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Preventive healthcare aims at reducing the likelihood and severity of potentially life-threatening illnesses by protection and early
detection. The level of participation in preventive healthcare programs is a critical determinant in terms of their effectiveness
and efficiency. This article presents a methodology for designing a network of preventive healthcare facilities so as to improve
its accessibility to potential clients and thus maximize participation in preventive healthcare programs. The problem is formu-
lated as a mathematical program with equilibrium constraints; i.e., a bilevel non-linear optimization model. The lower level
problem which determines the allocation of clients to facilities is formulated as a variational inequality; the upper level is a
facility location and capacity allocation problem. The developed solution approach is based on the location–allocation frame-
work. The variational inequality is formulated as a convex optimization problem, which can be solved by the gradient projection
method; a Tabu search procedure is developed to solve the upper level problem. Computational experiments show that large-
sized instances can be solved in a reasonable time. The model is used to analyze an illustrative case, a network of mammog-
raphy centers in Montreal, and a number of interesting results and managerial insights are discussed, especially about capacity
pooling.

Keywords: Preventive healthcare, network design, bilevel, congestion, equilibrium, variational inequality

1. Introduction

Preventive healthcare programs can save lives and con-
tribute to a better quality of life by reducing the need for
radical treatments, such as surgery or chemotherapy. Flu
shots, blood tests, mammograms, and anti-smoking advice
are among the most well-known preventive services. The
substantial savings in the costs of diagnosis and therapy
as well as the lower capital investment associated with pre-
ventive healthcare programs have been recognized for three
decades (Walker, 1977). For example, studies show that
mammograms taken on a regular basis have the potential
to reduce deaths from breast cancer for women between the
ages of 50 and 69 by up to 40% (Health Canada, 2005). Gor-
nick et al. (2004) found that 36% of breast cancer patients
without a mammogram received the diagnosis of late stage
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cancer, whereas this rate was 20% for the patient group who
had mammograms.

In contrast with sick people who need urgent medical
attention, the potential clientele of preventive healthcare
often do not feel the necessity to receive these services
and may not participate in preventive programs offered
in their region. For instance, by 2003 every province in
Canada had an organized program offering biennial mam-
mography screening to asymptomatic women between the
ages of 50 and 69 with no previous history of breast can-
cer. Although the proportion of women participating in
the screening has increased over time, reaching 34% na-
tionally in 2002, none of the organized programs have
achieved the nationally established target of 70% partic-
ipation (Public Health Agency of Canada, 2006). The
achievement of desired participation level continues to be a
challenge to many preventive healthcare programs. Accord-
ing to many empirical studies, such as McNoe et al. (1996),
Zimmerman (1997), and Facione (1999), the ease of
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866 Zhang et al.

access to the facilities is a crucial factor that influences
people’s decision to participate.

Recognizing the significance of accessibility, this article
presents a methodology for designing a network of preven-
tive healthcare facilities so as to maximize participation to
preventive programs. The number of facilities to be estab-
lished, the location of each facility, and the capacity at each
facility are the main determinants of the configuration of
the healthcare facility network. We represent the capacity
at each facility by the number of service teams and use the
total time needed to receive preventive services at a facility
as a proxy for its accessibility. The total time comprises the
time spent during transportation to the facility as well as
the time spent at the facility while waiting and receiving
services. Typically, the level of participation in a preventive
program decreases with the expected total time to receive
the services. In order to ensure service quality, however,
the preventive healthcare facilities cannot be operated un-
less the size of their clientele fulfills a minimum workload
requirement.

The methodology presented in this article incorporates
the differentiating features of preventive healthcare. First,
the number of people who seek the services at each facility
is not controlled by the policy maker: preventive healthcare
is a user choice environment in terms of the allocation of
clients to facilities. Second, if the wait times are extensive
due to congestion at the facilities, then clients’ willingness
to participate in a preventive program could decrease sig-
nificantly. That is, the demand for preventive care is elastic
with respect to the configuration of the facility network.
The third distinguishing factor of preventive healthcare is
the apparent link between volume and quality of care; i.e.,
the previously mentioned minimum workload requirement.
In Canada, for example, a radiologist is required to inter-
pret at least 4000 mammograms annually.

To the best of our knowledge, there are only two earlier
papers that study the preventive healthcare facility network
design problem. Verter and Lapierre (2002) used travel dis-
tance as a proxy for the accessibility of a facility by assum-
ing that people would only go to the closest facility to seek
preventive services. Their model maximizes participation
by determining the number of facilities to be established as
well as the location of each facility. Recently, Zhang et al.
(2009) modeled each facility as an M/M/1 queue to incor-
porate the limited service capacity of preventive healthcare
facilities and the resulting congestion. They used the total
(travel, waiting, and service) time as a proxy for accessibil-
ity and assumed that clients at the same population zone
would patronize the same facility; i.e., the one with the
minimum expected total time. This assumption may not be
realistic in the context of preventive care, and it also pre-
vents Zhang et al. (2009) from identifying an equilibrium
allocation of clients to facilities for many of the problem
instances they studied.

This article extends the state of the art in preventive
healthcare facility network design by: (i) determining the

optimal number of servers at each facility as well as the
number and locations of the facilities; and (ii) incorporating
the possibility that people from the same population zone
can patronize different facilities, which usually guarantees
the existence of an allocation equilibrium. These require
a completely different modeling approach (and solution
methodology) than the earlier papers. In representing the
problem, we adopt a bilevel formulation, where the lower
level model captures the user choice nature of the allocation
decisions, whereas the number, locations, and capacities of
the facilities are determined at the upper level. The lower
level finds a user equilibrium recognizing that the poten-
tial clients choose the facility that minimizes their expected
total time. At equilibrium, everyone is content with the fa-
cility they patronize i.e., people from the same population
zone expect to spend the same total time even if they go to
different facilities. We formulate the lower level problem via
a variational inequality. To the best of our knowledge, this
is the first article that incorporates a user equilibrium in a
facility network design model with congestion. Our results
demonstrate that this new model framework for the consid-
erations on user choice and capacity reallocation leads to a
significant improvement in the accuracy of the solution as
well as in the level of accessibility and participation.

