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Abstract 
In this work we consider the following hazmat transportation network design problem. A 
given set of hazmat shipments has to be shipped over a road transportation network in order 
to transport a given amount of hazardous materials from specific origin points to specific 
destination points, and we assume there are regional and local government authorities that 
want to regulate the hazmat transportations by imposing restrictions on the amount of hazmat 
traffic over the network links. In particular, the regional authority aims to minimize the total 
transport risk induced over the entire region in which the transportation network is 
embedded, while local authorities want the risk over their local jurisdictions to be the lowest 
possible, forcing the regional authority to assure also risk equity. We provide a linear bilevel 
programming formulation for this hazmat transportation network design problem that takes 
into account both total risk minimization and risk equity. We transform the bilevel model into 
a single-level mixed integer linear program by replacing the second level (follower) problem 
by its KKT conditions and by linearizing the complementary constraints, and then we solve 
the MIP problem with a commercial optimization solver. The optimal solution may not be 
stable, and we provide an approach for testing its stability and for evaluating the range of the 
its solution values when it is not stable. Moreover, since the bilevel model is difficult to be 
solved optimally and its optimal solution may not be stable, we provide a heuristic algorithm 
for the bilevel model able to always find a stable solution. The proposed bilevel model and 
heuristic algorithm are experimented on real scenarios of an Italian regional network. 
 
Keywords: Hazardous materials; Hazmat transportation network design; Bilevel 
optimization; Heuristic algorithm. 

 
 
1. Introduction 
 

The transportation of hazardous materials (hazmats), though may be classified among the more 
general freight transport issues, is an activity that presents extremely typical characteristics. What 
differentiates hazmat shipments from the transportation of other materials is the risk associated with 
an accidental release of hazardous materials during transportation. To reduce the occurrence of 
dangerous events it is necessary to provide appropriate answers to safety management associated 
with dangerous goods shipments. 
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It was estimated that more than 4 billions of hazmat tons were being transported annually at 
world wide level in the first half of the current decade (Zografos and Androutsopoulos, 2004): in 
the USA, there are at least 300 million hazmat shipments each year, and totally approximately 3.2 
billion tons (Kara and Verter, 2004); in Italy, 74 millions of hazmat tons were transported on trucks 
in 2001 (Infodatamix, 2002). In USA, in 1998, there were roughly 15,000 incidents related to 
hazmat transportation, and only 429 of them were classified as serious incidents (Kara and Verter, 
2004). Despite the number of such incidents is very small compared to the number of hazmat 
shipments, due to the potential magnitude of accidents to the population and the environment, the 
public is very sensitive to the dangers of hazmat transportation activity; therefore, the risk 
associated with incidents involving hazmat shipments have found considerable attention from the 
government, encouraging research on hazmat transportation.    

Risk assessment and hazmat shipments planning are two of the main research fields in hazmat 
transportation. In the literature, a lot of work has already been done in risk assessment, by modeling 
risk probability distribution over given areas, for example, taking into account the risk related to the 
transported material and the transport modality (Abkovitz et al., 1984) and the environmental 
conditions (Patel and Horowits, 1994). For a survey the reader is referred to, e.g., Erkut et al. 
(2007).  

One of the main issues of hazmat shipments planning is routing hazmat shipments, that involves 
a selection among the alternative paths between origin-destination pairs. From a carrier’s 
perspective, shipment contracts can be considered independently and a routing decision needs to be 
made for each shipment, which we call the local route planning problem. At the macro level, 
hazmat routing is a “many to many” routing problem with multiple origins and destinations.  In the 
sequel, we refer to this problem as global route planning. 

The local route planning problem is to select routes between a given origin-destination pair for a 
given hazmat, transport mode, and vehicle type. Thus, for each shipment order, this problem 
focuses on a single-commodity and a single origin-destination route plan. Since these plans are 
often made without taking into consideration the general context, certain links of the transport 
network tend to be overloaded with hazmat traffic. This could result in a considerable increase of 
accident probabilities on some road links as well as leading to inequity in the spatial distribution of 
risk.  

Transport costs are the carriers’ main focus. In contrast, a government authority, charged with 
the management of hazmat shipments within and through its jurisdiction, has to consider the global 
problem by taking into account all the shipments in its jurisdiction. Although the transportation 
industry has been deregulated in many countries, hazmat transportation usually remains as part of 
the governments’ mandate mainly due to the associated public and environmental risks.  This leads 
to a harder class of problems that involve multi-commodity and multiple origin-destination routing 
decisions, i.e., the global route planning problem.  

The main concern for a government authority is controlling the risk induced by hazmat 
transportations over the population and the environment. Besides the minimization of the total risk, 
a government authority should also promote equity in the spatial distribution of risk. This becomes 
crucial in the case in which certain populated zones are exposed to intolerable levels of risk as a 
result of the carriers’ routing decisions.  
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Therefore, in the global route planning for hazmat shipments, the main problem is that of 
finding minimum risk routes, while limiting and equitably spreading the risk in any zone in which 
the transportation network is embedded. As a matter of fact, risk equity has to be taken into account 
also whenever it is necessary to carry out several hazmat shipments from a given origin to a given 
destination. In this situation, the planning effort has to be devoted to distribute risk uniformly 
among all the zones of the geographical crossed region. This concept is well defined in (Keeney, 
1980), where a measure of the collective risk is determined with explicit reference to the equity. 

In the literature, some models have been proposed for determining paths with minimum total 
risk while guaranteeing equitable risk spreading; see, for example, the models in (Gopalan et al., 
1990a; Gopalan et al., 1990b; Current and Radik, 1995). The concept of dissimilar paths has also 
been considered in order to guarantee the spreading of risk, and different methods have been 
proposed in the past, also in contexts different from that of hazmat shipments, to generate a number 
of spatially dissimilar paths (Akgün et al., 2000). Other approaches that address the risk equity find 
minimum total risk paths with bounded maximum link risk (e.g. see Carotenuto et al., 2007) or 
consider min-max models which minimize the maximum link risk (e.g., see Bell, 2006). 

Hazmat local route planning has attracted the attention of many OR researchers, while the 
global route planning problem has attained relatively little attention in the literature. The results in 
this latter area include the works of Gopalan et al. (1990b), Lindner-Dutton et al. (1991) and 
Marianov and ReVelle (1998). The works of Akgün et al. (2000), Dell’Olmo et al. (2005) and 
Carotenuto et al. (2007) on the problem of finding a number of spatially dissimilar paths between an 
origin and a destination can also be considered in this area. For a complete survey of local and 
global route planning the reader is referred to Erkut et al. (2007). 

Typically, a government authority does not have the right to impose specific routes to individual 
carriers, but it has only the authority to close certain road segments to hazmat vehicles or to limit 
the amount of hazmat traffic flow on that links. In the context of global route planning, the problem 
of selecting which road segments to be closed by the government falls in the field of hazmat 
transportation network design that started to be studied in the academic literature by Kara and 
Verter (2004), and equity concerns can be incorporated into the design objectives.  

Network design has been widely studied in the past, and there are many papers on this field in 
the open literature (e.g., see the surveys of Magnanti and Wong (1984) and Yang and Bell (1998) 
for reviews of network design problems for road transportation). Differently from the classical 
network design problem where one is asked to find the most appropriate ways to expand a given 
infrastructure, in hazmat network design the question becomes which are the road segments to 
(partially or entirely) close to hazmat transport in an existing network, for example in order to 
minimize the total risk induced by the execution of a given set of hazmat shipment requests. 
Hazmat network design has received little attention from researches and only recently. We review 
four papers that fall in this research field. 

Kara and Verter (2004) consider a hazmat transportation network design problem and propose 
for it a bilevel integer programming model by considering the roles of carriers and of a government 
authority. They assume that the carriers, represented by the follower (second level) decision maker 
in the bilevel model, will always use the cheapest routes on the hazmat transportation network 
designed by the government authority, which assumes the role of the leader (first level) decision 
maker in the bilevel model, and has the objective to select the minimum total risk network, taking 
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into account the cost-minimizing behavior of the carries. In their model, hazmats are grouped into 
categories based on risk impact, and a network is designed for each group, without considering the 
interactions among shipments of hazmats of different categories. The bilevel integer programming 
problem is transformed into a single-level mixed integer linear problem by replacing the follower 
problem by its KKT conditions and by linearizing the complementary slackness constraints. Then, 
the latter mixed integer problem is solved using a commercial optimization software. It has to be 
remarked that the single-level mixed integer linear model may fail to find an optimal stable solution 
for the bilevel model. In fact, in general, there are multiple minimum-cost routing solutions for the 
follower over the designed network established by the leader, which may induce different total risk 
values over the network. We note that Kara and Verter (2004) do not take into account such an 
issue.     

Erkut and Alp (2007) consider a single-level hazmat transportation network design problem, 
restricting the network to a tree, so that there is a single path between each couple of origin-
destination pair; with this restriction, the carriers have no alternative paths on the tree, hence the 
carriers have no freedom in route selection, with the result that the structure of the proposed model 
has a single level. They formulate the tree design problem as an integer programming problem with 
the objective of minimizing the total risk, which is solved using a commercial optimization 
software. They also propose a greedy heuristic that adds shortest paths to the tree so as to keep the 
risk increase to a minimum and allow carriers to select cheaper paths.  

Erkut and Gzara (2008) consider a similar problem of Kara and Verter (2004), generalizing their 
model considering the undirected network case and designing the same network for all the 
shipments. They consider the possible lack of stability of the solution of the bilevel model obtained 
by solving the single-level mixed integer linear model, and propose a heuristic solution method that 
always find a stable solution. Moreover, they extend the bilevel model to account for the cost/risk 
trade-off by including cost in the objective function of the leader (first level) problem. 

All the previous papers adopt a link-based formulation for the carriers’ problem, while Verter 
and Kara (2008) provide a new path-based formulation for the hazmat transport network design 
problem they studied in (Kara and Verter, 2004), where the open links in the given road network 
chosen by the regulator determine the set of paths that are available to the carriers. This facilitates 
the incorporation of carriers’ cost concerns in regulator’s risk reduction decision, and allow to 
formulate the problem with a single-level integer programming formulation, that assure that the 
cheapest path among the available ones is used by each carrier.  

