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Abstract
We rely on bilevel programming to model the problem of financial service provid-
ers that, in order to meet stakeholders’ demands and regulatory requirements, aim 
at incentivizing accounts’ holders to construct ESG-oriented portfolios so that the 
overall ESG impact of the firm is optimized, while the preferences of accounts’ 
owners are still satisfied. We analyze this complicated framework from a theoretical 
point of view and identify sufficient conditions that make it numerically tractable via 
a novel, specifically tailored algorithm, whose convergence properties are studied. 
Numerical testing on real-world data confirms the theoretical insights and shows 
that our model can be solved even when dealing with considerable problem sizes.
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1 Introduction

Sustainability is a concept that stems from the anxiety of all segments of society 
about the damaging effects that human activities have on the environment and, con-
sequently, on the economy and society in general. In particular, the recent environ-
mental, social, and financial crises have inevitably led regulators, practitioners, and 
scholars to strengthen sustainability research to investigate the various mechanisms 
of the companies’ behavior w.r.t. their sustainability initiatives and financial perfor-
mance from different perspectives. In this regard, over the past recent decades, many 
investors have turned their attention to the so-called Socially Responsible Invest-
ment (SRI), also called “ethical funds”. Even though there is no unique definition 
of SRI due to its heterogeneity (see, e.g., Sandberg et al. 2009), it is usually viewed 
as a class of investments that integrates into the decision-making process, along 
with appropriate features in terms of gain and risk (see Markowitz 1952, 1959), also 
non-strictly financial features, such as environmental, social, and ethical aspects. 
The idea of socially sustainable investment first appeared in the late 1980 s (see the 
seminal Bruyn 1991). Then, mainly in the last two decades, interest in SRIs has 
significantly grown (according to, e.g., Sparkes and Cowton 2004), and, as of 2020, 
global sustainable investments in five of the largest markets (United States, Canada, 
Europe, Japan, and Australasia) amounted to 35.3 trillion dollars, representing more 
than one-third of the total value of the assets traded in the same markets (see Global 
Sustainable Investment Alliance 2020).

As mentioned above, the development of SRI has its roots in various historical 
happenings that have led policymakers and financial practitioners to address the 
issue of socially responsible investing. The three main pillars of SRI are Environ-
mental, Social, and corporate Governance (ESG). The integration of these criteria 
into the evaluation process of companies and investments is a topic that is widely 
discussed by practitioners and academics (see, e.g., Widyawati 2020; Billio et al. 
2021; Chatterji et al. 2016; Berg et al. 2022; Li et al. 2021).

ESG was first mentioned in the “Who Cares Wins 2005 Conference Report” 
([42]), where institutional investors and regulators stressed the relevance of ESG 
factors in asset management and sustainable finance research. Accordingly, sev-
eral scholars have attempted to examine the impact of ESG factors on the portfo-
lio selection process to achieve sustainability goals (Utz et  al. 2014, 2015; Van 
Duuren et  al. 2016; Bermejo et  al. 2021; Cesarone et  al. 2022; Steuer and Utz 
2022). Furthermore, a large literature has fed into the debate over the years on the 
relationship between ESG ratings and financial performance (see Brunet 2019; 
Derwall et  al. 2005; Nofsinger and Varma 2014; Brooks and Oikonomou 2018; 
Giese and Lee 2019; Friede et al. 2015).

Following this global trend, the strategic plans of many companies focus not 
only on economic sustainability but also on environmental and social sustainabil-
ity. In fact, companies have invested in the sustainability of the decision-making 
processes to meet stakeholders’ demands and regulatory requirements.

In this context, the Sustainable Finance Conflict of interest Regulation (Euro-
pean Union 2019), the Taxonomy Regulation (European Union 2020), and the 
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Low Carbon Benchmark Regulation (European Union 2019) represent a new 
set of rules introduced by the 2018 Sustainable Finance Action Plan (European 
Union 2019), with the aim of better identifying the ESG profile of financial prod-
ucts, improving market transparency, and promoting sustainable investments. 
This new set of standards allows all market participants to pursue their sustain-
ability goals using a common regulatory framework established by government 
authorities.

Thus, companies’ asset management, while being classically interested in 
meeting each individual client’s expectations, to comply with the above men-
tioned stakeholders’ demands and regulatory requirements, also seeks to optimize 
the company’s overall (social) ESG impact that in turn depends on the aggregated 
trades from all the clients’ accounts they manage. We propose to rely on bilevel 
programming to model this complicated problem: at the so-called upper-level, the 
firm sets the best incentives to be given to the account’s holders so that its overall 
ESG impact, i.e. the ESG score from all the managed accounts, is maximized; at 
the lower-level, given such incentives, each individual account’s owner’s utility 
is guaranteed to be maximized, given the other accounts’ trades. In fact, since in 
practice multiple accounts from different clients are accommodated simultane-
ously and the related trades are pooled for common execution, the transaction 
costs for each portfolio depend on the trades from all the managed accounts and, 
in turn, at the lower-level, the multiple portfolios are coupled to each other by 
the market impact of their transactions (see Lampariello et al. 2021; O’Cinneide 
et al. 2006; Yang et al. 2013). Hence, in the same spirit of the analysis in Lam-
pariello et  al. (2021), to model the lower-level interplay of the multiple portfo-
lios, once the upper-level incentives are fixed, we adopt the (parametric) Nash 
Equilibrium Problem (NEP) formulation given by the collection of the accounts-
related (parametric) problems à la Markowitz where, apart from the classical 
portfolio expected return and risk terms, also transaction costs and portfolio ESG 
score are considered. Given the upper-level incentives, the trades of each client’s 
account are guaranteed to be in a Nash equilibrium: for no account, given the 
other accounts’ trades, the objective function can be decreased by modifying uni-
laterally the trades to any other feasible solution. Clearly, we assume the follow-
ing standard conditions to hold (see Nash 1951; Tirole 1988): accounts are man-
aged rationally and optimized simultaneously, and each account’s information is 
shared with the others. For more details, also concerning algorithmic develop-
ments, about Nash games, we refer the reader to Aussel and Sagratella (2017); 
Dreves et al. (2011); Facchinei and Sagratella (2011); Facchinei and Lampariello 
(2011); Sagratella (2016, 2017a, b, 2019).