We also note that, consistent with Zhang et al. (2009), the
article primarily aims at a non-appointment or “walk-in”
system, which applies to many routine preventive health-
care services (e.g., flu shots, anti-smoking advice, drug and
alcohol use, nutrition, etc.) and runs in many countries or
areas. Since we could not find a more suitable case with
available data, the network of mammography centers in
Montreal is used here as an illustrative example to show
how our model and methodology can be applied and to
discuss a number of managerial insights.

The remainder of this article is organized as follows. The
next section provides an overview of the relevant litera-
ture. Section 3 describes the problem and formulates it as a
bilevel programming model. A location–allocation frame-
work is proposed in Section 4 to solve the problem. Section
5 presents computational results for the model. An illustra-
tive case, based on the network of mammography centers
in Montreal, is studied in Section 6. In the final section,
conclusions and future research directions are provided.

2. Related literature

Although the design of healthcare facilities has been
studied for a long time, few models incorporate the dis-
tinguishing features of preventive healthcare, which have
been discussed in Zhang et al. (2009). The recent review by
Daskin and Dean (2004) on the location of healthcare fa-
cilities, for example, makes no reference to preventive care.
Similarly, more general literature reviews by Berman and
Krass (2002) and Marianov and Serra (2002), which focus
on public facility location problems with stochastic demand
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Preventive healthcare networks with congestion 867

and congestion in the context of fixed versus mobile servers,
do not cite any articles on preventive healthcare. As men-
tioned earlier, Verter and Lapierre (2002) and Zhang et al.
(2009) are the only papers that study the network design of
preventive healthcare facilities.

A number of facility location and capacity allocation pa-
pers, based on a Mathematical Program with Equilibrium
Constraints (MPEC) structure, are related to ours. Chao
et al. (2003) developed a system optimization model for a
resource allocation problem in a multiple facility system;
i.e., allocating capacity and demand to facilities by a central
authority in order to maximize average customer waiting
time. They proved that the optimal solution of their model
is incentive compatible for customers. However, their
model does not consider travel distance, thus resulting in
a solution structure of “one large and many small.” Mari-
anov (2003) presented a model for locating multiple-server
facilities to maximize the overall demand. The demand at
a node that is elastic to travel time and congestion is rep-
resented by the number of clients in the system. Similar to
Chao et al. (2003), this is also a system optimization model
and the assignment of demand to facilities is determined
by a central authority, while the demand at each node is
determined by an equilibrium constraint. Marianov et al.
(2005) extended Marianov (2003) by allowing allocation
of servers to facilities. Marianov et al. (2008) proposed
a competitive facility location problem, in which clients
choose a facility based on travel time and waiting time.
User choice is probabilistic by using a logit formulation,
and an equilibrium allocation of clients to facilities can be
identified by solving a set of non-linear equations.

We note that the user choice behavior addressed in our
model is different from the ones discussed above. Instead of
assigning clients to facilities or letting clients choose where
to shop probabilistically, our model not only allows clients
to select the facility with the minimum expected total time
but also allows the possibility that clients from the same
population zone go to different facilities (they spend the
same total time even if they go to different facilities). To ac-
complish this, we develop a completely different modeling
approach and solution methodology.

The user equilibrium model has been extensively studied
in the Spatial Price Equilibrium Problem (SPEP) and the
Traffic Network Equilibrium Problem (TNEP). The SPEP
seeks to determine the commodity supply prices demand
prices and trade flows satisfying the equilibrium condition
that demand price is equal to supply price plus transporta-
tion cost. Studies in this area include Samuelson (1952),
Takayama and Judge (1964, 1971), Marcotte et al. (1992),
etc. These models have also been used to study equilibrium
problems in agriculture, energy markets, and finance, such
as in Judge and Takayama (1973), Nagurney (1992), and
Nolte (2008). In a congested transportation network, the
TNEP aims at finding clients’ travel paths with minimal
cost from their origins to destinations. In particular, the
network design problem associated with the traffic equilib-

rium is to optimize the capacities of the network links, so
as to balance the transportation, investment, and mainte-
nance costs of a network subject to congestion. This prob-
lem has been studied by Dafermos (1968) and Abdulaal
and LeBlanc (1979). Magnanti and Wong (1984), Marcotte
(1986), and Florian and Hearn (1995). Interested readers
may also refer to Nagurney (1999) for a detailed review of
user equilibrium models.

Despite the similar bilevel structure, the current article
differs from the mentioned TNEP models in several aspects.
First, congestion in the TNEP occurs on links, whereas
in our problem it occurs at facilities where waiting times
are modeled based on queueing theory. Second, the upper
level of our problem is to select an undetermined number
of locations and to make the capacity decisions at these
locations, which is a combinatorial problem by itself. Third,
our bilevel problem cannot be easily simplified to a single-
level problem due to a minimum workload requirement.

3. The model

In this section, we model the problem of preventive health-
care facility network design by a bilevel formulation. The
objective of the problem is to maximize the level of partic-
ipation, by locating an undetermined number of facilities
at the population zones over the network and allocating a
given number of servers to open facilities. We incorporate
the congestion at the facilities in the model and assume that
clients patronize the facility with the minimum expected to-
tal time, which comprises the travel time to the facility and
the expected time spent at the facility for possibly waiting
and receiving the service (system waiting time). We also
assume that the number of clients at each population zone
who request service is a linearly decreasing function of the
expected total time. In order to ensure service quality, facil-
ities cannot be established unless their client base exceeds
a minimum workload requirement.