All the models studied in the literature in the field of hazmat network design consider the 
government and the carriers points of view trying to mitigate the risk only from a macroscopic point 
of view but without considering the need to distribute the risk in an equitable way over the region in 
which the transportation network is embedded; in fact, the choices of the carries, that is related to 
the cost, could overload, in terms of risk, some links of the network, implying a lack of risk equity. 
This could be inadequate when there are multiple layers of government authorities being involved 
in the regulation of dangerous goods shipments (as, for example, is common in Europe and North 
America), that are responsible at different geographical levels, e.g., regional area authorities and 
local area authorities. In such a scenario, a regional area authority aims to minimize the total risk 
over its controlled area, while a local area authority wants the risk over the local populated links of 
its jurisdiction to be the lowest possible. 
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In this paper, we study a new model for hazmat network design addressing also the concept of 
risk equity. The problem we consider is the following: a set of hazmat shipments has to be shipped 
over a road transportation network in order to transport a given amount of hazardous materials from 
specific origin points to specific destination points, and we assume that there are government 
authorities (at different levels, e.g., regional and local) that want to regulate the hazmat traffic by 
restricting the use of network links to the hazmat shipments with the aim of minimizing the total 
risk of the shipments, on the one hand, and spreading the risk equitably over the geographical 
region in which the transportation network is embedded, on the other hand. The former aim 
concerns that of a regional area authority, while the latter one goes in the direction of the aims of 
local area authorities (that are responsible to regulate the hazmat traffic inside their local area 
contained in the regional area) that would like avoiding local populated links in their jurisdictions to 
be overloaded in terms of induced risk by hazmat transportation. To the best of our knowledge, this 
is the first work that pays particular attention to the jurisdictional differences within different 
authorities. 

We formulate the hazmat network design problem with a linear bilevel model where at the 
higher (leader) level there is a meta-local authority (acting on behalf of all the involved local area 
authorities) that aims to minimize the maximum link risk over populated links of the whole 
network, that is, risk equity, and at the lower (follower) level there is the regional area authority that 
aims to minimize the total risk over the network. This corresponds to the existence of two decision 
makers, one (the regional authority) willing to define a feasible hazmat flow assignment on the 
network that induces the minimum total risk over the population, and the other (representing the 
local authorities) that, interpreting the optimal flow assignment of the previous (lower level) 
decision maker as a flow vector, minimizes the maximum link risk on the network, i.e., aiming at 
risk equity, by defining capacities over the network links that restrict the possible choices of the 
regional authority. 

The reason for using such a modeling approach follows from the fact that the local and the 
regional authorities act as multiple decision makers and in many cases they do not cooperate (e.g., 
because they are controlled by different parties, as often happens in Italy); hence, a simple multi-
objective single-level model does not adequately represent such a case, while the bilevel model 
better represents the scenario where there is a hierarchy of decision makers where the leader (i.e., 
the meta-local authority) tries to minimize the maximum link risk imposing some restrictions on the 
amount of hazmat traffic over the links of the network in terms of link capacities, leaving to the 
follower decision maker (i.e., the regional authority) the freedom to choose the specific amounts of 
hazmat traffic to be routed over the capacitated network in order to minimize the network total risk. 

In Figure 1, we report the conceptual comparison between our model and that of Kara and 
Verter (2004). In particular, our problem is a network design one, where the goal is not that of 
determining a subgraph of the whole transportation road network, but it is to determine (link) 
capacities leading to a balanced risk over the population as evenly as possible. Note that, differently 
from what happens in the model of Kara and Verter (2004), in our model two types of authority 
actors are represented, without considering the role of the carriers. Even if we do not take into 
account the point of view of carriers, the model formulation helps in defining restrictions to the 
amount of hazmat flowing through the network links without imposing specific routes to carries. In 
fact, in general, there are multiple-flow assignments for which we get the same minimum total risk 
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and minimum maximum link risk equal to the values achieved by the bilevel model, and, hence, a 
certain freedom can be left to the carriers in selecting the cheapest one among these flow 
assignments. 

 
 

 

Authority 

Carriers 

min TotalRisk(Selected Routes) 
 
Road Network Design 

min TotalRisk(Assigned Flows) 
 
Assignment of Flows on the 
Capacitated Network 

min TotalCost(Selected Routes) 
 
Selection of Routes on the Designed 
Network 

Kara and Verter (2004) Our model 

min MaximumLinkRisk(Assigned Flows) 
 
Capacity Setting 

Regional 
Authority 

Meta-Local 
Authority 

Figure 1: Comparison between Kara and Verter (2004) and the proposed model. 
 
 
In order to solve the linear bilevel model proposed, we transform the latter into a single-level 

mixed integer linear program by replacing the follower problem by its Karush-Kuhn-Tucker (KKT) 
conditions and by linearizing the complementary constraints, and then by solving the MIP problem 
with a commercial optimization solver. The optimal solution of the bilevel model may not be stable, 
and we provide an approach for testing its stability and for evaluating the range of maximum link 
risk values when the solution is not stable. Moreover, since the bilevel model is difficult to solve 
optimally and the solution may not be stable, we provide a heuristic algorithm for the bilevel model 
able to always find a stable solution. The proposed model and heuristic algorithm are 
experimentally evaluated on an Italian geographical region. 

The paper is organized as follows. In Section 2, we recall bilevel optimization and review the 
existing methods for solving bilevel problems. In Section 3, we give the linear bilevel problem 
formulation and its reduction to a single-level mixed integer linear program. In Section 4, we show 
why the solution of the bilevel model could not be stable, and give an approach for checking its 
stability. In Section 5, we provide the heuristic algorithm. Section 6 presents the model and 
heuristic algorithm experimentations on real cases of an Italian region. Finally, in Section 7 we 
provide some conclusions and remarks, and describe how the carriers can identify the cheapest flow 
assignment among the multiple-flow assignments for which we get the same minimum total risk 
and minimum maximum link risk equal to the values achieved by the bilevel model. 
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2. Bilevel optimization review 
 

A bilevel mathematical program (see, e.g., Bialas and Karwan, 1984) concerns two optimization 
problems hierarchically related. We can interpret such problems as that of two decision makers in 
which the optimal decision of one of them (called the leader) is constrained by the decision of the 
other decision maker (called the follower). The follower decision maker optimizes his/her objective 
function under a feasible region that is defined by the leader decision maker. The latter, with this 
setting, is in charge to define all the possible reactions of the second level decision maker and 
selects those values for the variable controlled by the follower that produce the best outcome for 
his/her objective function. A general formulation of such problem is the following: 
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where ξ1 is a vector of m1 variables controlled by the leader, and ξ2 is a vector of m2 variables 
controlled by the follower. f1(ξ1, ξ′2) and f2(ξ1, ξ2) are the objective functions of the leader and of the 
follower, respectively. S1 is the feasible region of the higher level (leader) problem, and 

}),(:{)( 221212
2 SRS m ∈∈= ξξξξ  is the feasible region of the lower level (follower) problem which 

depends on the values of the variables controlled by the leader. This formulation corresponds to the 
optimistic one, and implies that whenever the optimal solution set ),(minarg)( 212)(12

122

ξξξ
ξξ

fS
S∈

=′ , i.e., 

the follower reaction set, does not reduce to a singleton for some ξ1, the leader may select any 
solution ξ′2 ∈ S′(ξ1) that suits him best; let ξ*

2 be such a solution. Nonetheless, there is no guarantee 
that the follower will choose the best solution ξ*

2 for the leader, and the value of the leader 
objective function f1(ξ1, ξ′2) may be grater than f1(ξ1, ξ*

2) for a certain ξ′2 ∈ S′(ξ1). In this case the 
solution ξ1 chosen by the leader is not stable.   

Bilevel programs are very closely related to the van Stackelberg equilibrium problem (van 
Stackelberg, 1952), and the mathematical programs with equilibrium constraints (see, e.g., Luo et 
al. 1996). 

The most studied instances of bilevel programming problems have been for a long time the 
linear bilevel programs, and therefore this subclass is the subject of several dedicated surveys, such 
as that one by Wen and Hsu (1991). Over the years, more complex bilevel programs were studied 
and even those including discrete variables received some attention, see, e.g., Vicente et al. (1996). 
Hence, more general surveys appeared, such as those by Vicente and Calamai (1994) and Falk and 
Liu (1995) on non-linear bilevel programming. The combinatorial nature of bilevel programming 
has been reviewed in Marcotte and Savard (2005).  

Bilevel programs are hard to solve. In particular, linear bilevel programming has been proved to 
be strongly NP-hard (see, Hansen et al., 1992);  Vicente et al. (1996) strengthened this result by 
showing that finding a certificate of local optimality is also strongly NP-hard.  

Existing methods for bilevel programs can be distinguished into two classes. On the one hand, 
we have convergent algorithms for general bilevel programs with theoretical properties 



 8

guaranteeing suitable stationary conditions; see, e.g., the implicit function approach of Outrata et al. 
(1998), the quadratic one-level reformulation of Scholtes and Stohr (1999), and the smoothing 
approaches of Fukushima and Pang (1999) and Dussault et al. (2004). With respect to the 
optimization problems with complementarity constraints that represent a special way of solving 
bilevel programs, we can mention the papers of Kocvara and Outrata (2004), Bouza and Still 
(2007), and Lin and Fukushima (2003, 2005). The first work presents a new theoretical framework 
with the implicit programming approach. The second one studies convergence properties of a 
smoothing method that allows the characterization of local minimizers where all the functions 
defining the model are twice differentiable. Finally, Lin and Fukushima (2003, 2005) present two 
relaxation methods. 

Exact algorithms have been proposed for special classes of bilevel programs, e.g., see the vertex 
enumeration methods  by Candler and Townsley (1982), Bialas and Karwan (1984), and Tuy et al., 
(1993) applied when the property of extremal solution in bilevel linear program holds. 

Complementary pivoting approaches (see, e.g., Bialas et al., 1980, and Júdice and Faustino, 
1992) have been proposed on the single-level optimization problem obtained by replacing the 
second level optimization problem by its optimality conditions. Exploiting the complementarity 
structure of this single-level reformulation, Bard and Moore (1990) and Hansen et al. (1992), have 
proposed branch-and-bound algorithms which appear to be among the most efficient. Typically 
branch and bound is used when the lower level problem is convex and regular, since the latter can 
be replaced by its Karush-Kuhn-Tucker (KKT) conditions, yielding a single-level reformulation. 
When one deals with linear bilevel programs, the complementarity conditions are intrinsically 
combinatorial and in such cases branch-and-bound is the best approach to solve this problem (see, 
e.g.,  Colson et al., 2005).  