Summing up, in line with the regulatory requirements described above,

• We rely on a novel bilevel approach to ESG-oriented multi-portfolio selection. 
We remark that, as a major departure from conceptually simpler models where 
the lower-level problem does not depend (parametrically) on upper-level 
design variables (see, e.g., Bigi et al. 2021; Dempe et al. 2010; Facchinei et al. 
2014; Lampariello et al. 2021; Scutari et al. 2012; Shehu et al. 2019) and, in 
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the context of multi-portfolio selection, Lampariello et al. 2021), in this work, 
we consider more general “genuine” bilevel structures;

• We provide a theoretical analysis of the resulting complicated single-leader 
multi-follower framework, identifying viable sufficient conditions that make it 
numerically tractable;

• We devise a provably (subsequentially) convergent novel algorithm that borrows 
from the sequential convex approximation paradigm (see Facchinei et al. 2020, 
2020, 2022, 2021 for some recent developments);

• Based on real financial datasets, we equip our study with some numerical experi-
ments that show that our problem model is solvable for considerable problem 
sizes.

The rest of the paper is organized as follows. In Sect. 2, starting from the single-
leader multi-follower framework we consider, we introduce our bilevel approach to 
model the ESG multi-portfolio selection, along with some theoretrical properties. 
The core Sect. 3 contains the presentation of some mild sufficient conditions that 
make our bilevel program numerically tractable by means of a sequential convex 
approximation-like method that is specifically tailored to deal with our problem 
model. In Sect. 4, we present and discuss the computational results of the numerical 
testing of our approach, based on real-world data. Finally, in Sect. 5, we give some 
concluding remarks and we outline possible future developments.

2  Problem model

2.1  A single‑leader multi‑follower framework

We considers K assets of a market and N accounts. Each asset k = 1,… ,K has its 
own return, relative to a single-period investment, that is denoted by the random var-
iable rk . For each account � ∈ {1,… ,N} , the aim is to choose the fractions y� ∈ ℝ

K 
of a given budget b� ∈ ℝ+ to be invested in K assets with the aim of optimizing mul-
tiple objectives; since we consider different budgets for different accounts, referring 
to amounts to be invested rather than relying on shares (with unitary budgets) seems 
a natural choice in a multi-portfolio context (see the discussion in Lampariello et al. 
2021, Sect. 2). Classical criteria to be considered are portfolio’s income, given by 
budget times portfolio’s expected return,

where �� = 𝔼(r) ∈ ℝ
K are expectations of the assets’ returns, and portfolio’s risk

for which we rely on portfolio’s return variance (y�)TΣ�y� , where

I�(y
�) ≜ b�(��)Ty� ,

R�(y
�) ≜

1

2
(b�)2(y�)TΣ�y� ,

Σ� ≜ �
�((r − ��)(r − ��)T )
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is the symmetric and positive semidefinite assets’ returns covariance matrix. Since, 
unless expectations are assumed homogeneous, the evaluation of investments is 
account dependent (see also the description in Lampariello et  al. 2021,  Section 
Sect.  2), we consider, for both the theoretical developments and the experimental 
study (see Sect.  4.1), assets’ returns expectations and covariance matrix that are 
related to each single account �.

As a main departure from standard choices à la Markowitz, we include in our 
analysis the transaction costs term

where v� ∈ ℝ
K denotes the current positions and Ω ∈ ℝ

K×K is the (common to all 
accounts) symmetric and positive semidefinite market impact matrix whose entry at 
position (i, j) gives the impact of the liquidity of asset i on the liquidity of asset j (for 
further information about Ω , see Lampariello et al. (2021) and Yang et al. (2013). In 
fact, we focus on liquidity as the main driver of transaction costs: when trades from 
different accounts are pooled for common execution, individual accounts can suffer 
the market impact caused, e.g., by liquidity shortages because the joint demand of 
assets might be much larger than the individual one. We adopt, for each account, the 
linear market impact unitary cost function Ω

∑N

�=1 b
�(y� − v�) that depends on the 

invested capital of the aggregated trades from all accounts.
Finally, we introduce a novel sustainability-oriented criterion given by the lin-

ear portfolio’s ESG score:

where ESG ∈ ℝ
K are the assets’ ESG scores.

For each account, the objective function to be minimized �� ∶ ℝ
NK+1

→ ℝ , 
where all the criteria above are included in a weighted sum fashion, clearly 
depends on variables y� , as well as on the variables from all the other accounts 
(via the coupling transaction costs term), which we collect in vector y−�:

We also indicate with y ∈ ℝ
NK the vector formed by all the accounts’ decision vari-

ables and, to emphasize the account � ’s decision variables within y, we sometimes 
write (y� , y−�) instead of y, still indicating the vector y = (y1,… , y� ,… , yN).