An overwhelming majority of the healthcare budgets
around the globe are spent on responding to acute prob-
lems, urgent needs of patients, and pressing concerns. Most
preventive healthcare programs aim at improving the ef-
ficiency of the regional healthcare systems with limited
resources rather than making major investments into in-
creasing the resource infrastructure. Therefore, the policies
to increase the number of people receiving preventive ser-
vices has been an integral part of many reform programs.
For example, the Montreal breast cancer screening pro-
gram studied in Section 6 involved accrediting some of
the existing mammography facilities in the city rather than
building new ones. The accreditation criterion is incorpo-
rated in the model via the minimum workload requirement,
which ensures a certain quality of care at each accredited
preventive care facility. As originally noted by Verter and
Lapierre (2002), a radiologist at each accredited facility
needs to read a certain number of mammograms in order
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868 Zhang et al.

not to lose their skills. In 1998, this minimum number was
established as 4000 mammograms per year by the Quebec
Ministry of Health. During the same time period, the U.S.
Food and Drug Administration required a radiologist to
interpret at least 960 mammograms and a radiology tech-
nician to perform at least 200 mammograms in 24 months
to retain their accreditation (U.S. Food and Drug Admin-
istration, 1999). Note that when there is more than one
mammography machine at a facility, it is very common to
have a single radiologist on staff who reads all the collected
images (which applies to all centers in Montreal). Hence,
the minimum workload requirement applies to each facility
rather than each server in the model. Although we do not
consider fixed setup costs in the article, we investigate the
optimal resource allocation strategy. To this end, the total
number of servers to be allocated to open facilities is fixed.
Therefore, the number of facilities that could be opened is
limited, mainly due to the minimum workload requirement
as well as the total number of available servers.

Let G = (N, L) be a network with a set of nodes N(|N| =
n) and a set of links L. The nodes represent the neighbor-
hoods of a city or the population zones, and the links are the
main transportation arteries. The fraction of clients resid-
ing at node i is denoted by hi . We assume that the number
of clients who require preventive care over the entire net-
work is Poisson distributed with a rate of λ per unit of time,
and thus from each node i at a rate λhi . We assume that
there is a finite set of potential locations M(|M| = m) in G
for facilities. Let S ⊂ M be a set of open facilities.

We assume that there are Qmax available servers and each
can provide an average of µ services per unit of time, and
one or more servers can be allocated to each open facility.
As in Gunes et al. (2004), we assume that the service time
is exponentially distributed.

We define three sets of decision variables:

yj =
{

1 if facility is located at node j,
0 otherwise;

s j = number of servers at facility j ;
xi j = fraction of clients from population node

i who request service from facility j.

Denote by a j the arrival rate of clients at facility j ; that
is,

a j = λ

n∑
i=1

hi xi j, j ∈ S. (1)

Note that a facility cannot be established at node j unless
a j exceeds a minimum workload requirement denoted by
Rmin. This requirement may apply to the whole facility or
to each server, depending on the type of preventive care
being offered. Here, we assume that a minimum workload
is required for each facility.

We also denote by T̄i j the average total time that clients
from node i spend in order to receive service at facility j .
The average total time T̄i j is composed of two components:

(i) the travel time from node i to facility j through the
shortest path denoted by ti j ; and (ii) the average time clients
spend at the facility possibly waiting and receiving service,
which we denote by W̄(a j , s j ); that is,

T̄i j = ti j + W̄(a j , s j ), i ∈ N, j ∈ S. (2)

Representing facility j as an M/M/s j queue, the general
formula for the mean waiting time is (Kleinrock, 1975):

W̄(a j , s j ) = C(s j , u j )
s j

1
µ(1 − ρ j )

+ 1
µ

, j ∈ S, (3)

where

u j = a j

µ
, ρ j = a j

s jµ
,

C(s j , u j ) = 1 − K(u j )
1 − ρ j K(u j )

,

K(u j ) =
∑s j −1

l=0 u j
l
/

l!∑s j

l=0 u j
l
/

l!
.

Denote the total participation rate (fraction) at node i
by pi ; that is,

pi =
∑
j∈S

xi j , i ∈ N. (4)

As we assume that clients choose the facility with the min-
imum expected total time, denote by Ti this shortest time
incurred by clients at node i . We assume that the total par-
ticipation rate pi at node i is a decreasing function of the
shortest time Ti (participation function). For simplicity, we
assume that it is a linear function with an intercept Ai and a
slope γ (although it can be generalized to other decreasing
functions, such as an exponential function); that is,

pi (Ti ) = Ai − γ Ti , i ∈ N. (5)

Denote by Ti (pi ) the inverse participation function; that is,

Ti (pi ) = Ai − pi

γ
, i ∈ N. (6)

In fact, Ti (pi ) represents a threshold time; i.e., the total time
clients at node i are willing to incur in order to participate
in the service, while the actual time incurred by clients at
node i to facility j is T̄i j .

As mentioned earlier, given facility locations yj and the
number of servers at each open facility s j , the lower level
problem involves the clients’ facility choices so as to min-
imize their expected total time. This is a user equilibrium
problem, and at equilibrium, no client wants to change her
choice. This equilibrium condition can be stated as: given
S and s j , j ∈ S, for all pairs of (i, j ), i ∈ N, j ∈ S:

T̄i j = ti j + W̄(a∗
j , s j )

{= Ti (p∗
i ) if x∗

i j > 0,
≥ Ti (p∗

i ) if x∗
i j = 0,

(7)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 d

e 
M

on
tr

ea
l]

 a
t 1

3:
27

 0
1 

Fe
br

ua
ry

 2
01

2 



Preventive healthcare networks with congestion 869

Equation (7) states that if there is a flow of clients from node
i to facility j , then the actual time incurred by clients at
node i to facility j must be equal to the threshold time (the
longest time that clients would accept to go to the facility);
and if the actual time exceeds the threshold time, there is
no flow.