Cutting-plane approach is not frequently used to solve bilevel linear programs. Cutting-plane 
methods found in literature are essentially based on Tuy’s concavity cuts (Tuy, 1964). White and 
Anandalingam (1993) use these cuts in a penalty function approach for solving bilevel linear 
programs. Marcotte et al. (1993) propose a cutting-plane algorithm for solving bilevel linear 
programs with a guarantee of finite termination. Recently, Audet et al. (2007), exploiting the 
equivalence of the latter problem with a mixed integer linear programming one, propose a new 
branch and bound algorithm embedding Gomory cuts for bilevel linear programming. For the above 
reasons, since, as we will show next, our bilevel model is a linear one, in the following we will 
adopt the single-level mixed integer linear programming formulation for the bilevel model, and a 
resolution strategy based on branch and bound rules.  
 
 
3. The bilevel model formulation 
 

Let the road transportation network be represented by an undirected network G = (N, E), with N 
and E being the set of n nodes (crossing points) and the set of m (undirected) links (road segments 
that connect the crossing points) of the network, respectively. Let C be a set of hazmat shipments 
(in the following called also commodities), and, for each hazmat shipment c ∈ C, let sc and tc be 
respectively the source node (origin point) and the sink node (destination point) in the network, and 
let dc be the amount of hazmat to be shipped from sc to tc in a given time horizon (e.g., a month). 
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W.l.o.g., we assume that in G there is at least a path connecting the source node sc to the sink node 
tc, for each c ∈ C. 

Moreover, w.l.o.g., we assume that each link <i, j> ∈ E can be traversed in both directions; let A 
= {(i, j), (j, i)} : <i, j> ∈ E } be the set of (directed) arcs induced by set E of links, where arc (i, j) ∈ 
A represents link <i, j> when traversed from node i to node j.  

Let ρij
c be the unitary risk of arc (i, j) ∈ A related to commodity c ∈ C, that is, the risk induced 

over link <i, j> ∈ E by a unit of flow of commodity c ∈ C that traverses that link from node i to 
node j, and let ρji

c be the risk induced over the same link <i, j> by a unit of flow of commodity c  ∈ 
C that traverses that link in the opposite direction. When being not explicitly stated, we assume that 
ρij

c = ρji
c. 

Let xij
c be the amount of hazmat of commodity c that traverses link <i, j> from node i to node j, 

that is the amount of flow of commodity c that flown on arc (i, j). 
Let yij be the (bundle) capacity of arc (i, j) ∈ A that limits the total amount ∑

∈Cc

c
ijx of flow 

traversing link <i, j> ∈ E from node i to node j. 
Let λ<i,j> = ∑

∈

+
Cc

c
ji

c
ji

c
ij

c
ij xx )( ρρ  be the link total risk over link <i, j> ∈ E, let λ be the maximum 

link total risk among the λ<i,j> values of each link <i, j> ∈ E , and let Rtot =  ∑ ∑
∈ ∈Cc Aji

c
ij

c
ij x

),(
ρ be the 

network total risk over G. 
According to the conceptual scheme of our model the bundle capacities {yij} are the variable 

controlled by the leader decision maker, who wants to minimize the value of λ by imposing specific 
limits on the amount of  flows {xij

c} on the links of the network, which are the variables controlled 
by the follower decision maker who aims to minimize the value of Rtot. 

Referring to the general bilevel formulation given in Section 2, in our model the set S2 
represents all the multi-commodity feasible flow assignments along with bundle capacities in a 
capacitated transportation network, where the bundle capacity vector y = {yij} is the vector ξ1 of the 
variables controlled by the leader, the feasible multi-commodity flow assignment x = {xij

c} is the 
vector ξ2, and the feasible region S2(ξ1 ≡ y) of the follower problem contains all the multi-
commodity feasible flow assignments x = {xij

c} on the network with bundle capacity vector y. 
Therefore, once bundle capacities are fixed by the leader decision maker, the lower level (follower) 
problem that the follower decision maker wants to solve becomes a minimum cost multi-
commodity network flow problem, where the arc cost models the unit risk of traversing the arc, 
with a specific hazmat shipment (commodity) c ∈ C of dc units being associated with a couple (sc; 
tc) of source-sink nodes. The set of optimal solutions of this latter problem is the follower reaction 
set S′2(ξ1).  

In the following, we give the bilevel formulation. 
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The first formulation is the higher level formulation that models the leader problem P1 of 

assuring an equitable distribution of the risk over the network given a minimum network total risk 
multi-commodity hazmat flow by the follower decision maker. The model minimizes the value of 
the maximum link total risk λ among the link total risk λ<i,j> values of the links <i, j> of the network 
G, finding appropriate arc capacities yij for each arc (i, j) ∈ A. Let λ* be the optimal solution value 
of the leader problem, that is the minimum possible value for λ. Constraints (1) say that the link 
total risk over each link <i, j> ∈ E cannot be greater than λ, while (2) are nonnegative constraints on 
the arc bundle capacities. 

The second formulation is the lower level formulation that models the follower problem P2 of 
minimizing the network total risk Rtot induced by a (feasible) multi-commodity flow assignment x = 
{xij

c}, given the capacity vector y = {yij} imposed by the leader decision maker. Let R*
tot(y) be the 

optimal solution value of the follower problem, that is the minimum network total risk value given 
the bundle capacity vector y. 

Being FS(i) = {j ∈ N : (i, j) ∈ A} and BS(i) = {j ∈ N : (j, i) ∈ A} respectively the forward and 
backward stars of each node i ∈ N, constraints (3) impose the conservation of flow at nodes for 
each commodity. Constraints (4) say that the total flow on arc (i, j) ∈ A should not exceed the arc 
capacity value yij. Noting that flows xij

c are variables of the follower problem and capacities yij the 
variables of the leader problem, the minimization of the network total risk Rtot is assumed over the 
xij

c variables, and the minimization of λ over the yij variables. 
The model is a bilevel linear program, i.e., the objective functions and the constraints are linear. 

Following the approach proposed by Fortuny-Amat and McCarl (1981), we reformulate the linear 
bilevel model, as made also by Kara and Verter (2004), by replacing the follower problem P2 with 
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the Karush-Kuhn-Tucker optimality conditions into the leader problem P1, thus obtaining a single-
level optimization problem. Therefore, in the following, we will transform our bilevel program into 
a new single-level problem called P3, assuming that P2 is the primal formulation from which we 
want to define its optimality conditions, i.e., complementary slackness and primal and dual 
feasibility. To this aim let us define: 

γi
c = dual variables associated with primal constraints (3), where i ∈ N, c ∈ C; 

ηij = dual variables associated with primal constraints (4) where (i, j) ∈ A; 
wij = slack variables of the primal constraints (4), where (i, j) ∈ A; 
zij

c = slack variables of the dual constraints, where (i, j) ∈ A, c ∈ C. 
Now, we give the new single-level optimization problem P3, where we considered the 

optimality conditions of the follower problem P2 into the leader problem P1. 
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Note that the complementary slackness conditions (6) and (7) are quadratic constraints. 

Moreover (see constraints (8)), dual variables associated with primal equality constraints are free in 
sign. Constraints (6) and (7) can be linearized by introducing binary variables ,,, 321

ijcijij δδδ and 4
ijcδ , 

and large numbers 4321 ,,, MMMM c , as reported in the next mixed integer linear program P4. 
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Note that, due to constraints (13) and (14), pairs of constraints (9)-(10) and (11)-(12) are such 

that complementary slackness relations in P3 are obeyed.  
Values M1 and M4 are sufficiently large numbers, while we can set ∑

∈

=
Cc

cdM 2 , since 

∑
∈

≤≤
Cc

c
ijij dyw , and c

c dM =3 , since xij
c ≤ dc. 

 
 

4. Solving the bilevel model 
 

When solving problem P4, besides the optimal solution y* = {y*
ij} of the bilevel model which is 

the best leader choice, we also get the best (from the leader point of view) multi-commodity flow 
assignment xB = {x*

ij
c} that the follower may choose among the minimum network total risk flow 

assignments given bundle link capacities {y*
ij}, that is, among all his/her indifferent choices over 

the capacitated network established by the leader. The optimal solution value λ* of the bilevel model 
is equal to the maximum link total risk induced by flow assignment xB. Nevertheless, there is no 
guarantee that the follower will adopt flow assignment xB if there are multiple minimum network 
total risk flow assignments on the capacitated network, and in this case the optimal solution y* of 
the bilevel model might be unstable, that is, the follower may adopt a flow assignment x′ different 
from xB, and the maximum link total risk λ′ induced by x′ may be greater than λ*. 

For example, let us consider the network of Figure 2(a) where we have exactly two disjoint 
paths from node 1 to node 4, i.e., path P1 = (1, 2, 4) and path P2 = (1, 3, 4). Let us consider two 
hazmat commodities c = 1, 2, and assume that we have to move 100 hazmat units from node 1 to 
node 4 for both commodity 1 and 2 (i.e., d1 = d2 = 100) over the network, where the risk per unit 
flow flowing on each link <i, j> in both the directions is equal to 1 and 2, respectively for 
commodity 1 and 2 (i.e., ρij

1 = ρji
1 = 1 and ρij

2 = ρji
2 = 2, for each <i, j> ∈ E). Paths P1 and P2 are the 

only available paths for sending hazmats for both the two commodities. Since, for both 
commodities, the risk per unit of flow over the two paths P1 and P2 is the same (i.e., equal to 2 and 
4, for commodity 1 and 2, respectively), every feasible flow assignment on the network links gives 
the same network total risk Rtot of value R*

tot = 600, which is the minimum value for Rtot. However, 
one of the best case for the leader would be if the follower divided the total amount of each 
commodity in two equal amounts of 50 units each, and ship each one of these latter amounts on 
different paths. That is, for each commodity, 50 units of flow will be assigned to arcs (1, 2) and (2, 
4) of path P1, and 50 units of flow will be assigned to arcs (1, 3) and (3, 4) of path P2; in this case 
the value of λ, being the maximum among the link total risk over each link of the network, is equal 
to λ* = 150, which is the lowest possible value for λ; this flow assignment corresponds to the best 
flow assignment xB from the leader point of view (see Figure 2(b)). Therefore, in order to try to 
force the follower to choose flow assignment xB, the leader will fix bundle arc capacities yij to y*

ij = 
100 for arcs (1, 2), (2, 4), (1, 3) and (3, 4), and to y*

ij = 0 for all the other arcs of A; let therefore the 
capacity vector y* be the optimal solution of the bilevel problem. But with these capacity values, the 
follower has multiple minimum network total risk flow assignments for shipping the two hazmat 
commodities from node 1 to node 4, which have the same network total risk Rtot of value R*

tot = 600 
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but different λ values. For example, the minimum network total risk flow assignment, denoted with 
xW and shown in Figure 2(c), where all the amount of commodity 1 is shipped along path P1

 and all 
the amount of commodity 2 is shipped along path P2

 has network total risk Rtot equal to R*
tot = 600 

and λ equal to λW = 200. Note that, from the leader point of view, xW  is the worst flow assignment 
that the follower may choose among the minimum network total risk flow assignments given 
bundle link capacities y*

ij, since it produces the maximum value for λ.  Therefore, since the leader 
cannot impose to the follower to choose flow assignment xB in order to achieve the minimum value 
λ* for λ, the optimal solution y* = {y*

ij} of the bilevel problem is not stable. 
 