Also, the positive parameter �� that weights the impact of the ESG-oriented 
objective on the account � ’s trades plays a key role, as detailed next:

TC�(y
1,… , yN) ≜ b�(y� − v�)TΩ

N∑
�=1

b�(y� − v�),

S�(y
�) ≜ b�ESGTy� ,

(1)y−� ≜

⎛
⎜⎜⎜⎜⎜⎜⎝

y1

⋮

y�−1

y�+1

⋮

yN

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ ℝ
(N−1)K .
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where �� ∈ ℝ+ is the risk aversion parameter. Note that the term b��� can be 
intended to represent a (monetary) incentive to be given to the account holder in 
order to invest in ESG-oriented portfolios.

We observe that, for every �, given �� , �� is continuously differentiable, quadratic 
and convex with respect to y� . Hence, for each account � , given �� and y−� , the fol-
lowing convex problem is addressed:

where Y𝜈 ⊆ ℝ
K is the nonempty, convex and compact set of feasible portfolios.

In the same spirit of the analysis in Lampariello et al. (2021), to model the result-
ing multiple portfolios selection, once �� s are fixed, we adopt the (parametric in �� , 
� = 1,… ,N ) NEP formulation given by the collection of the N accounts-related 
parametric problems (2). The NEP we rely on is the problem to

where Y ≜ Y1 ×… × YN . Any such point is termed equilibrium or solution of the 
NEP. Accordingly, the (parametric in �� , � = 1,… ,N ) set of equilibria is denoted by

 At a lower-level, given �� s, a non cooperative setting seems to fit well within the 
demands of the accounts’ owners who just pursue their own interest. Their pref-
erences are clearly satisfied when an equilibrium is reached: in this case, for no 
account, given the other accounts’ trades, the objective function can be decreased by 
modifying unilaterally the trades to any other feasible solution.

At an upper-level, properly setting the weights �� (for the portfolios’ ESG scores-
related term) allows the firm to influence the choices of the accounts’ holders so 
that the overall ESG originating from the ESG scores of the managed portfolios is 
optimized, having the accounts’ owners’ still satisfied. We propose to rely on a novel 
(standard optimistic) bilevel approach, where, at the upper-level, the firm’s problem 
consists in choosing the best values for � , with

��(�
� , y� , y−�) ≜ − I�(y

�) + ��R�(y
�) + TC�(y

1,… , yN) − ��S�(y
�)

= − b�(��)Ty� + �� 1
2
(b�)2(y�)TΣ�y�

+ b�(y� − v�)TΩ[b�(y� − v�) +
∑

�≠� b
�(y� − v�)]

− ��b�ESGTy� ,

(2)minimizey� ��(�
� , y� , y−�) s.t. y� ∈ Y� ,

(3)find y ∈ Y ∶ ��(�
� , y� , y−�) ≤ ��(�

� ,w� , y−�) ∀w� ∈ Y� , � = 1,… ,N,

(4)
SOL(�) ≜

{
y ∈ Y ∶ ��(�

� , y� , y−�) ≤ ��(�
� ,w� , y−�) ∀w� ∈ Y� , � = 1,… ,N

}
.

� ≜
⎛⎜⎜⎝

�1

⋮

�N

⎞⎟⎟⎠
∈ ℝ

N
+
,
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and, thus, for the monetary incentives [��b�]N
�=1

 to be given to the accounts’ holders 
so that the firm’s overall “social” ESG impact, i.e. the ESG score from all the man-
aged accounts, is maximized in agreement with the clients, while, at the lower-level, 
the accounts are still guaranteed to be in a non cooperative equilibrium:

where T ⊆ ℝ
N
+

 is a nonempty, convex and compact set.

2.2  A bilevel formulation

NEP (3) is easily seen to be a potential game (see, e.g., Sagratella 2017a and Lam-
pariello et al. 2021; Yang et al. 2013), so that equilibria of (3) coincide with station-
ary solutions of the following convex optimization problem:

where p is a potential function.
To derive the explicit expression of Q ∈ ℝ

NK×NK , d ∈ ℝ
NK and C ∈ ℝ

N×NK , we 
preliminarily compute the gradient of ��(�� , ∙, y−�) at y�:

Hence, the Jaco-Hessian Q, is given by

which turns out to be symmetric and positive semidefinite because Ω and every 
covariance matrix Σ� are symmetric and positive semidefinite.

Vector d and matrix C in the expression of p are obtained according to the follow-
ing formula:

(5)minimize�,y F(y) ≜ −ESGT
�∑N

�=1 b
�y�

�

s.t. � ∈ T , y ∈ SOL(�),

(6)minimizey p(�, y) ≜
1

2
yTQy + dTy + �TCy s.t. y ∈ Y ,

∇y� ��(�
� , y� , y−�) = −

�
b��� + 2(b�)2Ωv� + b�Ω

∑
�≠� b

�v� + ��b�ESG
�

+ (b�)2(��Σ� + 2Ω)y� + b�Ω
∑

�≠� b
�y�.

