will be significant

thanks to the emerge of rapid offloading protocols such as

existing IEEE802.11ac as well as the other new upcoming

multi-Gbps standards like IEEE802.11ay [9].

As described, we integrate a rate control scheme into our

model that enables the offloading task to be started even with

minimum available levels of WiFi signal powers. Generally,

there are two types of rate control schemes: PHY layer based

schemes that control the data rate based on the parameters

of physical layer such as received signal strength (RSS), e.g.

Receiver Based Auto Rate (RBAR) algorithm; MAC layer

based algorithms that work based on MAC layer parameters

such as packet delivery ratio (PDR), e.g. Adaptive Auto Rate

1Since, in this work, we use IEEE802.11-based networks as the required
WLAN, we sometimes use the term “WiFi” instead of “WLAN”.



Fallback (AARF). Assuming an RBAR scheme, the maximum

data rates of a wireless channel can be theoretically determined

based on the mapping tables in the related standards such as

what illustrated in IEEE802.11 series [10]. These tables maps

the minimum levels of received signal-to-noise ratio (SNR)

of a radio signal to a modulation and coding scheme (MSC)

index. Each MCS can provide up to a definite data rate based

on the carrier frequency, the available channel bandwidth and

the number of spatial streams. The level of SNR is estimated

based on the level of noise and the received signal strength

(RSS). RSS is also estimated based on the transmission power,

the distance from AP, environmental (obstacles) and weather

(temperature, humidity, etc.) conditions [11] and [12]. Data

throughput is theoretically a percentage of maximum data

rate called MAC deficiency [13]. The actual amount of data

throughput is determined via in-field measurements.

IV. THE ANALYTICAL OFFLOADING MODEL

As explained in Section III, to build the proposed offload-

ing model, we need to find the WiFi contact duration and

throughput at each station. Generally, a train will not stop at

all through stations between terminals and for some stations,

it will only have a short passing. To obtain the maximum

efficiency in the offloading process, we consider both types

of stations including stopping stations (where a train stops for

passenger exchange) and passing stations (where a train just

passes with no stop).

For simplicity, in the all following equations, we assume that

at each station, a dedicated WiFi network has been allocated

only for the task of data offloading and only one train will be

permissible to offload data at each session. We also suppose

equal speeds and accelerations for a given train during entering

and leaving a station. Additionally, we do not affect the

location of antennas assuming that there are enough number

of antennas for data offloading, e.g. in the first, middle and

end parts of trains and station platforms.

A. Offloading Model for Stopping Stations

Figure 2 shows the timing diagrams of the offloading model

for both stopping and passing stations. Based on this, the

related WiFi contact duration, tr, for stopping stations is

obtained as follows:

Fig. 2. Timing diagrams of the offloading model for a) stopping stations, b)
passing stations

tstpr = ten + tdw + tlv (1)

where ten, tdw and tlv are entering, dwelling and leaving

times of a train at a given station, respectively.

Assuming that a train enters (leaves) the communication

zone of a given station at a given speed and gradually

decreases (increases) its speed with an acceleration of a until

it stops. If suppose a train enters or leave a station with equal

speed and acceleration, then for a maximum communication

zone of dmax for the WiFi network at that station, entering

(leaving) time, ten(lv), is simply obtained:

d =
1

2
at2 + v0t+ d0 (2)

where d0 is the distance between transmitter and receiver

during dwelling time for passenger exchange, and d is the dis-

tance after t second of leaving the station from the transmitter.

For leaving scenario, v0 = 0, as a train starts leaving a station

from standstill situation:

ten = tlv =

√

2dmax

a
(3)

For calculation of data throughput, we firstly need to esti-

mate the received signal strength (rss) at distance d from a

WiFi access point (AP) using log-normal shadowing path loss

model as follows [14]:

rss(d) = Pref − 10γlog(d/dref ) +Xσ (4)

where Pref is the received power at reference distance dref
and , γ is the path loss component (PLE), and Xσ is the

normally distributed random variable with zero mean and σ
standard deviation (SD). γ and σ reflect the environmental

conditions and are two and zero for free space, respectively.