To find x∗
i j in Equation (7), we have to solve the following

non-linear complementarity problem:

ti j + W̄(a j , s j ) − Ti (pi ) ≥ 0, i ∈ N, j ∈ S,

xi j [ti j + W̄(a j , s j ) − Ti (pi )] = 0, i ∈ N, j ∈ S,

xi j ≥ 0, i ∈ N, j ∈ S.

(8)

Note that we expect that pi ≤ Ai , i ∈ N, and the stability
of the queue a j < s jµ, j ∈ S, can be naturally satisfied in
Equation (8).

Alternatively, using vector–matrix notation, we can
rewrite the complementarity problem (8) as a variational
inequality problem. Group yj , s j , xi j , ti j , a j , pi , W̄(a j , s j ),
and Ti (pi ), i ∈ N, j ∈ M, respectively, into column vec-
tors y ⊂ Rm, s ⊂ Rm, x ⊂ Rmn, t ⊂ Rmn, a ⊂ Rm, p ⊂ Rn,
W̄(a, s) ⊂ Rm, and T(p) ⊂ Rn. Then, given y and s, the vari-
ational inequality problem is to find a vector x∗ ∈ X(y) ⊂
Rmn such that:

〈t, x∗ − x〉 + 〈W̄(a∗, s), a∗ − a〉 − 〈T(p∗), p∗ − p〉 ≤ 0,

∀x ∈ X(y), (9)

where the feasible set X(y) is defined as

X(y) = {x : xi j ≥ 0, j ∈ S; xi j = 0, j ∈ M − S},
S = { j : yj = 1},

and 〈·, ·〉 represents the inner product (i.e., for two column
vectors x and y, 〈x, y〉 = ∑

i xi yi ). We note that since both
a and p can be expressed by x as in Equations (1) and (4),
whose elements xi j indeed are the only variables of the vari-
ational inequality problem (9). For the ease of exposition,
we keep a and p in the following expressions.

Theorem 1 proves that given y and s, the solution to the
variational inequality problem (9) is the equilibrium of this
problem (7).

Theorem 1. Given y and s, the flow pattern x∗ ∈ X(y) is in
equilibrium if, and only if, it satisfies the variational inequal-
ity problem (9).

The proof for Theorem 1 is given in Appendix 1.
Therefore, the bilevel formulation of our preventive

healthcare facility network design problem is

max
y,s,x

λ

n∑
i=1

hi

m∑
j=1

xi j , (10)

subject to

s j ≥ yj , j ∈ M, (11)

m∑
j=1

s j = Qmax, (12)

λ

n∑
i=1

hi xi j ≥ Rmin yj , j ∈ M (13)

yj ∈ {0, 1}, s j = Integer, j ∈ M, (14)

xi j ≥ 0, i ∈ N, j ∈ M, (15)

t′
i j = ti j + B(1 − yj ), i ∈ N, j ∈ M, (16)

〈t′, x − x′〉 + 〈W̄(a, s), a − a′〉 − 〈T(p), p − p′〉 ≤ 0,

∀x′ ≥ 0, (17)

where in Equation (17), t′ ⊂ Rmn is a column vector associ-
ated with t′

i j , i ∈ N, j ∈ M, and x′ ⊂ Rmn, a′ ⊂ Rm, p′ ⊂ Rn

are column vectors, in which

a′
j = λ

n∑
i=1

hi x′
i j , j ∈ M,

p′
i =

m∑
j=1

x′
i j , i ∈ N,

and W̄(a j , s j ) and Ti (pi ) are expressed in Equation (3) and
Equation (6), respectively.

The objective (10) is to maximize the level of total par-
ticipation. Constraints (11) ensure that at least one server
will be assigned to each open facility. Constraint (12) limits
the total available servers to Qmax. Constraints (13) guar-
antee the minimum workload requirement at each open
facility. Constraints (16), where B represents a big num-
ber, stipulate that clients can obtain service only from
open facilities; i.e., the travel time to a location where
there is no open facility is set to a large number. Con-
straints (16) and (17) together are equivalent to Equation
(9). Again, the constraints pi ≤ Ai , i ∈ N, and the stability
of the queue a j < s jµ, j ∈ M, can be naturally satisfied in
Equation (17).

Since the variational inequality in the model is highly
non-linear and the decision variables of the upper level
problem are binary or integer, the entire problem is ex-
tremely difficult to solve. Thus, the focus of the study is on
developing an efficient heuristic.

4. Solution methodology

Our solution approach is based on the location–allocation
framework:

Allocation (Alloc P): the lower level problem: Given a set
of facility locations and the associated capacities, identify
equilibrium flows of clients to the facilities.
Location (Loc P): the upper level problem: Determine the
best set of locations and and the associated capacities.
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In the algorithm, (Alloc P) serves as a sub-routine for
(Loc P) for any set of locations, with (Alloc P) the number
of participants at each location and the objective function
value can be determined. The next section provides an exact
solution algorithm for (Alloc P) for s j ≤ 2. Section 4.2
presents an approximation method to solve the allocation
problem for s j > 2. A Tabu search procedure for (Loc P) is
developed in Section 4.3.

4.1. Allocation algorithm for s j ≤ 2

For the ease of exposition, we first introduce a solution
algorithm for s j = 1, i.e., we drop capacity decisions, and
then we extend the algorithm to solve the up-to-two-server
case; i.e., s j ≤ 2.

When s j = 1, each open facility becomes an M/M/1
queueing system. Thus, the mean waiting time in
Equation (3) reduces to

W̄(a j ) = 1
µ − a j

, j ∈ S, (18)

and the variational inequality (17) reduces to

〈t′, x − x′〉 + 〈W̄(a), a − a′〉 − 〈T(p), p − p′〉 ≤ 0,

∀x′ ≥ 0, (19)

where W̄(a j ) and Ti (pi ) are expressed in Equation (18) and
Equation (6), respectively.