Q ≜
⎛
⎜⎜⎝

∇⊤
y1
(∇y1𝜃1(𝜏, y)) ⋯ ∇⊤

yN
(∇y1𝜃1(𝜏, y))

⋮ ⋱ ⋮

∇⊤
y1
(∇yN𝜃N(𝜏, y)) ⋯ ∇⊤

yN
(∇yN𝜃N(𝜏, y))

⎞
⎟⎟⎠

=

⎛⎜⎜⎜⎝

(b1)2[𝜌1Σ1 + 2Ω] b1b2Ω ⋯ b1bNΩ

b2b1Ω (b2)2[𝜌2Σ2 + 2Ω] b2bNΩ

⋮ ⋱

bNb1Ω bNb2Ω (bN)2[𝜌NΣN + 2Ω]

⎞⎟⎟⎟⎠
,
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Thanks to the equivalent formulation of NEP (3) as the convex optimization prob-
lem (6), we have

In turn, as commonly done in the literature, leveraging the value-function equivalent for-
mulation of the implicitly defined constraint in (5), and introducing a reasonable posi-
tive tolerance � on the optimal value of the lower-level problem (see, e.g., Lignola and 
Morgan 2019), the references therein, and Lin et al. (2014) where justifications for this 
choice are provided both from a theoretical point of view and from a more practical, 
model-related one), we tackle (5) via the following (non convex) mathematical program:

3  How to treat the problem numerically

We wish to rely on a sequential convex approximation (SCA)-like algorithm that is 
specifically tailored to deal with problem (7), and essentially consists in the alter-
nate solution of the lower level problem (once the value of � is iteratively fixed) and 
of a suitable (local) convex “approximating” version of (7), which is constructed 
based on the previous step. A sufficient condition for the procedure to achieve con-
vergence to a stationary solution of (7) is the convexity of p (with respect to both � 
and y): such a requirement, while apparently restrictive, is shown to be satisfied, for 
the problem at hand, under standard assumptions. In particular, we rely on the fol-
lowing set of conditions which are assumed to hold throughout the rest of the paper.

Assumption A

⎛

⎜

⎜

⎝

∇y1�1(�, 0)
⋮

∇yN�N(�, 0)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−[b1(�1 + Ω
∑

�≠1 b�v� + �1ESG) + 2(b1)2Ωv1]
⋮

−[bN(�N + Ω
∑

�≠N b�v� + �NESG) + 2(bN)2Ωv1]

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−[b1(�1 + Ω
∑

�≠1 b�v�) + 2(b1)2Ωv1]
⋮

−[bN(�N + Ω
∑

�≠N b�v�) + 2(bN)2Ωv1]

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
d

+

⎛

⎜

⎜

⎜

⎝

−b1ESG 0 ⋯ 0
0 − b2ESG 0
⋮ ⋱
0 0 − bNESG

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
C⊤

�.

SOL(�) = argmin
y
{p(�, y) ∶ y ∈ Y} = {y ∈ Y ∶ p(�, y) ≤ min

v
{p(�, v) ∶ v ∈ Y}}.

(7)
minimize�,y F(y)

s.t. � ∈ T , y ∈ Y

p(�, y) ≤ minv{p(�, v) ∶ v ∈ Y} + �.

(8)𝜎M𝜈
m

≥ 𝜎 > 0, b2𝜈‖ESG‖2 ≤ Γ, 𝜈 = 1,… ,N,
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where �M
m

 stands for the minimum eigenvalue of a square matrix M, 
M� ≜ (b�)2 [Ω + ��Σ�] and Γ is a nonnegative scalar.

We note that, for example, the positive definiteness of Ω is sufficient for the first 
relation in (8) to hold. Also, the latter inequality yields the following consequence.

Proposition 3.1 Matrix Q is positive definite and, in turn, SOL(� ) is a singleton for 
every �.

Proof To prove the claim, suffice it to observe that

where b =
(
b1 b2 ⋯ bN

)⊤ with 𝜎bb⊤

m
= 0 , and recalling that the Kronecker product 

⊗ of positive semidefinite matrices is positive semidefinite.   ◻

Following the same line of reasoning in Lampariello and Sagratella (2020), add-
ing to p a sufficiently large quadratic term (in � ), the resulting modified function

turns out to be convex in view of Assumption A.

Proposition 3.2 If

then p� is convex.

Proof For every z ∈ ℝ
N , we have,

that is (�I − CTQ−1C) ⪰ 0 . Therefore, by the Schur Complement Theorem,

Q =

⎛
⎜⎜⎜⎝

(b1)2[𝜌1Σ1 + Ω] 0 ⋯ 0

0 (b2)2[𝜌2Σ2 + Ω] 0

⋮ ⋱

0 0 (bN)2[𝜌NΣN + Ω]

⎞
⎟⎟⎟⎠
+ bb⊤ ⊗Ω,

p�(�, y) ≜ p(�, y) +
�

2
‖�‖2

(9)� ≥
Γ

�
,

0 ≤
�
� −

Γ

�

�
‖z‖2

≤ �‖z‖2 − ‖C‖2
�Q
m

‖z‖2

≤ �‖z‖2 − 1

�Q
m

‖Cz‖2

≤ zT (�I)z − zTCTQ−1Cz

= zT (�I − CTQ−1C)z,
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and in turn p� is convex.   ◻

We remark that replacing p with p� in (6) and in (7) does not modify the prob-
lems. On the one hand, since, in p� , the quadratic term depending on � is constant 
with respect to y, problem

is equivalent to (6). On the other hand, problem (7), by adding �
2
‖�‖2 to both sides of 

the functional constraint, is equivalent to

where

Also, the straightforward relation SOL(�) = argminv{p�(v, �) ∶ v ∈ Y} is freely 
invoked in the following developments.

Problem (P) enjoys some useful properties that make it numerically tractable. 
Specifically, standard constraint qualifications hold for it (see (i) in Remark 3.2), 
function �� , while still implicitly defined, is continuously differentiable and convex 
(see Proposition 3.3), and, in turn, relation p�(�, y) − ��(�) ≤ � turns out to be a DC 
(difference of convex functions) constraint.