 
Figure 2: An example for a non-stable solution. 

 
When the optimal solution y* = {y*

ij} of the bilevel model is not stable, the leader might be 
interested in evaluating the gap between λ*, that is the optimal (minimum) value of λ (achieved if 
the follower adopts the best flow assignment xB = {x*

ij
c} from the leader point of view) and its 

worst (maximum) value λW (achieved if the follower chooses the worst flow assignment xW , among 
the minimum-total risk flow assignments given bundle arc capacities y*

ij). If this gap is too large, 
the leader may prefer to (heuristically) find a stable feasible bundle arc capacity assignment {ŷij}. 

Before testing the stability of the optimal solution y* = {y*
ij} of the bilevel model, we reinforce 

this solution by setting y*
ij = min{y*

ij; ∑c∈C x*
ij

c}, where {x*
ij

c} is the solution of problem P4 and, 
hence, corresponds to the best multi-commodity flow assignment xB from the leader point of view. 
With this reinforcement we consider (possibly) another optimal solution of the bilevel model that 
might have more chance to be stable than the previous one.  

1 4
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2
(ρij
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To test the stability of solution y* = {y*
ij}, it is sufficient to check if the minimum network total 

risk multi-commodity network flow problem on the capacitated network with bundle arc capacities 
y*

ij has multiple solutions with values of λ greater than λ*. This can be done as follows. 
Let us consider the following multi-commodity network flow problem P5 with bundle arc 

capacity vector y = {yij}, an upper bound totR̂  on the network total risk, and where the objective is 

to maximize the link total risk λ<i,j> = ∑
∈

+
Cc

c
ji

c
ji

c
ij

c
ij xx )( ρρ over link <i, j> of the network. 
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 For each link <i, j> of the network, we solve problem P5 with y = y* and totR̂  = R*

tot(y*) , with 

R*
tot(y*) being the total risk value of the minimum-total risk multi-commodity network flow on the 

capacitated network G with bundle arc capacities vector y*, that is, R*
tot(y*) is the optimal solution 

value of the follower problem P2 given in Section 3; let λ*
<i, j>(y*, R*

tot(y*)) be the optimal solution 
value of problem P5, for link <i, j>. 

Let λW = max<i, j>∈E {λ*
<i, j>(y*, R*

tot(y*))}. If λW = λ* then y* is a stable optimal solution of the 
bilevel problem with maximum link total risk equal to λ*; otherwise, y* is not stable and the 
maximum link total risk may be as large as λW, depending on the follower’s choice. In the latter 
case, a stable solution can be obtained heuristically, as we show in the next section.  

 
 

5. A heuristic approach 
 

In this section we describe a heuristic approach for finding a stable feasible solution of the 
bilevel model, inspired by Erkut and Gzara (2008). The heuristic approach we propose is an 
iterative algorithm that at each iteration constructs a feasible solution yH of the bilevel model, and 
tests its stability using the same approach as the one discussed in the previous section. If yH is 
stable, the algorithm stops; otherwise, the algorithm removes a link and starts a new iteration with 
the residual network. When the algorithm stops, the stable heuristic solution yH = {ŷij} on the 
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original network is obtained by setting ŷij = ŷji = 0, for each removed link <i, j>  from the original 
network. 

In the following, we show the criterion for the selection of the link to be removed, and prove 
that after a number of iterations less than the number of network links the algorithms stops with a 
feasible stable solution for the residual network.  

At each iteration the algorithm works as follows. It computes a new heuristic solution yH of the 
bilevel model by solving the optimization problem, denoted with Only_Leader, of the over-
regulated scenario where the leader directly imposes the flow assignment on the network that 
optimizes its own criterion, that is the minimization of the maximum link total risk λ among all the 
links of the (residual) network G. The problem Only_Leader is therefore an uncapacitated multi-
commodity network flow problem where the objective is the minimization of the maximum link 
total risk λ, and is formulated as follows. 
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In order to take also into account the behaviour of the follower, who aims to minimize the 

network total risk ∑ ∑
∈ ∈

=
Cc Aji

c
ij

c
ijtot xR

),(
ρ , we modify problem Only_Leader by substituting the 

objective function with the function f(λ, x) = λ + 1/γ · Rtot, with ∑ ∑
∈ ∈

=
Cc Aji

cc
ij d

),(
ργ ; let us denote with 

Modified_Only_Leader this latter problem. Note that, with this value of γ, we minimize λ and Rtot in 
lexicographical order (i.e., among the solutions with minimum λ value, we find that one of 
minimum Rtot value). 

  Let x^ = {x^
ij

c} be the optimal solution of problem Modified_Only_Leader, and let λ^ =  
max<i,j>∈E {∑c∈C (ρij

c x^
ij

c + ρji
c x^

ji
c)} be the related maximum link total risk. The heuristic solution 

yH = {ŷij} is constructed from solution x^ by setting the bundle capacity value ŷij of arc (i, j) equal to 
the total flow on that arc, that is ŷij =  ∑c∈C x^

ij
c. Let λH = λ^ be the solution value related to the 

feasible solution yH.  
Let us assume, therefore, that the leader imposes the bundle capacities yH = {ŷij} on the 

network. The follower finds an optimal flow assignment on the capacitated network that minimizes 
the network total risk; this corresponds to solve the follower problem P2 formulated in Section 3. 
Let R*

tot(yH) be the optimal solution value of this latter problem, that is, the value of the minimum 
network total risk on the capacitated network G with bundle link capacities vector yH. 

For each link <i, j> of the network, let λ*
<i, j>(yH, R*

tot(yH)) be the maximum link total risk over 
link <i, j> among all the optimal solutions of the follower problem P2 on the capacitated network 
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with bundle arc capacity vector yH; recall that λ*
<i, j>(yH, R*

tot(yH)) is the optimal solution value of 
problem P5 with y = yH and totR̂  = R*

tot(yH). 

If solution yH is not stable, there is a link <i, j> of G for which λ*
<i, j>(yH, R*

tot(yH)) is greater 
than λH; let us assume that <i, j> is the link for which λ*

<i, j>(yH, R*
tot(yH)) = max<i, j>∈E {λ*

<i, j>(yH, 
R*

tot(yH))} and that λ*
<i, j>(yH, R*

tot(yH)) > λH, with λ*
<i, j>(yH, R*

tot(yH)) being induced by the follower 
optimal flow assignment {x'ijc} over the capacitated network with bundle arc capacity vector yH = 
{ŷij}.  

In order to eliminate the difference between λH and λ*
<i, j>(yH, R*

tot(yH)), the algorithm removes 
link <i, j> from G and starts a new iteration where it searches for a new feasible solution of the 
bilevel model on the residual network. Note that the following holds in the residual network. 

 
Theorem 1. Given a heuristic solution yH of value λH, if there is a link <i, j> of G such that  
λ*

<i, j>(yH, R*
tot(yH)) > λH, in the residual network obtained after the removal of link <i, j> from G, 

there is at least one path connecting the origin node sc to the destination node tc, for each 
commodity c ∈ C. 
 
Proof: If λ<i, j>(yH, R*

tot(yH)) > λH there exists at least a commodity ĉ ∈ C with x′ijĉ ≠ x^
ij

 ĉ (or x′jiĉ ≠ 
x^

ji
 ĉ). This means that in the residual network there are at least two paths P1

ĉ and P2
ĉ connecting the 

source node sc to the sink node tc with link <i, j> ∈ P1
ĉ and <i, j> ∉ P2

ĉ, since in the opposite case 
when all paths from sc to tc have in common link <i, j> we should have x′ijĉ = x^

ij
 ĉ = dĉ (or x′jiĉ = x^

ji
 ĉ 

= dĉ if link <i, j> is traversed from node j to node i when going from sc to tc along each path 
connecting sc to tc). Let P1

ĉ = (sĉ ≡ i1
ĉ, …, ih

ĉ, …, iq
ĉ ≡ i, j ≡ jr

ĉ, …, jk
ĉ, …, j1

ĉ ≡ tĉ) and P2
ĉ = (sĉ ≡ i1

ĉ, 
…, ih

ĉ, u, …, v, jk
ĉ, …, j1

ĉ ≡ tĉ), with 1 ≤ h ≤ q, and 1 ≤ k ≤ r. For any other commodity c ≠ ĉ for 
which there exists a path P1

c connecting the origin node sc to the destination node tc and with link 
<i, j> ∈ P1

c (e.g., P1
c = (sc ≡ i1

c, …, iφc ≡ i,  j ≡ jωc, …, j1
c ≡ tc), with φ ≥ 1 and ω ≥ 1), there exists 

also path P2
c (in Figure 3, P2

c = (sc ≡ i1
c, …, iφc ≡ i ≡ iq

ĉ, …, ih
ĉ, u, …, v, jk

ĉ, …,  jr
ĉ ≡ j ≡ jωc, …, j1

c ≡ 
tc)) that does not contain link <i, j>. Therefore, in the residual network obtained after the removal of 
link <i, j> from the network G, there exists at least one path connecting the source node sc to the 
sink node tc, for each commodity c ∈ C.           □ 

 
 

 
Figure 3: The subgraph of the paths in the proof of Theorem 1. 

 
   

ih
ĉ jk

ĉ sĉ ≡ i1
ĉ iq

ĉ ≡ i ≡ iφc jωc ≡ j ≡ jr
ĉ 

u v 

j1
c ≡ tc sc ≡ i1

c 

j1
ĉ ≡ tĉ 
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Theorem 2. The heuristic algorithm always stops with a stable heuristic solution yH = {ŷij}. 
 