According to Nagurney (1999), there are several ap-
proaches to solve a variational inequality. One of them
is to reformulate it as an optimization problem, which can
be solved by a variety of optimization methods. According
to Theorem 1.1 in Nagurney (1999), for a general varia-
tional inequality problem VI(F(x),X), if F(x) is continu-
ously differentiable on X and the Jacobian matrix ∇F(x)
is symmetric and positive semi-definite, then solving this
VI(F(x),X) is equivalent to solving a convex optimization
problem defined as

min f (x),
subject to
x ∈ X, (20)

where ∇ f (x) = F(x).
We employ this method to solve our user equilibrium

problem (Alloc P). For the sake of brevity, let zi j = λhi xi j ,
representing the actual number of clients traveling from
node i to facility j . Group zi j into a column vector z ⊂
Rmn. Replacing a, p, and x by z, Equation (19) can be
reformulated as

〈F(z), z − z′〉 ≤ 0, ∀z′ ∈ Z, (21)

where Z = {z : z ≥ 0} and

Fi j (z) = 1
µ − ∑n

i=1 zi j
+ t′

i j − Ai

γ
+

∑m
j=1 zi j

λhiγ
,

i ∈ N, j ∈ M. (22)

It is obvious that F(z) is continuously differentiable on
Z, and in Theorem 2, we show that the Jacobian matrix
∇F(z) can satisfy the above conditions.

Theorem 1. The Jacobian matrix ∇F(z) is symmetric and
positive semi-definite.

The proof for Theorem 2 is given in Appendix 1.
Therefore, we can reformulate our variational inequal-

ity problem as a convex optimization problem (recall that
∇ f (z) = F(z)):

min f (z) = −
m∑

j=1

ln

(
µ −

n∑
i=1

zi j

)
+

n∑
i=1

m∑
j=1

(
t′
i j − Ai

γ

)
zi j

+
n∑

i=1

1
2λhiγ

(
m∑

j=1

zi j

)2

,

subject to

zi j ≥ 0, i ∈ N, j ∈ M. (23)

Since this is almost an unconstrained problem, we use
the gradient projection method (Kelley, 1999) to solve this
convex optimization problem. According to Theorem 1.4
in Nagurney (1999), the existence of equilibrium can be
guaranteed. Since ∇F(z) may not be positive definite, the
equilibrium in general may not be unique. One simple ex-
ample with multiple equilibrium solutions is a network with
two client zones and two facilities, where all the parameters
are symmetric. However, in practice, almost all of the cases
we face have precisely one equilibrium.

We attempt to generalize the above solution methodol-
ogy to solve the general case. Unfortunately, due to the
complex mean waiting time formula for an M/M/C queue
(3), we can only prove that the above solution methodology
can be applied when s j ≤ 2. This is primarily because the
mean waiting time formula for an M/M/2 queue can be
written as

W̄(a j ) = 1
2µ − a j

+ 1
2µ + a j

, (24)

which means that there are two additive items, each of
which has the same structure as the one in Equation (18).
Therefore, F(z) in Equation (21) is still continuously differ-
entiable, and its Jacobian matrix ∇F(z) is still symmetric
and positive semi-definite. For the sake of brevity, we omit
the proof, which is quite easy to prove. In contrast, when
s j > 2, the Jacobian matrix ∇F(z) may not be symmetric
and positive semi-definite. As for the case with s j = 1, the
variational inequality (17) for s j ≤ 2 can be transformed to
a convex optimization problem and solved by the gradient
projection method.

4.2. Allocation algorithm for s j > 2

As mentioned earlier, the complex mean waiting time for-
mula for an M/M/C queue (3) makes the method hard to
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Preventive healthcare networks with congestion 871

be directly generalized to solve the variational inequality
when s j > 2. One direction to overcome this difficulty is
to replace this exact formula by an approximation. We in-
vestigated several approximations, such as in Kontogiorgis
and Tibbs (2005), and we found that all of them are all too
complicated to be applied here.

Motivated by the mean waiting time formula for an
M/M/2 queue (24), we develop an approximation for the
mean waiting time formula for an M/M/C queue as fol-
lows:

W̃(τ, C) = a(µ, C)
Cµ − τ

+ b(µ, C)
Cµ + d(µ, C)τ

, (25)

where τ denotes the arrival rate at a facility, and

a(µ, C), b(µ, C), d(µ, C) = arg min∑
0<τi <Cµ

[W̄(τi , C) − W̃(τi , C)]2, C ≥ 3. (26)

The idea of this method is to select a number of discrete
points τi between zero and Cµ and then to choose a(µ, C)
b(µ, C), and d(µ, C) to minimize the squared sum of the
errors between the exact values and the approximate values
at these discrete points, just as in a least square estimation.

Note that this approximation may not be very accurate
when the arrival rate at a certain facility τ is very close to
zero or the total capacity Cµ. However, for our facility net-
work design problem, since at equilibrium τ is typically not
close to the two ends, this approximation formula works
very well. Several instances with the performance of the
approximation are shown in Appendix 2, in which the ap-
proximation error is usually within 2%. The performance
of the approximation can be improved a lot if the range
of τi is chosen around the equilibrium arrival rate, which
usually can be roughly estimated in advance.

Clearly, this simple yet accurate approximation formula
has the same structure as the one for an M/M/2 queue, and
thus the solution methodology developed in Section 4.1 is
applicable.

4.3. Location algorithm

We develop a Tabu search procedure to solve the upper
level problem (Loc P). Tabu search (Glover, 1986) is one of
the most successful metaheuristics, and it is designed so as
to avoid local optima and instead explore other regions of
the solution space.