Pref can be theoretically obtained by Pref = Pt −

20log(
4πdref

λ
) in dBm (supposing free space environment),

where Pt is the transmitter power and λ = c/f (c is the light

speed and f is the radio carrier frequency).

By substituting d from (2) to (4) and considering dref =
1m, rss based on time is obtained as follows:

rss(t) = Pref − 10γlog(
at2

2
+ d0) +Xσ (5)

According to IEEE802.11ac Standard [10], the maximum

bit rate of a WiFi physical link (PHY) is estimated based on

the level of signal to noise ratio (SNR). SNR can be calculated

as follows:

snrdBm = rssdBm − ndBm (6)

where ndBm, is the background noise level based on dBm at

receiver. From (5) and (6), snr based on time can be obtained:

snr(t) = Pref − ndBm − 10γlog(
at2

2
+ d0) +Xσ (7)

The maximum bit rate of WiFi PHY link is obtained from

MCS mapping tables based unavailable channel bandwidth,



bw, number of spatial streams, Nss, and duration of guard

interval (GI) as follows:

∀snrimin ≤ snr(t) < snri+1
min

F
−→ bitratemax = ri (8)

where F is the mapping function that maps every minimum

snr to a defined bit rate based on IEEE802.11ac Standard,

and i = {0, 1, 2, ..., 9} representing the MCS indexes in

IEEE802.11ac Standard. ri is the maximum bit rate that can

be reached based on level of snr.

Assuming a MAC efficiency of ρ, the throughput during

moving is simply obtained from the maximum bit rate in (8):

then(lv) = ρr (9)

Therefore, the offloading equation for stopping stations is

obtained as follows:

Astopping = thdw.tdw + 2

ten
∑

t=0

then.∆t (10)

In (10), thdwis the maximum throughput during dwelling

and ∆t is the time resolution for calculating snr.

B. Model for Passing Stations

For non-stopping stations, the related equation is simpler

than previous section, as the train only passes the station with

a constant speed (i.e. a = 0) with no stop:

tpsr = 2tps (11)

where tps = dmax

Vps
, if the train speed during passing is

supposed as Vps.

By substituting d = Vps.t+ d0 in (4):

rss(t) = Pr0 − 10γlog(Vpst+ d0) +Xσ (12)

Hence, model for non-stopping stations will be as follows:

Apassing = 2

tps
∑

t=0

thps.∆t (13)

where thpsis obtained through similar steps in (6)-(9).

C. Total Model for Offloading in a Rail Network

Based on equations in (10) and (13), for a train with

Nstpstopping and Npsspassing stations through its trip, the

total model will be obtained as follows:

Atotal =

Nstp
∑

i=1

(thi
dw.t

i
dw + 2

timax
∑

t=0

thi
t.∆ti) + 2

Npss
∑

j=1

tjmax
∑

t=0

thj
t .∆tj

(14)

In (14), i refers to the station number for stopping stations

and 1 ≤ i ≤ Nstp. Similarly, j is to the station number for

passing stations and 1 ≤ j ≤ Npss.

V. SIMULATION

To validate our developed analytical model, we compare the

results of our analytical model with the results obtained from

Omnetpp version 5.4.1, which is one of the most powerful

open source tool for network simulations. We assume that an

IEEE802.11ac-based WLAN is dedicated for data offloading at

each train station. IEEE802.11ac Standard can support channel

with different bandwidths including 20MHz, 40Mhz, 80MHz

and 160MHz. Therefore, we firstly, assume that only 20 MHz

channels are available for data offloading, as the worst case

scenario. In this case, we obtain the results for different

values of transmitter powers and path loss components in both

analytical and simulation environments. Then, we estimate

the maximum capacity of data offloading for both types of

stopping stations and passing stations.

Assuming that the dwelling time of a train is permissible

to vary between 20 to 60 seconds, we set tdw = 20sec, as

the minimum guarantied value and the worst case scenario

for data offloading at stopping stations. For acceleration of

trains during reaching and leaving a station, we suppose a

similar value of 1m/s2 with negative and positive signs,

respectively. For PLE, we apply different values including 2

(as free space), 2.5, 3 and 3.5 to show the performance of

our model for stations in different environments. This is a

realistic assumption for a rail network, as every station might

be located in places with different environmental conditions.