Proposition 3.3 Function �� is convex and continuously differentiable. Moreover, 
for every � and w = SOL(�),

Proof By Proposition 3, p� is convex, and then ∇��(�) = ∇�p�(�,w) = Cw + �� 
due to (Lampariello and Sagratella 2020, Proposition 1).   ◻

From now on, we freely invoke some mathematical properties and tools from 
variational analysis. For example, we denote by NS(z) the classical normal cone (to 
the convex set S ⊆ ℝ

n at z ∈ S ) of convex analysis. As for the definitions of continu-
ity properties for set-valued mappings, we refer the reader to Rockafellar and Wets 
(1998).

Remark 3.1 Bilevel problems (7) and (P) share the same standard optimistic point 
of view. Actually, for the specific problem at hand, they turn out to be equivalent, 
both in a global and in a local sense, to their original optimistic counterparts (see 

∇2p�(�, y) =

(
�I C

CT Q

)
⪰ 0

(10)minimizey p�(�, y) s.t. y ∈ Y

(P)
minimize�,y F(y)

s.t. � ∈ T , y ∈ Y

p�(�, y) ≤ ��(�) + �,

𝜙𝛽(𝜏) ≜ min
y
{p𝛽(𝜏, y) ∶ y ∈ Y} = min

y
{p(𝜏, y) ∶ y ∈ Y} +

𝛽

2
𝜏⊤𝜏.

∇��(�) = Cw + ��.
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Lampariello and Sagratella (2017); Zemkoho (2016) for further details about the 
two different versions of optimistic bilevel problems). More precisely, the original 
optimistic version of (P) reads as follows:

While, in general, there is a perfect correspondence between global optima of the 
original version and the ones of the standard optimistic bilevel problem, this is no 
more true for local solutions: local minima of the standard optimistic problem might 
not lead to corresponding local minima for the original optimistic counterpart (see 
Dempe et al. 2012; Zemkoho 2016). But, this is not the case for (P) and (11): follow-
ing the same line of reasoning in (Lampariello et al. 2019, (ii,a) in Proposition 4.2), 
suffice it to observe that the set-valued mapping {y ∶ p�(∙, y) − ��(∙) − � ≤ 0} ∩ Y  
is continuous on T in view of the continuity of p�(∙, ∙) − ��(∙) and the convexity of 
p�(�, ∙) , and since the Slater’s constraint qualification is verified for every � ∈ T  (see 
Bank et al. 1982, Theorems 3.1.1, 3.1.6). Similarly, the claim can be shown to hold 
also for (7) and its corresponding original optimistic version.

In the light of all the properties above, one can rely on the following novel 
algorithmic scheme to obtain (subsequential) convergence to stationary points of 
the nonconvex problem (P) and, thus, equivalently, (7).

Starting from �0 ∈ T  , y0 ∈ Y  , for every k = 0, 1, …:

Step 1 compute wk = SOL(�k)
Step 2 compute a solution ( �k+1, yk+1 ) of the following subproblem: 

Subproblem (P(�k,wk) ) is a convex surrogate for (P), where, at each iteration 
(�k,wk) , the concave part in the DC constraint is replaced by its local (at the base 
point (�k,wk) ) linear approximation. We also observe that the Slater’s condition 
is easily seen to hold for (P(�k,wk) ) at every iteration, as recalled in Remark 3.2, 
where we collect some well-known results (see, e.g., Lampariello and Sagratella 
2020) that are instrumental to prove convergence.

Remark 3.2 The following properties hold: 

 (i) the Mangasarian--Fromovitz constraint qualification (MFCQ) is satisfied eve-
rywhere on the feasible set of (P), i.e. the following condition is satisfied for 
every (�, y) that is feasible for (P): 

(11)minimize� miny
{
F(y) ∶ y ∈ Y , p�(�, y) ≤ minv{p�(�, v) ∶ v ∈ Y} + �

}
s.t. � ∈ T .

minimize�,y F(y)

s.t. � ∈ T , y ∈ Y

p�(�, y) ≤ p�(�
k,wk) + ∇�p�(�

k,wk)T
(
� − �k

)
+ �. P(�k,wk)
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 (ii) the Slater’s constraint qualification, i.e. 

 (and thus, equivalently, the MFCQ) is verified on the convex feasible set of 
(P(�,w)) , for every (�,w) ∈ T × Y .

While the idea to rely on a convex (inner) approximation of the bilevel problem 
feasible set can be traced back to the SCA paradigm and, in particular, to Lampari-
ello and Sagratella (2020), the procedure laid down above differs from classical 
SCA approaches in that no proximal regularization is present in the objective of sub-
problems (P(�k,wk) ). As a result, one has to resort to a different proof technique.

Theorem 3.4 Every limit point (�, y,w) of the sequence generated by the algorithm 
is such that (�, y) is a KKT solution for problem (P), i.e.

for some � ∈ N
ℝ−
(p�(�, y) − ��(�) − �).

Proof We first observe that, for every k,

where (13) is shown to be valid reasoning similarly to the proof of (Lampariello and 
Sagratella 2020, Theorem 4.1), while (14) follows from the definition in step 2 of 
the algorithm.

As a consequence of (13), for every k, we have

Thus, {F(yk)} is a non increasing, bounded from below, and thus convergent 
sequence.