Proof: At each iteration, the heuristic algorithm tests the stability of the heuristic solution yH = {ŷij} 
found for the current residual network and stops when this solution is stable; otherwise, it removes a 
link <i, j> from the network for which λ*

<i,j>(yH, R*
tot(yH)) > λH. In the latter case, according to 

Theorem 1, in the residual network there exists at least one path connecting the source node sc to the 
sink node tc, for each commodity c ∈ C, and, hence, the set of feasible solutions for the bilevel 
model is not empty, and the heuristic algorithm finds one of these solutions. The algorithm iterates 
at most until, for each commodity c of C, there is exactly one path Pc from sc to tc in the residual 
network (which is therefore a forest, that is, a collection of node-disjoint trees), since in this case it 
always returns a stable solution as shown next. In such case, there is only one feasible solution 
{x^

ij
c} for problem Modified_Only_Leader with x^

ij
c = dc if link <i, j> ∈ Pc and is traversed from 

node i to node j when going from sc to tc, and x^
ij

c = 0 otherwise; therefore, the solution yH = {ŷij} of 
the bilevel model, with ŷij = ∑c∈C x^

ij
c, found by the heuristic algorithm is stable, since the existence 

of exactly one path from sc to tc, for each c ∈ C, implies that in the capacitated network with bundle 
capacities ŷij the optimal follower solution is unique and equal to solution {x^

ij
c}. Hence, also in this 

case, the heuristic algorithm stops with a stable solution.          □ 
 
For the sake of completeness, in the following we sketch the steps of the proposed heuristic. 
 

Heuristic algorithm 
Repeat 

Step 1. Solve problem Modified_Only_Leader; let x^ = {x^
ij} be the optimal solution and λ^ = 

max<i,j>∈E {∑c∈C (ρij
c x^

ij
c + ρji

c x^
ji

c)} be the related maximum link total risk.   
Step 2. Let yH = {ŷij} be a solution of the bilevel model, with ŷij =  ∑c∈C x^

ij
c, for each (i, j) ∈ 

A; let λH = λ^ be the solution value related to solution yH. 
Step 3. Solve the follower problem with bundle arc capacity vector yH; let R*

tot(yH) be its 
optimal solution value. 

Step 4. {* Test the stability of solution yH *}  
Step 4.1. Let <i*, j*> be the link of G such that  

λ*
<i*, j*>(yH, R*

tot(yH)) = max<i, j>∈E {λ*
<i, j>(yH, R*

tot(yH))},  
where λ*

<i, j>(yH, R*
tot(yH)) is the optimal solution value of problem P5. 

Step 4.2. If λ*
<i*, j*>(yH, R*

tot(yH)) > λH declare solution yH as “not stable”, otherwise 
declare solution yH as “stable”. 

Step 5. If yH is “not stable” remove link <i*, j*> from the network G. 
Until solution yH = {ŷij} is “stable”. 
Return solution yH = {ŷij}, with ŷij = ŷji = 0, for each removed link <i, j> of the original 

network. 
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Figure 4: The heuristic solution: iteration 1. 

 
Let us consider again the network example introduced in Section 4, and apply the heuristic 

algorithm (Figure 4(a) shows the network data). Figure 4 shows the execution of iteration 1. Step 1 
solves problem Modified_Only_Leader, and the solution x^ = {x^

ij} is depicted in Figure 4(b) with λ^ 
= 150. From this solution, Step 2 constructs the heuristic solution yH = {ŷij} of the bilevel model, 
with ŷij =  ∑c∈C x^

ij
c, for each (i, j) ∈ A; its solution value is λH = λ^ = 150. Step 3 solves the follower 

problem P2 with bundle link capacity vector yH and finds R*
tot(yH) = 600. Step 4 tests the stability 

of yH, and finds that λ*
<1,3>(yH, R*

tot(yH)) = max<i,j>∈E {λ*
<i, j>(yH, R*

tot(yH))}; Figure 4(c) shows the 
solution x″ of problem P5; from this solution λ*

<1,3>(yH, R*
tot(yH)) = 225. Since λ*

<1,3>(yH, R*
tot(yH)) 

> λH, the heuristic solution yH = {ŷij} is not stable. Therefore, the algorithm removes link  
<1, 3> from the network and executes iteration 2 (see Figure 5). Step 1 solves problem 
Modified_Only_Leader on the residual network depicted in Figure 5(a), and the solution x^ = {x^

ij}, 
with λ^ = 300, is shown in Figure 5(b). From this solution, Step 2 constructs the new heuristic 
solution yH = {ŷij} of the bilevel model, with ŷij =  ∑c∈C x^

ij
c, for each (i, j) ∈ A; its solution value is 

λH = λ^ = 300. Step 3 solves the follower problem P2 with bundle link capacity vector yH and finds 
R*

tot(yH) = 600. Step 4 tests the stability of solution yH, and finds that λ*
<i*,j*>(yH, R*

tot(yH)) =  
max<i,j>∈E {λ*

<i,j>(yH, R*
tot(yH))} = 300; Figure 5(c) shows the solution x″ of problem P5, with  

λ*
<i*,j*>(yH, R*

tot(yH)) = 300 (e.g. with <i*, j*> ≡ <1, 2>). Since λ*
<i*,j*>(yH, R*

tot(yH)) = λH = 300 the 
heuristic solution yH = {ŷij} is stable on the residual network. Therefore, the algorithm stops, and 
the (heuristic) stable solution on the original network is obtained assuming ŷij = ŷji = 0 for every link 
<i, j> removed from the original network (i.e., link <1, 3>).  
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Figure 5: The heuristic solution: iteration 2. 

 
 
6. Experimental analysis 

 
This section shows the computational results achieved by the proposed bilevel model and the 

proposed heuristic algorithm. We divide this section into four parts. The first one is devoted to 
analyze the behavior of the bilevel model, implemented in the AMPL language (www.ampl.com) 
and optimally solved by means of an on-the-shelf branch and bound algorithm like the one 
embedded in the CPLEX 8.0.1 solver (www.ilog.com). The second part presents heuristic results. 
The third and the fourth parts of the section is devoted to the comparison of the results of the 
optimal and heuristic solutions of the bilevel model with the results coming from two opposite 
scenarios, called over-regulated and under-regulated scenarios (see also Erkut and Gzara, 2008), 
respectively, in order to assess the values of the network total risk Rtot and of the maximum link 
total risk λ obtained by the bilevel model and the heuristic algorithm. 

In the over-regulated scenario only the leader decision maker is considered, with the leader that 
directly imposes the flow assignment on the network G, optimizing his/her own criterion, that is, 
minimizing the maximum link total risk λ among the links of the network. This consists in solving 
the linear program Only_Leader introduced in Section 5; let xL be the optimal solution (flow 
assignment), and let λL be its optimal solution value, that is, the minimum value of the maximum 
link total risk λ among the links of the network in the over-regulated scenario. Clearly, λL is a lower 
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bound on λ* and, hence, λL ≤ λ* ≤ λH. Moreover, let us denote with RL
tot the network total risk value 

associated to the flow assignment xL. 
In the under-regulated scenario only the follower decision maker is considered, who therefore 

aims to find a multi-commodity network flow over the uncapacitated network to minimize the 
network total risk Rtot. This corresponds to solve the linear program P2 introduced in Section 3 with 
unlimited bundle capacities (i.e., yij = +∞, for each (i, j) ∈ A) on the network G; let us denote with 
Only_Follower this latter problem. Let xF be the optimal solution (flow assignment) of the 
Only_Follower problem, and let RF

tot = R*
tot(+∞) be its optimal solution value, that is, the minimum 

network total risk value in the under-regulated scenario. Clearly, RF
tot ≤ R*

tot (y), for any (non-
negative) capacity vector y. Moreover, let us denote with λF the maximum link total risk value 
associated to the flow assignment xF. 

Figure 6 shows the optimal solutions of the over-regulated and under-regulated scenarios for the 
network example introduced in Section 4: Figure 6(a) shows the network data, and Figures 6(b) and 
6(c) show the optimal solutions of the over-regulated and under-regulated scenarios, respectively. 
 

 
Figure 6: The optimal solutions for the over-regulated and under-regulated scenarios. 

 
The linear programming models for the over-regulated and under-regulated scenarios have been 

implemented, as for the single-level mixed integer linear programming model reformulation of the 
bilevel model, by means of the AMPL language and solved with CPLEX 8.0.1. The heuristic 
algorithm was implemented in the C language. All the algorithms ran on a PC with a Pentium IV 
processor and 2GB of RAM.  
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In order to evaluate the effectiveness of the proposed model and algorithm, we concentrated our 
analysis on a real-world case study. We considered the road network of the Lazio region (located in 
the middle of Italy), and, in particular, its main transport roads, for an overall size of n = 311 macro-
nodes and m = 441 links. Unitary risk ρij

c values were computed from data provided by a local 
authority and range from 50 to 250 per ton of hazmat transported. The unitary risk ρij

c (and ρji
c) is 

computed as the ratio between the risk )(
,

cm
jir ><  induced on link <i, j> by a vehicle carrying hazmat of 

type m(c) and the capacity τ in tons of the vehicle, with )(
,

cm
jir ><  being evaluated as the societal risk 

computed as the number of people living inside the exposure zone around link <i, j> (whose size 
depends on the hazmat type m(c)) times the accident probability involving the vehicle. We 
considered from 2 to 10 origin-destination pairs on the network, each one associated with a number 
of commodities ranging from 1 to 3, for an overall number of shipments (commodities) between 2 
and 30 (we recall that in our model each commodity is associated with one origin-destination pair). 
With each one of the latter scenarios we associated 10 instances; each instance has been generated 
by assigning uniformly at random a demand from 100 to 1,000 tons to each shipment. Figure 7 
shows the road network and the 10 origin-destination points for the hazmat shipments. 
 

 

+–

+
–

+ 

–

+

+

–

+

––

+
–

+

– 

+

–
+ –

Rome 

 
Figure 7: The road transportation network of Lazio with origin-destination pairs. 

 
In Tables 1 and 2, we report the main features of the bilevel model which help in analyzing its 

performance. In particular, the columns of Table 1 show: 
- ns, the number of shipments (commodities); 
- Inst, the instance ID; 
- # reinf., the number of capacity values being reinforced after the solution of the bilevel model; 
- λ*, the optimal solution value of the bilevel model, i.e., the minimum value of the maximum 

link total risk λ; 
- R*

tot(y*), the minimum network total risk over the capacitated network with bundle capacity 
vector y* imposed by the leader; 
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- Capacity ratio, computed as the ratio (in percentage) [∑(i,j)∈A yij]/[|A| ∑c∈C dc], the 
performance indicator that measures the restriction imposed by the leader on the decision of 
the follower. 

- B&B nodes, the number of branch and bound nodes generated when solving problem P4; 
- Simplex iterations, the total number of simplex iterations in the bounding process; 
- Cpu time bilevel, the cpu time (in seconds) spent to solve the bilevel model; 
- λW, the worst (maximum) value for the maximum link total risk λ among all the optimal flow 

assignments of the follower on the capacitated network with bundle capacity vector y* 
imposed by the leader;  

- Cpu time stability, the cpu time (in seconds) needed to check the stability of the solution of the 
bilevel model. 