Additionally, we apply different values of transmitter power

including 20mw, 30mw, 40mw and 50mw as one of the

effecting element in the test results. However, due to the

similarities and to avoid repeated figures, we only illustrate

the results of some selected scenarios. For the all case studies,

the background noise level at receiver is set to −90dBm. We

also set the MAC efficiency to 44 percent in our analytical

model, which is directly obtained from simulation results

in Omnetpp. Additionally, to avoid generating results with

stochastic elements, we have not considered the shadowing

effect at stations as this effect causes random elements at every

simulation which is not the scope of this work.

Figure 3 shows SNR versus time for different environments

and transmitter powers for both analytical and simulation

results. As illustrated, the analytical model can accurately

follow the simulation model and can achieve up to 98.67

percent with reference to the simulation results from Omnetpp.

Figure 4 shows the estimated throughput versus time for

different values of PLE and transmitter power. The differences

between empirical and simulation results are due to employ

different data rate control methods. We applied RBAR method

in our analytical model to theoretically estimate the maximum

data throughput. However, for simulations in Omnetpp, we

used AARF algorithm. Additionally, this figure shows the

dependency of transmitter power and station environment on

data throughput.

To estimate the upper and lower bounds of offloading

capacity based on the empirical model, we have illustrated

the capacity for different environments for a given transmitter



(a)

(b)

Fig. 3. SNR vs. time for different values of a) PLE and b) transmitter power

power of 30mw in Figure 5. For the lower bound, we assume

that only wireless channels with 20MHz bandwidth and one

spatial stream is available and GI = 800ns. However, for the

upper band, we have supposed 160MHz channels, 3 spatial

streams and GI = 400ns. According to these assumptions, for

example for an environment with PLE=2.5, we can theoreti-

cally achieve up to 4.42 GB and 1.85 GB offloading capacity

for every stopping or passing stations, respectively (Figure 5).

It is imperative to re-emphasize that in the all above results,

we have assumed IEEE802.11ac protocol for the physical layer

of WLAN. However, by employing new coming standards

such as IEEE802.11ay with 100 Gb/s, we can offload much

more data using our proposed scheme. With such massive data

rate, we can roughly achieve up to 232GB data offloading per

each stopping station, in theory. This amount of data offloading

is roughly obtained via multiplying the ratio of maximum

theoretical data rates of IEEE802.11ay and IEEE802.11ac by

the maximum upper bound in Figure 5.

VI. CONCLUSION

In this work, we proposed the existing WiFi networks at

stations as intermediate hot spots for delayed offloading of

big sensor data from trains to data centers. As the proposed

method uses the existing WLAN at stations for data offload-

ing, we will not need to install any extra communication

infrastructure as RSU’s. We developed an analytical model for

the offloading task that can estimate the offloading capacity

(a)

(b)

Fig. 4. Throughput vs. time for different values of a) PLE and b) transmitter
power

Fig. 5. The theoretical lower and upper bounds of offloaded data estimated
by the empirical model for different environments at Pt = 30mw: a) for
stopping stations, b) for passing stations



for passing as well as stopping stations. Simulation results

showed an accuracy of 98.67 percent for our developed model.

Additionally, by using the proposed station-based offloading

scheme, we can theoretically offload up to 5.43 GB with

current offloading standards and several hundreds of GB

with the future ultra-fast offloading technologies such as

IEEE802.11ay.

In this paper, we did not affect the location of antennas in

the offloading model assuming that there are enough antennas

along the trains and stations. Therefore, in our future work, we

will make the model more realistic by considering the antennas

effects on the offloading capacity. We have also supposed a

dedicated WLAN at every station that are always available

for data offloading for any train. However, WLAN may be un-

available in some situations due to poor signal conditions, lack

of free channels because of other communications, etc. Hence,

in our future work, we will consider alternative methods such

as train-to-train communications in case of WiFi unavailability

at stations.
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