Relations (13)–(15) are the building blocks of the proof of convergence: in order 
to prove the claim, we first establish some continuity properties of problem (P(∙, ∙)) 
feasible and solution set-valued mappings. In fact, since the Slater’s constraint quali-
fication holds on FEASs(�,w) for every (�,w) ∈ T × Y  (see (ii) in Remark 3.2), the 

{
� ∈ ℝ ∶ � ∈ N

ℝ−
(p�(�, y) − ��(�) − �),

0 ∈

(
∇�p�(�, y) − ∇��(�)

∇yp�(�, y)

)
� + NT (�) × NY (y)

}
= {0}

{
(�𝜏,�y) ∈ T × Y ∶ p𝛽(�𝜏,�y) − p𝛽(𝜏,w) − ∇𝜏p𝛽(𝜏,w)

⊤(�𝜏 − 𝜏) − 𝜖 < 0
}
≠ �,

(12)0 ∈

(
0

∇F(y)

)
+

(
∇�p�(�, y) − ∇���(�)

∇yp�(�, y)

)
� + [NT (�) × NY (y)],

(13)

(𝜏k, yk) ∈ FEASs(𝜏k,wk) ≜
{
(𝜌, v) ∈ T × Y ∶ p𝛽(𝜌, v) ≤ p𝛽(𝜏

k,wk)

+ ∇𝜏p𝛽(𝜏
k,wk)⊤

(
𝜌 − 𝜏k

)
+ 𝜖

}
,

(14)(�k+1, yk+1) ∈ SOLs(�k,wk) ≜ argmin
�,v

{
F(v) ∶ (�, v) ∈ FEASs(�k,wk)

}
,

(15)F(yk+1) ≤ F(yk).



1 3

A bilevel approach to ESG multi-portfolio selection  Page 13 of 23    24 

set-valued mapping FEASs is continuous relative to T × Y  at any point in T × Y  (see 
Bank et al. 1982, Theorems 3.1.1 and 3.1.6). In turn, the value function

is continuous on T × Y  , due to (Bank et al. 1982, Theorem 4.3.3), and finally, the 
set-valued mapping SOLs(∙, ∙) = {(�, v) ∶ F(v) ≤ �(∙, ∙)} ∩ FEASs(∙, ∙) is outer sem-
icontinuous relative to T × Y  at any point in T × Y  (again, by Bank et al. 1982, Theo-
rem 3.1.1). Following the same line of reasoning, but here in a simplified frame-
work, it is standard to show that the single valued mapping SOLl is continuous over 
T (see Rockafellar and Wets 1998, Corollary 5.20).

All the properties above yield the convergence result: suffice it to observe that, in 
view of the compactness of T and Y, subsequencing, we can write, without loss of 
generality, (�k, yk,wk) → (�, y,w) , (�k+1, yk+1) → (�̃, ỹ) , and taking the limit in (13), 
by the continuity of FEASs on T × Y  , we get

where w ∈ SOLl(�) , in view of step 1. Also, by (14), thanks to the outer semiconti-
nuity of SOLs over T × Y ,

Finally, taking into account (15),

From (16), (�, y) is feasible, and, in view of (17) and (18), also optimal for 
(P(�,w)) . Since the latter problem is convex and the Slater’s condition is satisfied 
(see point (ii) in Remark 3.2), this is equivalent to the existence of a multiplier 
� ∈ N

ℝ−
(p�(�, y) − p�(�,w) − �) so that

with w = SOLl(�) . Observing that p�(�,w) = ��(�) and ∇�p�(�,w) = ∇��(�) , the 
claim follows because (19) turns out to be equivalent to (12).   ◻

Clearly, equipping the objective in (P(�k,wk) ) with the additional prox term 
�∕2‖(� − �k, y − yk)‖2 , for some positive � , convergence can be guaranteed a fortiori 
(see Lampariello and Sagratella 2020). In this case, the (now single-valued) solution set 
mapping of the modified subproblems turns out to be continuous (rather than just outer 
semicontinuous, as shown in Theorem 3.4); but this at the price of a reduced ability to 
possibly “move away” from the current iterate (�k, yk).

�(�,w) ≜ min
�,v

{F(v) ∶ (�, v) ∈ FEASs(�,w)}

(16)(�, y) ∈ FEASs(�,w),

(17)(�̃, ỹ) ∈ SOLs(�,w).

(18)F(y) = F(̃y).

(19)0 ∈

(
0

∇F(y)

)
+

(
∇�p�(�, y) − ∇�p�(�,w)

∇yp�(�, y)

)
� + [NT (�) × NY (y)],
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4  Experimental Study

In this section, we test the bilevel model (P) on two real-world datasets. More in 
detail, we compare the performances of our approach with the case where the upper-
level decision variables � are fixed to 0; we do so to evaluate the impact of the upper-
level decisions on the followers’ different objectives, i.e., portfolio expected return, 
risk, transaction costs and ESG. In Sect. 4.1, we describe the experimental setup, 
i.e., the dataset and the performance measures used in this work. In Sect. 4.2, we 
discuss some algorithm-related choices. Finally, in Sect. 4.3, we report the results of 
the empirical analysis. All the experiments are implemented on MATLAB R2022b 
using the built-in functions quadprog and fmincon, on a PC with Intel(R) 
Core(TM) i7-11800 H 2.30GHz, with 16 GB of RAM.

4.1  Problem data

We consider two datasets consisting in daily prices, adjusted for dividends and stock 
splits, daily traded volumes and daily ESG scores (from 01/01/2019 to 31/12/2020) 
downloaded from Thomson Reuters Datastream. Specifically, we consider the Dow 
Jones Industrial Average (DJIA), composed of K = 28 assets, and the NASDAQ 100 
(NDX), composed of K = 91 assets. In both cases, we set the number of accounts 
N = 5 , thus leading to a problem with N × K variables, i.e., 140 for the DJIA dataset 
and 455 for the NDX dataset. We deal with discrete random returns drawn from his-
torical data. Therefore, let T + 1 be the length of the time series of the prices, where 
pk,t denotes the price of asset k at time t; given the prices, we compute the (linear) 
returns rk,t =

pk,t−pk,t−1

pk,t−1
 , with k = 1,… ,K and t = 1… , T  . Besides, we assume equally 

likely scenarios, so that every scenario has an equal probability of occurrence 1
T
 . 