 
Table 1 shows results for the case with ns = 2 and 3 shipments. Indeed, the B&B algorithm of 

CPLEX 8.0.1 was able to optimally solve within 3 hours of cpu time limit only these classes of 
instances. As can be inferred by the table, the solutions found are always stable, i.e. λ* = λW. The 
cpu time spent to find the optimal solutions ranges from 3 seconds to 4,710 seconds, while the cpu 
time needed to test to solution stability ranges from 1.2 to 65.5 seconds (note that the stability check 
is performed by solving at most m linear programs). Even if, for each given ns value, both λ* and 
R*

tot(y*) values have a wide range of variability over the 10 instances, we can observe that the λ* 
values are quite robust with respect to different ns values. In particular, the former ranges from 
about 4,000 to 19,300, and the latter from about 62,000 to 617,000 when ns = 2; when ns = 3, λ* 
varies from about 6,400 to 19,300 and R*

tot(y*) from about 303,000 to 1,330,000. None 
reinforcement is appreciable for ns = 2 and only one instance has such parameter greater than zero 
(i.e., see instance 4) when ns = 3.  
 

ns Inst. 
# 

reinf. λ* R*
tot(y*) 

Capacity 
ratio (%)

B&B  
nodes 

Simplex 
iterations 

Cpu time 
bilevel λW 

Cpu time 
stability 

  1   0 12,870.00 263,001.00 0.94% 83 2,983 7.484 12,870.00   4.719 
  2   0 4,792.00 93,726.00 0.55% 124 3,372 9.984 4,792.00 10.500 
  3   0 4,290.00 62,507.00 0.63% 25 1,735 3.281 4,290.00   7.641 
  4   0 10,725.00 177,761.00 0.56% 20 1,472 4.438 10,725.00   9.609 
  5   0 17,160.00 290,944.00 0.67% 20 1,757 3.359 17,160.00   1.188 
  6   0 4,290.00 87,231.30 0.66% 676 13,390 38.250 4,290.00   9.172 
  7   0 6,435.00 115,693.00 0.63% 18 1,689 2.984 6,435.00   5.406 
  8   0 6,435.00 233,944.00 1.48% 370 8,773 25.344 6,435.00   9.860 
  9   0 4,290.00 106,595.00 0.64% 163 4,276 17.578 4,290.00 16.218 

2 

10   0 19,305.00 416,497.00 1.34% 111 3,091 7.797 19,305.00   1.250 
  1   0 17,160.00 792,980.00 1.80% 14,674 1,112,475 2,359.840 17,160.00 65.454 
  2   0 19,305.00 487,101.00 1.18% 700 651,357 147.672 19,305.00 30.109 
  3   0 17,160.00 1,332,050.00 2.10% 43,411 2,305,245 4,709.690 17,160.00 40.781 
  4 29 10,725.00 306,153.00 0.71% 25,486 769,176 1,665.970 10,725.00   3.546 
  5   0 6,435.00 457,294.00 2.49% 155,332 5,884,286 4,637.590 6,435.00 48.594 
  6   0 10,725.00 303,822.00 1.17%      612 16,969 17.781 10,725.00 16.438 
  7   0 8,580.00 481,618.00 1.29%     3,694 119,789 148.688 8,580.00 25.734 
  8   0 10,725.00 439,045.00 1.17%     3,594 104,159 109.750 10,725.00 21.859 
  9   0 17,160.00 647,855.00 1.68%   66,695 3,514,594 3,172.220 17,160.00 18.562 

3 

10   0 14,066.20 886,671.00 1.68% 29,276 1,160,354 793.640 14,066.20 52.625 
Table 1: Results of the bilevel model for ns = 2 and 3. 
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ns Inst. λLR 
Simplex 

iterations 
Cpu time 

bilevel lin. rel. ns Inst. λLR 
Simplex 

iterations 
Cpu time 

bilevel lin. rel.
  1 15,629.10    953 0.813   1 47,190.00 3,440 10.406 
  2 15,015.00    902 0.781   2 53,625.00 3,176   6.281 
  3 7,814.50    911 0.828   3 53,625.00 3,201   7.750 
  4 21,450.00    878 0.750   4 42,900.00 3,323   7.843 
  5 15,015.00    937 0.953   5 40,755.00 3,253   7.343 
  6 17,160.00    882 0.735   6 53,625.00 3,154   7.765 
  7 15,015.00    911 0.860   7 45,045.00 3,289   7.313 
  8 17,160.00    927 0.766   8 55,770.00 3,127   6.328 
  9 17,160.00    893 0.766   9 53,625.00 2,896   6.125 

5 

10 21,450.00    979 0.797 

20

10 47,190.00 3,304   7.469 
  1 38,610.00 1,736 2.406   1 70,785.00 4,912 13.392 
  2 23,595.00 1,901 2.375   2 55,770.00 4,814 13.527 
  3 25,740.00 1,708 2.203   3 79,365.00 4,532 12.593 
  4 38,610.00 1,747 2.609   4 98,670.00 5,239 14.113 
  5 21,450.00 2,084 2.531   5 68,640.00 4,932 13.183 
  6 11,261.90 1,902 2.484   6 98,670.00 5,192 14.082 
  7 25,740.00 1,674 2.328   7 71,325.30 5,032 14.822 
  8 32,175.00 2,050 2.562   8 96,525.00 4,802 13.926 
  9 21,450.00 1,982 2.625   9 70,785.00 4,924 13.845 

10 

10 25,740.00 1,662 2.437 

30

10 83,655.00 5,102 14.634 
Table 2: Results of the linear relaxation of the single-level MIP formulation of the bilevel model for 

ns = 5, 10, 20 and 30. 
 
 

ns Inst. λH R*
tot(yH) 

Capacity
ratio (%)

Cpu time
heuristic ns Inst. λH R*

tot(yH) 
Capacity 
ratio (%) 

Cpu time
heuristic

  1 12,870.00 179,535.00 0.63%   3.797   1 38,610.00 1,633,280.00 1.20%   39.250 
  2 4,792.00 86,434.60 0.54%   8.500   2 23,595.00 1,655,610.00 1.58% 155.203 
  3 4,290.00 59,845.00 0.63%   3.797   3 25,740.00 1,536,850.00 1.41% 170.469 
  4 10,725.00 163,590.00 0.61%   4.594   4 38,610.00 2,099,500.00 1.39% 107.532 
  5 17,160.00 234,721.00 0.63%   2.578   5 21,450.00 1,641,710.00 1.52% 167.672 
  6 4,290.00 74,010.70 0.58%   3.859   6 11,261.90 1,151,150.00 1.53% 322.282 
  7 6,435.00 94,426.60 0.62%   3.797   7 25,740.00 1,095,820.00 1.28% 101.468 
  8 6,435.00 89,767.50 0.63%   4.610   8 32,175.00 2,355,110.00 1.50% 156.391 
  9 4,290.00 83,594.70 0.55%   6.484   9 21,450.00 1,644,900.00 1.61% 182.797 

2 

10 19,305.00 255,326.00 0.64%   1.797 

10

10 25,740.00 1,191,100.00 1.26% 106.015 
  1 17,160.00 325,055.00 0.76%   2.969   1 47,190.00 3,116,820.00 1.46% 221.359 
  2 19,305.00 410,710.00 0.77%   4.985   2 53,625.00 3,066,620.00 1.32% 159.813 
  3 17,160.00 570,626.00 0.93% 11.218   3 53,625.00 3,607,980.00 1.41% 340.047 
  4 10,725.00 239,512.00 0.83%   3.031   4 42,900.00 3,318,950.00 1.41% 362.484 
  5 6,435.00 349,033.00 1.19% 16.719   5 40,755.00 2,304,570.00 1.45% 101.310 
  6 10,725.00 230,194.00 0.89%   2.234   6 53,625.00 2,864,430.00 1.22%   59.047 
  7 8,580.00 231,618.00 0.79%   7.234   7 45,045.00 3,545,330.00 1.49% 104.750 
  8 10,725.00 317,008.00 0.83%   4.890   8 55,770.00 3,921,850.00 1.49% 133.860 
  9 17,160.00 444,601.00 0.82%   6.657   9 53,625.00 3,559,550.00 1.40%   30.844 

3 

10 14,066.20 661,654.00 1.27%   4.953 

20

10 47,190.00 3,036,860.00 1.35% 112.375 
  1 15,629.10 1,159,620.00 1.41% 31.375   1 70,785.00 5,840,820.00 1.43% 408.935 
  2 15,015.00 829,657.00 1.31% 23.734   2 55,770.00 5,654,790.00 1.55% 281.766 
  3 7,814.50 476,081.00 1.25% 30.546   3 79,365.00 6,260,840.00 1.50% 211.563 
  4 21,450.00 680,472.00 0.92% 22.812   4 98,670.00 5,618,600.00 1.24%   54.125 
  5 15,015.00 606,019.00 1.08% 25.047   5 68,640.00 4,142,590.00 1.25% 112.390 
  6 17,160.00 599,950.00 0.97%   7.953   6 98,670.00 5,505,330.00 1.43%   55.546 
  7 15,015.00 469,690.00 1.24% 19.063   7 71,325.30 6,514,180.00 1.53% 176.547 
  8 17,160.00 598,347.00 1.07% 33.312   8 96,525.00 6,107,060.00 1.33%   85.469 
  9 17,160.00 703,746.00 0.97% 19.922   9 70,785.00 4,527,220.00 1.23% 141.297 

5 

10 21,450.00 1,190,630.00 1.12% 23.563 

30

10 83,655.00 4,327,560.00 1.27% 102.703 
Table 3: Results of the heuristic algorithm. 
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Clearly, the number of generated branch and bound nodes tends to grow-up substantially 

(sometimes by more than two orders of magnitude) as soon as we pass from 2 to 3 shipments, and 
this sheds light on why CPLEX 8.0.1 is unable to optimally solve, within the imposed time limit of 
7,200 seconds, instances with more than 3 shipments. For this reason, when ns is greater than 3, we 
optimally solved the linear relaxation of the single-level mixed integer linear programming 
formulation of the bilevel model in order to have a lower bound on the optimal solution value.  

In Table 2, we report such values, denoted with λLR, for all the instances and reported the 
number of simplex iterations (see column Simplex iterations) and cpu time as well (see column Cpu 
time bilevel lin. rel.). Clearly, cpu times are very limited, i.e., about 1 second for ns = 5 to about 10 
seconds for ns = 30. This lower bounding phase is particularly useful as soon as in the following we 
discuss heuristic results (reported in Table 3). 