Suppose that M is the set of potential locations for a
facility and smax is the maximum number of servers allowed
to be allocated to each facility. Define SM = {M, . . . , M}
as the set of potential locations for an individual server; i.e.,
cloning the potential facility set smax times. In other words,
we divide each potential facility into smax pseudo-facilities.
We call a pseudo-facility open if a server is allocated to it.

The Tabu search heuristic starts from a given initial so-
lution with Qmax servers. Then, each iteration of the Tabu

search focuses on a “neighborhood” of the current solu-
tion. We define two types of neighborhood moves: “Re-
move” and “Add.” The main reason why we do not use
“Exchange” is that a very large number of neighborhood
moves need to be evaluated in each iteration for this type.
“Remove” results from removing a pseudo-facility from
the set of open pseudo-facilities, which leads to the small-
est decrease in the overall participation rate; “Add” results
from adding an additional pseudo-facility to the set of open
pseudo-facilities, which leads to the largest improvement in
the overall participation rate. In each iteration, “Remove”
and “Add” are executed successively. The procedure repeats
until no feasible solution that improves the objective func-
tion can be identified within a given number of iterations
denoted by Nite. Eventually, the heuristic outputs the best
feasible solution found so far.

When moves are selected, Tabu restrictions are used to
prevent moving back to previously investigated solutions.
In this article, we define a Tabu list in which each value
is associated with a pseudo-facility to represent its Tabu
status. Once removed or added to the set of open pseudo-
facilities, a node is classified as Tabu with a length equal to
Tlen, which represents the number of iterations in which the
node typically will not be selected for removing or adding.
However, even for a Tabu node, it can still be selected for
adding, if an aspiration criteria is satisfied. We use the typi-
cal criterion which states that if a move produces a feasible
solution that is better than the best known feasible solu-
tion, then the Tabu status is disregarded and the move is
executed.

5. Computational experiments

The purpose of this section is to examine the computational
performance of the solution approach. The gradient projec-
tion method for solving the convex optimization problem
and the Tabu search algorithm for solving the upper level
problem were coded in C. All runs were performed on a
Pentium IV PC with 3.2 GHz of CPU and 1 GB of RAM.

For the computational experiments, the number of po-
tential facilities (m) was set to 10, 20 and 40, and the num-
ber of population zones (n) was set to 100, 200, and 400.
In total, there were nine problem sets. In each problem set,
ten instances were generated. For each instance, the de-
mand rate at each zone (λhi ) was randomly generated in
the interval [0, 2.4(m/n)] per hour. The travel times were
randomly generated in the interval [0, 1.25] hours, and the
following parameter values were used.

Problem parameters:

(a) the service rate at each facility: µ = 2.5 clients/
hour;

(b) the intercept of the demand decay function:
Ai = 1;
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872 Zhang et al.

Table 1. The computational performance

CPU time (seconds)

Number of facilities Number of zones Improvement (%) Zhang et al. (2009) Current

10 100 7.360 0.496 32.015
200 10.140 1.369 45.437
400 6.402 2.541 68.534

20 100 15.379 2.564 346.959
200 19.101 11.975 547.529
400 19.947 23.516 916.544

40 100 22.353 16.344 2194.481
200 23.529 39.764 4629.255
400 22.686 72.894 16 355.832

(c) the slope of the demand decay function: γ = 0.4;
(d) the minimum workload requirement: Rmin = 1.2

clients/hour.

Tabu search parameters:

(a) the stopping criteria: Nite = 50;
(b) the Tabu length: Tlen = 5.

To better illustrate the performance of the proposed algo-
rithm, we used Zhang et al. (2009) as a benchmark. Note
that they assume that all participants from a population
zone go to the same facility and use a heuristic procedure
for client–facility allocation. For comparability, the number
of total available servers Qmax in our model was determined
by solving the model with s j = 1 and relaxing constraints
(12) for each instance. We compare the current model for
the up-to-two-server case (s j ≤ 2) with Zhang et al. (2009)
in terms of total participation level and computational time
requirement. We note that the number of open facilities is
not the same in the two models and the new model allows
assigning more than one server to a facility. Therefore, the
presented comparison favors the new model to some extent.

Table 1 reports the average “Improvement” in total par-
ticipation and the “CPU time” of the ten instances for
each problem set. In general, the total participation lev-
els achieved by the current model are larger than that of
Zhang et al. (2009). Note that the average improvement is
increasing with the number of potential facilities, surpass-
ing 20% for the largest problem instances. This improve-
ment comes with a price of increased computational time.
Table 1 shows that the average CPU time of the current
model increases with the number of potential facilities and
the number of zones, especially the former. The running
time of our model is significantly longer than that of Zhang
et al. (2009). In particular, we found that our exact alloca-
tion procedure requires much longer running time than the
allocation heuristic used in their paper. For example, for
the largest-sized instances, the convergence time of each al-

location procedure requires several seconds, over 200 times
that of the allocation heuristic.

There are two main reasons for the improvement in the
objective function value. First, we find that the current
model often utilizes a larger number of servers, which in-
creases the accessibility of the facilities and hence total par-
ticipation. The allocation heuristic and the single-sourcing
assumption in Zhang et al. (2009) lead to larger variation
among the number of clients patronizing each facility. Con-
sequently, the number of facilities that satisfy the minimum
workload requirement and hence the number of servers
that can be allocated to the entire network is less than the
number in the current model. The second reason for the im-
provement is capacity pooling; i.e., allocating two servers
at some of the open facilities. Interestingly, detailed anal-
ysis of our results indicates that the improvement due to
capacity pooling does not monotonically increase with the
number of potential facilities. This suggests that the im-
provement trend we observe in Table 1 is mainly due to the
effectiveness of our exact allocation method in tackling the
larger problem instances.