Consequently, we compute �k =
1

T

∑T

t=1
rk,t and �kj =

1
T
∑T

t=1(rk,t − �k)(rj,t − �j) which 
denote, respectively, the expected return of asset k and the covariance between assets 
k and j. The values �� ∈ [1, 1.2]� and Σ� ∈ [1, 1.2]Σ are uniformly randomly gener-
ated. As for the transaction costs, let volk,t be the traded volume of asset k at time t; 
then, we compute the correlation matrix of the traded volumes, in order to capture 
the effect of trades between different assets, where the interrelation of the traded 
volume between asset k and asset j is expressed as follows (see Lampariello et al. 
2021):

with volk =
1

T

∑T

t=1
volk,t . We obtain the matrix Ω = (�kj)

K
k,j=1

 . Given the ESG score 
of the asset k at time t ESGk,t , we simply compute the arithmetic mean of such 
scores, i.e., ESGk =

1

T

∑T

t=1
ESGk,t . Furthermore, we uniformly randomly generate 

each value b� and �� , such that b� ∈ [0,B] and �� ∈ [0, 1]
4⋅100

B
 , with B = 200 . Finally, 

we set the current positions v� = 0 , for � = 1… ,N.

�kj =

∑T

t=1
(volk,t − volk)(volj,t − volj)�∑T

t=1
(volk,t − volk)

2

�∑T

t=1
(volk,t − volk)

2

,
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We consider the case of long-only portfolios: thus, for each � , 
Y� = {y� ∈ ℝ

K ∶ eTy� = 1, y� ≥ 0} , where e is the all ones vector; also, we take 
T = {� ∈ ℝ

N ∶ � ≥ 0}.

4.2  Algorithmic choices

Concerning numerical computation, the lower-level optimization problem is solved 
using the built-in MATLAB solver quadprog, while the upper-level problem is 
solved using fmincon’s interior point method, where the gradient of the 
objective function and constraint are supplied to the solver. Default tolerances are 
adopted and, at iteration k + 1 , (yk, �k) is employed as the starting point for the 
upper-level optimization. The parameter � is computed following (9) and then 
rescaled assuring the convexity of p� . Finally, the tolerance � is set to 10−2.

In Fig. 1, we show the value of the upper-level objective function through 10000 
iterations for both datasets considered. Note that the monotonic decrease (i.e. rela-
tion 15) holds in both instances.

4.3  Results

We compare the performances of our model lower-level problems with the case 
where the accounts’ holders have no monetary incentive to construct an ESG-ori-
ented portfolio. Therefore, in the latter case, the upper-level design variables � are 
taken equal to 0, which leads to the following single level optimization problem:

(20)minimizey p(0, y) =
1

2
yTQy + dTy s.t. y ∈ Y .

(a) Dow-Jones (b) NDX

Fig. 1  Upper-level objective function for DJIA and NDX datasets
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We consider the following measures:

• Income: it consists in the portfolio expected return (��)Ty�;
• Risk: it is represented by the portfolio variance (y�)TΣ�y�;
• TC: it is defined as the transactions costs of the portfolio y�Ω

∑
�≠� y

�;
• ESG: it consists in the portfolio expected ESG score ESG

T
y�;

Table 1  Influence of the upper-level incentives on the lower-level objectives for DIJA dataset

Accounts

1 2 3 4 5

Income � = 0 6.30e−4 9.76e−4 5.92e−4 1.83e−3 7.84e−4
� = �∗ 6.89e−4 1.01e−3 5.36e−4 1.68e−4 7.37e−4
diff 5.95e−5 3.63e−5 −5.60e−5 −1.54e−5 −4.70e−5

Risk � = 0 1.65e−4 1.97e−4 1.66e−4 3.04e−4 1.64e−4
� = �∗ 2.02e−4 2.81e−4 1.68e−4 4.82e−4 1.90e−4
diff 3.70e−5 8.43e−5 2.11e−6 1.78e−4 2.58e−5

TC � = 0 9.75e−6 9.55e−6 9.86e−6 8.65e−6 9.72e−6
� = �∗ 1.13e−5 1.18e−5 1.09e−5 1.25e−5 1.13e−5
diff 1.55e−6 2.24e−6 1.07e−6 3.81e−6 1.56e−6

ESG � = 0 78.90 78.04 79.29 74.89 78.39
� = �∗ 86.31 89.05 81.42 92.79 85.78
diff 7.403 10.99 2.122 17.91 7.389

Table 2  Influence of the upper-level incentives on the lower-level objectives for NDX dataset

Accounts

1 2 3 4 5

Income � = 0 1.49e−3 2.60e−3 1.34e−3 5.91e−3 1.95e−3
� = �∗ 7.69e−4 9.96e−4 1.04e−3 1.44e−3 9.89e−4
diff -7.26e−4 -1.60e−3 -3.02e−4 -4.47e−3 -9.65e−4

Risk � = 0 1.60e−4 2.22e−4 1.57e−4 6.43e−4 1.69e−4
� = �∗ 2.01e−4 2.44e−4 1.64e−4 3.60e−4 1.90e−4
diff 4.12e−5 2.16e−5 6.43e−6 -2.83e−4 2.09e−5

TC � = 0 3.88e−6 3.56e−6 4.03e−6 2.41e−6 3.78e−6
� = �∗ 7.44e−6 7.68e−6 6.59e−6 7.88e−6 7.37e−6
diff 3.55e−6 4.12e−6 2.57e−6 5.48e−6 3.60e−6