Note that we have not reported in Table 2 the values of R*
tot(yLR) associated with the capacity 

vector yLR established by the optimal solution of the linear relaxation of the single-level mixed 
integer linear programming formulation of the bilevel model: in fact, since the solution can be 
fractional, the R*

tot(yLR) values are not interpretable neither as lower bound nor as upper bound on 
the network total risk.  

Similarly for Table 1, in Table 3 we reports the results of the heuristic algorithm listing the λH 

values (i.e., the solution values returned by the heuristic algorithm), the R*
tot(yH) values (i.e., the 

minimum network total risk over the capacitated network with bundle capacity vector yH), the 
capacity ratio, and the cpu time in seconds spent by the algorithm (see column Cpu time heuristic).  

We start noting that the heuristic algorithm performed only one iteration for every instances (this 
is why we did not list the number of iterations); this means that the heuristic solutions yH = {ŷij} of 
the bilevel model determined at the first iteration (with ŷij =  ∑c∈C x^

ij
c for each (i, j) ∈ A, where  x^ 

= {x^
ij

c} is the optimal solution of problem Modified_Only_Leader on the given network G) is 
stable, and, therefore, the algorithm immediately exits from the repeat-until loop (see the algorithm 
pseudo-code for details).  

Comparing the λH values obtained by the heuristic to the lower bound values λLR in Table 2 and 
the optimal values λ* in Table 1, we note that λH = λ*, for ns = 2, 3, and λH = λ LR, for ns = 5, 10, 
20, 30; hence, for all the test instances, the solution of the bilevel model determined by the heuristic 
algorithm is indeed optimal. The capacity ratio increases on average with ns from 0.60% (for ns = 
2) to 1.37% (for ns = 30). 

Heuristic algorithm running times are quite limited: indeed, they are never greater than 7 minutes 
over all the instances tested. Recall that, for each iteration, the heuristic algorithm solves O(m) 
linear programs.  

In Table 4, we report the values obtained by solving problem Only_Leader for the over-regulated 
scenario. In particular, its optimal solution values λL are useful to assess the quality of the λ values 
for the bilevel model obtained optimally or heuristically. In fact, the λL values in Table 4 represent 
the best (lowest) values for the maximum link total risk that can be obtained by the leader, i.e., in 
the over-regulated scenario in which the leader directly decides the flow assignment. It is interesting 
to note that for the bilevel model both its optimal solutions (for ns = 2, 3) and the solutions provided 
by the heuristic algorithm (for ns = 5, 10, 20, 30) are able to produce maximum link total risk λ 
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values equal to the optimal solution values λL of problem Only_leader, meaning that these former 
values are the best achievable ones for all the test instances under consideration.  

Running times for solving (linear programming) problem Only_Leader are very limited, i.e., less 
than 4 seconds over all the instances. 
 

Table 4: Results for the over-regulated scenario. 
 

For completeness, Table 4 also lists the network total risk values RL
tot induced by the optimal 

solutions xL of problem Only_Leader; note that, for all the test instances, the RL
tot values are greater 

than the R*
tot(y) values (see Tables 1 and 3) obtained for the bilevel model (with y = y* if optimally 

solved and y = yH if heuristically solved). Moreover, in Table 5, we report the averages values 
Avg_R*

tot(y) and Avg_RL
tot of R*

tot(y) and RL
tot, respectively, over the 10 instances for each ns value; 

moreover, we also list the average values Avg_gap (in percentage) of the gaps (R*
tot(y) – RL

tot)/RL
tot 

between R*
tot(y) and RL

tot values. As it can be inferred by the values listed in the table, both the 
Avg_R*

tot(y*) values (obtained when the bilevel model is optimally solved) and the Avg_R*
tot(yH) 

values (obtained when the bilevel model is heuristically solved) are considerable lower than the 
Avg_RL

tot values obtained for the over-regulated scenario, with the average gap ranging from  
-61.5% to -18.9%. 
 
 

ns Inst. λL RL
tot 

Simplex  
iterations 

Cpu time 
Only_Leader ns Inst. λL RL

tot 
Simplex  

iterations 
Cpu time 

Only_Leader
  1 12,870.00 310,542.00   33 0.016   1 38,610.00 3,690,230.00    485 0.078 
  2 4,792.00 145,603.00   33 0.015   2 23,595.00 2,898,750.00    623 0.313 
  3 4,290.00 103,514.00   33 0.015   3 25,740.00 2,911,950.00    594 0.297 
  4 10,725.00 280,349.00   31 0.016   4 38,610.00 4,260,680.00    583 0.266 
  5 17,160.00 406,868.00   33 0.016   5 21,450.00 2,770,830.00    666 0.328 
  6 4,290.00 122,434.00   38 0.016   6 11,261.90 1,828,290.00 1,041 0.594 
  7 6,435.00 162,459.00   33 0.310   7 25,740.00 2,084,360.00    430 0.188 
  8 6,435.00 155,271.00   33 0.031   8 32,175.00 4,153,500.00    545 0.266 
  9 4,290.00 133,083.00   45 0.016   9 21,450.00 2,757,680.00    718 0.391 

2 

10 19,305.00 444,249.00   33 0.015 

10

10 25,740.00 2,784,320.00    432 0.203 
  1 17,160.00 954,293.00   99 0.031   1 47,190.00 5,880,280.00    924 0.610 
  2 19,305.00 1,134,640.00 135 0.047   2 53,625.00 5,916,010.00    850 0.578 
  3 17,160.00 1,356,290.00 157 0.047   3 53,625.00 6,420,990.00 1,131 0.796 
  4 10,725.00 736,880.00 109 0.047   4 42,900.00 5,472,430.00 1,107 0.750 
  5 6,435.00 684,595.00 169 0.063   5 40,755.00 4,657,630.00    979 0.578 
  6 10,725.00 688,177.00 119 0.047   6 53,625.00 6,039,160.00    995 0.625 
  7 8,580.00 619,037.00 116 0.047   7 45,045.00 6,102,030.00 1,206 0.891 
  8 10,725.00 843,147.00 135 0.016   8 55,770.00 6,899,530.00 1,177 0.782 
  9 17,160.00 1,265,060.00 113 0.047   9 53,625.00 7,351,630.00    967 0.657 

3 

10 14,066.20 1,442,490.00 163 0.047 

20

10 47,190.00 6,174,310.00 1,126 0.750 
  1 15,629.10 2,049,860.00 322 0.047   1 70,785.00 9,139,430.00 2,401 3.563 
  2 15,015.00 1,490,600.00 225 0.031   2 55,770.00 8,446,490.00 2,980 4.031 
  3 7,814.50 891,807.00 263 0.031   3 79,365.00 10,329,000.00 1,842 2.094 
  4 21,450.00 1,586,260.00 180 0.047   4 98,670.00 11,719,500.00 1,230 1.235 
  5 15,015.00 1,235,670.00 252 0.047   5 68,640.00 8,486,060.00 1,371 1.250 
  6 17,160.00 1,395,520.00 217 0.047   6 98,670.00 11,304,400.00 1,075 1.016 
  7 15,015.00 979,442.00 195 0.031   7 71,325.30 10,174,000.00 2,460 3.000 
  8 17,160.00 1,112,880.00 186 0.031   8 96,525.00 12,065,000.00 1,501 1.563 
  9 17,160.00 1,452,790.00 213 0.047   9 70,785.00 9,399,350.00 1,728 1.922 

5 

10 21,450.00 2,162,790.00 357 0.063 

30

10 83,655.00 9,153,580.00 1,355 1.281 
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ns Avg_R*
tot(y*) Avg_RL

tot Avg_gap (%)
2 184,789.93 226,437.20 -18.9% 
3 613,458.90 972,460.90 -38.1% 

ns Avg_R*
tot(yH) Avg_RL

tot Avg_gap (%)
2 132,125.11 226,437.20 -41.2% 
3 378,001.10 972,460.90 -61.5% 
5 731,421.20 1,435,761.90 -49.4% 

10 1,600,503.00 3,014,059.00 -46.3% 
20 3,234,296.00 6,091,400.00 -46.9% 
30 5,449,899.00 10,021,681.00 -45.3% 

Table 5: Comparison between the bilevel model and the over-regulated scenario average network 
total risk values. 

 

ns Inst. λF RF
tot 

Simplex  
iterations 

Cpu time 
Only_Follower ns Inst. λF RF

tot 
Simplex  
iterations 

Cpu time 
Only_Follower

  1 25,740.00 130,914.00   27 0.015   1 42,900.00 1,599,170.00    686 0.093 
  2 9,584.00 71,592.00   26 0.001   2 53,584.00 1,385,320.00    687 0.093 
  3 8,580.00 43,638.00   27 0.001   3 53,584.00 1,485,750.00    687 0.110 
  4 21,450.00 123,072.00   26 0.016   4 50,235.00 2,005,476.00    689 0.156 
  5 34,320.00 169,893.00   26 0.015   5 36,465.00 1,491,130.00    686 0.125 
  6 8,580.00 57,615.00   26 0.015   6 36,839.00 961,389.00    687 0.110 
  7 12,870.00 70,116.00   26 0.015   7 36,839.00 1,023,496.00    687 0.013 
  8 12,870.00 65,457.00   27 0.001   8 63,631.00 2,067,980.00    688 0.125 
  9 8,580.00 66,933.00   26 0.001   9 30,141.00 1,447,520.00    689 0.110 

2 

10 38,610.00 182,394.00   26 0.015 

10

10 30,141.00 1,172,290.00    687 0.125 
  1 34,320.00 260,227.00 133 0.031   1 60,060.00 2,855,750.00 1,375 0.250 
  2 38,610.00 336,531.00 133 0.031   2 56,933.000 2,857,390.00 1,376 0.266 
  3 34,320.00 454,872.00 134 0.031   3 68,640.00 3,398,250.00 1,372 0.234 
  4 21,450.00 194,770.00 134 0.015   4 62,205.00 3,049,050.00 1,372 0.234 
  5 13,396.00 250,784.00 134 0.016   5 46,886.00 2,243,410.00 1,373 0.022 
  6 21,450.00 185,452.00 134 0.031   6 63,631.00 2,697,540.00 1,370 0.218 
  7 17,160.00 191,587.00 133 0.031   7 83,725.00 3,208,050.00 1,373 0.218 
  8 21,450.00 258,573.00 133 0.015   8 97,121.00 3,592,110.00 1,372 0.234 
  9 34,320.00 364,538.00 133 0.016   9 68,640.00 3,306,939.00 1,374 0.235 

3 

10 30,141.00 487,413.00 134 0.031 

20

10 80,376.00 2,710,930.00 1,372 0.218 
  1 33,490.00 817,369.00 335 0.031   1 137,309.00 5,175,810.00 2,057 0.453 
  2 23,443.00 622,304.00 224 0.016   2 127,262.00 4,742,380.00 2,059 0.359 
  3 16,745.00 359,378.00 223 0.016   3 160,752.00 5,485,960.00 2,061 0.359 
  4 42,900.00 588,807.00 222 0.031   4 120,564.00 5,374,570.00 2,059 0.359 
  5 30,030.00 482,787.00 223 0.015   5 80,376.00 3,813,510.00 2,057 0.359 
  6 34,320.00 503,096.00 222 0.031   6 122,265.00 5,279,520.00 2,063 0.359 
  7 20,022.00 378,396.00 223 0.016   7 148,005.00 5,765,640.00 2,063 0.359 
  8 26,696.00 482,278.00 223 0.016   8 117,215.00 5,790,530.00 2,058 0.359 
  9 34,320.00 579,274.00 223 0.016   9 103,819.00 4,265,520.00 2,061 0.359 

5 

10 42,900.00 902,614.00 222 0.016 

30

10 113,866.00 4,244,050.00 2,060 0.375 
Table 6: Results for the under-regulated scenario. 