Since the above computational experiments are only
based on one parameter set, it may not be sufficient to
provide enough generality of the problem. Therefore, we
conducted sensitivity analyses based on the three impor-
tant problem parameters: µ, γ , and Rmin. Since we can
observe from Table 1 that the number of zones does not
play a significant role, only the problem sets with 100
zones were chosen for the sensitivity analyses. The value
of each parameter in the base case was set to either in-
crease by 50% or decrease by 50%, and the value of Qmax
remained the same as in the base case for each instance.
Our purpose was to see the average changes in the objec-
tive function value as well as in the CPU running time com-
pared to the base case, which are shown in Tables 2 and 3,
respectively.

Note that decreasing µ, increasing γ , and increasing Rmin
may make the problem infeasible. For each instance of the
base case problem, since the value of Qmax is determined by
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Preventive healthcare networks with congestion 873

Table 2. The change in objective function value (in percentage) with respect to the three parameters

µ γ Rmin

Number of facilities 1.25 3.75 0.2 0.6 0.6 1.8

10 70.609 109.791 120.952 79.653 101.123 100.000
20 55.433 117.493 119.591 82.336 100.239 99.663
40 57.008 117.442 118.385 84.448 100.068 99.809

solving the model with s j = 1 and relaxing constraints (12),
this always makes the base case problem feasible. However,
in either of the studied three cases, it may not be possible to
find enough open facilities that satisfy the minimum work-
load requirement, especially when Qmax is an odd number.
Thus, the values shown in Tables 2 and 3 are calculated by
excluding these infeasible instances.

Both tables suggest that decreasing µ by 50% has the
largest effect. When there are sufficient potential clients,
capacity becomes the primary constraint for participation.
Thus, the average objective function value declines most.
Moreover, an interesting finding is that the running time
also declines significantly. We note that the number of it-
erations during the Tabu search does not change much,
whereas the running time for each allocation procedure de-
creases significantly. In other words, the convergence to the
allocation equilibrium by the gradient projection method
becomes much faster. In contrast, although increasing γ by
50% (i.e., raising people’s sensitivity to time) also leads to
reduced participation, participation only declines around
20%.

Second, the two tables show that increasing µ by 50%
and decreasing γ by 50% seem to result in similar effects.
With regards to the objective function value, participation
increases around 20% in both cases. For the former case,
this is because the travel time remains the same, whereas the
mean waiting time declines. For the latter case, although
more potential clients are willing to participate, capacity
becomes the constraint. In both cases, more CPU running
time is required on average. Again, this is mainly due to the
convergence speed of the allocation procedure.

Finally, both increasing and decreasing Rmin by 50% do
not have a significant impact on either the objective func-
tion value or the running time. The primary reason for this
is that, in the base case solutions, most of the open facilities
already have two servers. Thus, for each instance, increas-

ing or decreasing Rmin does not make the optimal solution
change much, as long as the problem is still feasible.

6. An illustrative case

In this section, we use the data from the network of mam-
mography centers in Montreal to illustrate the application
of our model and methodology. The problem is motivated
by the decision of the Quebec Ministry of Health to sub-
sidize mammograms for women between the ages of 50
and 69. The National Cancer Institute of Canada reports
that breast cancer is the most common cancer diagnosed
in Canadian women and is second only to lung cancer as
the most common cause of cancer deaths among women
(National Cancer Institue of Canada, 2006). Accordingly,
screening recommendations in Canada include a mam-
mogram of the breast and clinical breast examination in
asymptomatic women aged between 50 and 69 years of
age. As of 1996, there were 194 475 women in Montreal in
this age group and 36 facilities with mammography ma-
chines. The Ministry made a policy decision to require a
minimum of 4000 mammographies per year for facilities to
be accredited. The problem is determine which facilities to
be accredited so as to maximize participation.

There are 497 population zones in Montreal, which we
use for representing spatial distribution of the potential
clients. Following Zhang et al. (2009), we assume that the
maximum participation rate Ai is 0.95 and the slope of
the demand function γ is 0.55; i.e., women will spend a
maximum of 1.75 hours for a mammography. Assuming
250 days per year and 8 hours per day, the number of
potential clients in Montreal per hour λ = 194 475/250/8
= 97.24, and the minimum workload requirement Rmin =
4000/250/8 = 2 clients per hour. We also assume that the

Table 3. The change in CPU time (in percentage) with respect to the three parameters

µ γ Rmin

Number of facilities 1.25 3.75 0.2 0.6 0.6 1.8

10 13.463 198.059 168.115 64.249 114.045 99.190
20 21.535 144.065 142.216 86.977 137.381 102.868
40 9.588 217.651 285.966 101.681 111.774 109.794
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874 Zhang et al.

Fig. 1. The solution of the model with s j ≤ 2.

servers (machines) are homogeneous and set the capacity
µ to five clients per hour.

Since a mammography unit machine is quite expensive,
almost all of the current facilities in Montreal have only
one or two machines. Therefore, we mainly focus on the
case with s j ≤ 2 in this section, and we will briefly discuss
the use of our approximation method for s j > 2 at the end
of the section. Also, when there is more than one machine,
a single radiologist reads all the images in almost all cases.
Hence, the minimum workload requirement should apply
to each facility rather than each machine, and this is
consistent with the formulation in Section 3.

As in Section 5, we determined the number of avail-
able servers Qmax by relaxing constraints (12) and solving
the model with s j = 1. We set Qmax equal to the resulting
number of open facilities. The solution stipulates that 22
facilities should be accredited, and the overall participa-
tion would be 55.6%. Note that, with the same parameter
setting, Zhang et al. (2009) suggested the accreditation of
21 facilities with an overall participation of 53.3%. That
is, the accreditation of one more facility results in a 4.3%
increase in the participation level over that for Zhang et al.
(2009). This verifies our observation in the previous sec-
tion that the use of the exact allocation method leads to
less variation among the number of clients allocated to the
accredited facilities and consequently more facilities can
satisfy the minimum workload requirement.