ESG � = 0 62.26 53.97 65.59 46.02 58.01
� = �∗ 88.59 90.06 77.72 93.50 87.09
diff 26.33 36.09 12.12 47.49 29.09
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The main results are reported in Tables 1 (DJIA) and 2 (NDX). We display the val-
ues of Income, Risk, TC and ESG for each account � . Besides, for each measure, 
we show the performances both in the case where � = 0 and where � is suitably 
optimized according to (P) ( � = �∗ ); for each reported measure, we also give the 
difference of the value that is obtained when � = �∗ and the value that is achieved 
if � = 0 . As shown in Table 1, regarding DJIA, in two out of five accounts Income 
increases taking � = �∗ ; on the other hand, both Risk and TC increase, but the same 
happens to the remaining accounts. As it is expected, every account experiences an 
increase in ESG, as well. For each � a considerable fraction of the budget (more than 
15%) is invested in the Microsoft stock, which yields the highest ESG score and 
the second highest expected return; the only exception is the third account (approxi-
mately 1% of the budget is invested in the Microsoft stock), which also faces the 
highest drop in Income. However, when compared to the others, such account also 
experiences lower increase in Risk (probably due to the high risk aversion, as well), 
TC and ESG. Interestingly enough, for all the accounts a fraction of the budget that 
ranges from 10% to 26% is invested in the stocks 3 M and Walgreens Boots Alliance, 
which have among the highest ESG scores and lowest expected return. The most 
diversified portfolio is the one held by the third account’s owner: this is the account 
experiencing the highest loss of Income, and the least increase of Risk, TC, and 
ESG; conversely, the least diversified portfolio is the one held by fourth account’s 
owner: this is the account where only the two assets with the highest ESG scores, 
i.e., Microsoft and 3 M, are included in the portfolio (leading to the largest increase 
in the ESG among all the accounts). As for NDX, as displayed in Table 2, whenever 
� is suitably optimized according to (P), we observe a loss of Income, and increase 
in Risk (with the only exception of the fourth account), TC and ESG. For all the 
accounts, a fraction of their budget comprised between 15% and 48% is invested in 
the Astrazeneca stock, which yields the highest ESG score, and one of the lowest 
expected return among all the assets. It is worth noting that, in the case that � = �∗ , 
the fourth account’s owner, which is the one with the lowest risk aversion, experi-
ences the largest reduction in Income and the smallest increase in Risk and TC. Like 
for DJIA, this account holder is the one with the least diversified investments since 
they only invest in the two assets with the largest ESG score (Microsoft and Astra-
zeneca); again, such account experiences the greatest increment in the ESG term.

Finally, for the sake of completeness, we report in Tables 3 and 4, for DIJA and 
NDX datasets, parameters and objectives values for the lower-level account-related 
problems. In Table 5, we indicate the optimal upper-level decision variables �.

Summarizing, taking a bilevel point of view leads to a clear overall improvement 
in the ESG performances of the computed multiple portfolios (see Tables 1 and 2) 
and of the firm (see Fig. 1).
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5  Conclusions

We deal with ESG-oriented multiple portfolios selection. This complicated prob-
lem arises naturally when financial service providers decide to adopt SRI poli-
cies to comply with stakeholders’ demands and regulatory requirements. We rely 
on a novel bilevel approach where, at the upper-level, incentives are properly set 
to encourage the account’s holders, who play à la Nash at the lower-level, to make 
ESG-friendly investments, so that the overall ESG impact of the firm is optimized. 
Differently from conceptually simpler approaches in the literature, where the lower-
level problem does not depend (parametrically) on upper-level design variables, we 
consider more general “genuine” bilevel structures. We establish practical sufficient 

Table 3  Parameters and objective function value for every � for DIJA dataset

Accounts

1 2 3 4 5

Parameters b 188.00 199.02 95.52 168.40 34.04
� 0.4165 0.1617 1.7009 0.0548 1.4228

� � = 0 1.3204 0.6649 1.3696 0.1164 0.1621
� = �∗ −5.4912 −6.6540 0.0988 −4.9496 −0.3437
diff −6.8117 −7.3188 −1.2707 −5.0660 −0.5058

Table 4  Parameters and objective function value for every � for NDX dataset

Accounts

1 2 3 4 5

Parameters b 188.00 199.02 95.52 168.40 34.04
� 0.4165 0.1617 1.7009 0.0548 1.4228

� � = 0 0.9783 0.2775 1.1464 −0.4433 0.0931
� = �∗ −3.1808 −3.6134 0.1195 −3.5793 −0.2496
diff −4.1591 −3.8909 −1.0270 −3.1360 −0.3427

Table 5  Optimal upper-level 
decision variables ��

Dataset Accounts

1 2 3 4 5
DJIA 4.38e−4 4.31e−4 1.68e−4 3.40e−4 1.84e−4
NDX 2.81e−4 2.44e−4 1.54e−4 2.40e−4 1.39e−4
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conditions that make our model numerically tractable by means of a novel SCA-like 
algorithmic approach, whose convergence properties are investigated. This, together 
with an experimental study involving real-world data, show the viability of the 
approach we have developed.

We leave the investigation of even more general problem structures, where, e.g., 
assumptions yielding a lower-level (parametric) potential game with a unique solu-
tion are relaxed, and more complicated upper-level objectives are considered, to 
future research.

6 Appendix

We report, for the sake of completeness, and according to the description in Sect. 3 
and to the considerations in Sect. 4.2, the two main MATLAB functions we rely on 
in order to address iteratively the lower and the upper level problems, respectively.

Addressing, for a fixed outer iteration k, the lower level problem

Addressing, for a fixed outer iteration k, the leader’s problem
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