 
Following what we have done in Table 4, in Table 6 we report the values obtained by solving 

problem Only_Follower for the under-regulated scenario. In particular, its optimal solution values 
RF

tot are useful to assess the quality of the network total risk values R*
tot(y) for the bilevel model 

(with y = y* if optimally solved and y = yH if heuristically solved). Indeed, the RF
tot values in Table 

6 are the best (lowest) values for the network total risk that can be obtained by the follower, i.e., in 
the under-regulated scenario where the follower decides the flow assignment without limitations on 
flows coming from the leader. For completeness, Table 6 also lists the maximum link total risk 
values λF induced by the optimal solutions xF of problem Only_Follower; note that, for all the test 
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instances, the λF values are greater than the λ* values (see Tables 1) and the λH values (see Table 3) 
obtained for the bilevel model when optimally and heuristically solved, respectively. Recall that, as 
we noted before, for all the test instances, these latter values are the best (minimum) achievable 
values for the maximum link total risk, since they are equal to the optimal solution values λL of 
problem Only_Leader. 

Similarly to what happened for solving problem Only_Leader, running times for solving the 
linear programming  problem Only_Follower are negligible, i.e., less than half a second. 
 

ns Avg_R*
tot(y*) Avg_RF

tot Avg_gap (%)
2 184,789.93 98,162.40   85.2% 
3 613,458.90 298,474.70 102.6% 

ns Avg_R*
tot(yH) Avg_RF

tot Avg_gap (%)
2 132,125.11 98,162.40   33.1% 
3 378,001.10 298,474.70   26.0% 
5 731,421.20 571,630.30   27.0% 

10 1,600,503.00 1,463,952.10     9.6% 
20 3,234,296.00 2,991,941.90     8.0% 
30 5,449,899.00 4,993,749.00     9.0% 

Table 7: Comparison between the bilevel model and the under-regulated scenario average network 
total risk values. 

 
As for Table 5, in Table 7, we list the averages values Avg_R*

tot(y) and Avg_RF
tot of R*

tot(y) and 
RF

tot, respectively, over the 10 instances for each ns value; moreover, we also list the average values 
Avg_gap (in percentage) of the gaps (R*

tot(y) – RF
tot)/RF

tot between R*
tot(y) and RF

tot values. Clearly, 
differently from what happened between the R*

tot(y) values coming from the bilevel model and the 
RL

tot values coming from the optimal solutions of problem Only_Leader (see Table 5), now the 
network total risk R*

tot(y) values should be greater than (or at most equal to) the RF
tot values, since 

the latter ones are the optimal solution values of problem Only_Follower. Indeed, we 
experimentally noted that the R*

tot(y) values are greater than the RF
tot values, and we can infer from 

Table 7 that the average percentage gap between these values, ranges from 8.0% to 33.1% if the 
bilevel model is heuristically solved, while much higher gaps are obtained when the bilevel model 
is optimally solved. 

Finally in Table 8, referring to the maximum link total risk values, we summarize the results for 
the comparison between the bilevel model and the under-regulated scenario, listing the average 
values Avg_λ* (Avg_ λH) and Avg_ λF of λ* (λH) and λF, respectively, over the 10 instances for each 
ns value; moreover, we list the average values Avg_gap (in percentage) of the gaps (λ* – λF)/λF 
between the optimal solutions values λ* of the bilevel model and the λF values, and the average 
values of the gap (λH – λF)/λF between the solution values λH of the bilevel model obtained with the 
heuristic algorithm and the λF values. As it can be inferred by the values listed in the table, both the 
Avg_λ* values (obtained when the bilevel model is optimally solved) and the Avg_ λH values 
(obtained when the bilevel model is heuristically solved) are considerable lower than the Avg_ λF 
values obtained for the under-regulated scenario, with the average gap ranging from  
-50.5% to -26.1%. 
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ns Avg_λ* Avg_λF Avg_gap (%)
2 9,059.20 18,118.40 -50.0% 
3 13,204.12 26,661.70 -50.5% 

ns Avg_λH Avg_λF Avg_gap (%)
2 9,059.20 18,118.40 -50.0% 
3 13,204.12 26,661.70 -50.5% 
5 16,286.86 30,486.60 -45.3% 

10 26,437.19 43,435.90 -37.5% 
20 49,335.00 68,821.70 -26.1% 
30 79,419.03 123,143.30 -33.5% 

Table 8: Comparison between the bilevel model and the under-regulated scenario average 
maximum link total risk values. 

 
 
7. Conclusions and final remarks 
 

In this work, we have proposed a bilevel network flow model for hazmat transportation network 
design. The proposed model aims to minimize total risk and to guarantee risk equity. The model 
represents a scenario where there are multiple layers of government authorities being involved in 
the regulation of dangerous goods shipments (as, for example, is common in Europe and North 
America), that are responsible at different geographical levels, e.g., regional area authorities and 
local area authorities. In such a scenario, a regional area authority aims to minimize the total risk 
over its controlled area, while a local area authority wants the risk over the local populated links of 
its jurisdiction to be the lowest possible. 

We formulate the considered hazmat network design problem with a linear bilevel model, where 
at the higher (leader) level there is a meta-local authority (acting on behalf of all the involved local 
area authorities) that aims to minimize the maximum link risk over populated links of the whole 
network, that is, risk equity, and at the lower (follower) level there is the regional area authority that 
aims to minimize the total risk over the network. This corresponds to the existence of two decision 
makers, one (the regional authority) willing to define a feasible hazmat flow assignment on the 
network that induces the minimum total risk over the population, and the other (representing the 
local authorities) that, interpreting the optimal flow assignment of the previous (lower level) 
decision maker as a flow vector, minimizes the maximum link risk on the network, i.e., aiming at 
risk equity, by defining capacities over the network links that restrict the possible choices of the 
regional authority. 

The proposed linear bilevel model is transformed into a single-level mixed integer linear 
problem by replacing the follower problem by its KKT conditions and by linearizing the 
complementary slackness constraints. Then, the latter mixed integer linear problem is solved using 
CPLEX 8.0.1. The MIP formulation is difficult to be solved exactly, and, more importantly, the 
optimal solution obtained may be a non-stable solution of the bilevel problem; therefore, we also 
provide a heuristic algorithm for the bilevel model able to always find a stable solution. The 
proposed model and heuristic algorithm are experimentally evaluated on an Italian geographical 
region.  
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The experimentation shows that CPLEX 8.0.1 were able to solve the MIP formulation within a 
reasonable time only for instances with at most three shipments on the given network with 311 
nodes and 441 links, and that the heuristic algorithm was able to give always an optimal stable 
solution in all the test cases, that is, with the best (minimum) possible maximum link total risk. 
Moreover, if we compare the solutions given by the MIP solver and that ones provided by the 
heuristic algorithm, we can note that the latter ones are able to give a better solution in terms of 
network total risk values. This is due to the fact that the heuristic constructs a feasible solution for 
the bilevel model taking into account the objective of the follower, who aims to minimize the 
network total risk, while the bilevel model only considers the reaction of the follower for a given 
choice of the leader. This would suggest a possible future work devoted to study a multi-objective 
version of the proposed bilevel model, that accounts for maximum link risk/network total risk trade-
off by including the network total risk in the higher level objective. Several other refinements may 
be introduced to the basic model presented in this paper. For example, one may change the 
objective of the lower level problem considering the total cost of the shipments; another possible 
modification could be considering also the population density of the people living in the neighbour 
of each link, and in the higher level formulation minimize the maximum exposure of the population 
of each link. 

Even if the proposed model does not consider explicitly the carriers’ point of view, it should be 
pointed out that the solution ŷ  of the bilevel model is not entirely prescriptive. Indeed, by imposing 

the values of λ̂  and )ˆ(* ytotR  as upper limitations, the carriers can choose the solution that optimizes 

their objective function (e.g., the total cost minimization). Such a solution may be found by solving 
a minimum-cost multi-commodity network flow problem, where, in addition to the mass balance 
constraints and the bundle capacity constraints (e.g., see constraints (3) and (4) of problem P2 of 
Section 3) with bundle capacity vector of value ŷ  established by the solution of the bilevel model 
and representing the leader choice, there are the constraint  
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c
ij xx , for each link <i, j> ∈ E  

of the given network G = (N, E), where )ˆ(* ytotR is the minimum network total risk achievable by the 

follower with the given leader choice ŷ , and λ̂  is the solution value of the bilevel model (i.e., the 
maximum link total risk value) related to solution ŷ . Therefore, the maximum link total risk and the 
network total risk associated with the solution that the carriers would adopt are not grater than those 
offered by the bilevel model solution. 

A final remarks is devoted to the way the authorities can implement the flow levels and the 
desired capacities. Indeed, our model is in charge to provide the bundle arc capacities associated 
with a given set of transportation demands in a certain time horizon, in order to design the network, 
and to establish the hazmat flow level, that is, the amount of hazmat shipped along each network arc 
in the given time horizon, for each shipment; the operational phase, i.e., the phase of assigning a 
schedule to the carriers’ routes, is successive to the tactical one considered in our model, and has to 
be implemented also by monitoring the fleet of vehicles scheduled over time, that is, by monitoring 
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that, within the given time horizon, the total amount of hazmat of each shipment, that is shipped 
along each network arc, does not exceed the limit established by the flow assignments on that arc 
decided in the tactical phase. 
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