We now turn to the model with s j ≤ 2 and Qmax = 22.
Figure 1 depicts the solution, which suggests that 14 fa-
cilities should be accredited and eight of these facilities
should have two servers. The resulting participation is

58.8%, which is 5.8% higher than the solution of the model
with s j = 1. This can be interpreted as the benefit of capac-
ity pooling at the mammography centers. Comparing the
two solutions, we observe that some of the small facilities
are merged so as to open larger ones; i.e., eight of the fa-
cilities in the s j = 1 solution have to be closed so that their
equipment can be utilized in the other facilities for capacity
pooling. That is, increased total participation comes with
a price of reduced spatial coverage under a predetermined
number of servers.

To study this issue further, we conducted a parametric
analysis on Qmax. Table 4 and Fig. 2 depict the effect of
increasing Qmax on the facility–server distribution and the
participation level. In general, we observe that the larger
the number of available servers, the more likely it is that
the servers are centralized. Note that the number of facil-
ities with two servers is increasing with Qmax, whereas the

Table 4. Parametric analysis on Qmax

Number of facilities

Number of With one With two
servers Total server servers Participation

10 8 6 2 38.4
15 10 5 5 50.2
20 12 4 8 57.1
25 15 5 10 61.3
30 17 4 13 62.6
35 18 1 17 63.1
40 20 0 20 66.1
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Preventive healthcare networks with congestion 875

Fig. 2. Parametric analysis on Qmax.

number of facilities with one server is decreasing. At the
extreme, all the facilities have two servers when Qmax = 40.
We identify two main causes for this result. As mentioned
earlier, capacity pooling may raise participation, by re-
ducing the mean waiting time. Meanwhile, the minimum
workload requirement may also favor centralization, since
it may not be feasible to accredit many single-server facili-
ties. In particular, we note that the impact of Rmin increases
with Qmax.

Another main result is that with a medium or large num-
ber of total available servers, centralizing capacity at the
facilities in high-density areas is a better strategy than de-
centralizing capacity to smaller facilities. In contrast, if
there are only limited servers available (e.g., ten), instead
of adding one additional server to an existing facility in
a high-density area, it is better to locate a new facility in
another high-density area so as to increase the spatial cover-
age. Figure 1 also shows the map of the population density
of Montreal in 2001 (Ville de Montreal, 2008), from which
we can clearly see that the facilities with two servers are
located in the high-density areas and the facilities with one
server are typically located in the medium-density areas.

Interestingly, during the computations, we found that
it takes a very long time to find a feasible solution when
Qmax = 35. In fact, the final solution shows that there is
one server at facility 3 and all the other facilities have two
servers. However, the solutions with Qmax = 25, 30, and
40, all show that there are two servers allocated to facility
3. After investigation, we realized that it is very difficult
to open a facility with a single server that can satisfy the
minimum workload requirement at a place close to other
facilities in a well-developed network. Therefore, in this
case, only one server is allocated to facility 3, around which
there is no other open facility, and this allows all the other
17 facilities with two servers to satisfy more easily the min-
imum workload requirement. In other words, if a number
of additional servers can be added to a balanced network,
it would be a good plan to allocate the servers to exist-
ing facilities or to open new facilities with more than one
server.

In addition, Fig. 2 demonstrates that total participation
is close to a concave function, increasing with Qmax. Even
with 40 servers, the participation rate is 66.1%, still below
the national target of 70%. Therefore, it seems necessary
to support capacity expansion projects with initiatives
to increase people’s awareness about the significance of
preventive care (i.e., to reduce their sensitivity to the total
time) in order to achieve the target participation levels.

Since the values of Ai and γ are not estimated based on
real data or survey, we therefore conducted another para-
metric analysis on these two parameters. Table 5 shows the
corresponding values of the objective function (participa-
tion) with different values of Ai and γ when Qmax = 22.
In particular, participation almost linearly increases with
the increase in Ai , while it almost linearly decreases with
the increase in γ , when the values of the two parame-
ters are within those ranges. Moreover, by investigating
the facility–server distribution, we find that the lower the
participation level, the more likely the servers are central-
ized together. This is mainly due to the minimum workload
requirement.

The above discussion is based on the case of s j ≤ 2. To
study the impact of this restriction, we use the approxima-
tion method devised for the allocation problem. Figure 3
displays the solution of our model with s j ≤ 3 on the map
of the population density of Montreal in 2001. In this so-
lution, 11 facilities are accredited, three of them with three
servers and five of them with two servers. The three facilities
with three servers are all located in the very-high-density

Table 5. Participation levels (in percentage) as a function Ai
and γ

γ

Ai 0.35 0.45 0.55 0.65 0.75

0.95 69.9 64.2 58.8 53.9 46.8
0.85 61.6 56.0 50.2 43.7 39.3
0.75 52.8 45.9 40.2 36.2 31.3
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876 Zhang et al.

Fig. 3. The solution of the model with s j ≤ 3.

areas, and this supports our previous observation about
the strategy of capacity pooling. The total participation is
59.5%; i.e., only a 1.2% improvement on the previous solu-
tion. This small increase suggests that the current policy of
having up to two mammography machines at the facilities
is reasonable, and it would not pay off to centralize capacity
further.

7. Conclusions and future research

This article presents a model for the problem of preventive
healthcare facility network design and provides a solution
methodology. We formulate the problem as an MPEC; i.e.,
a bilevel non-linear optimization model. The lower level
problem determines the allocation of clients to facilities
and it is formulated as a variational inequality; the upper
level is a facility location and capacity allocation problem.
Our solution approach is based on the location–allocation
framework. The variational inequality is formulated as a
convex optimization problem, which can be solved by the
gradient projection method; we develop a Tabu search pro-
cedure to solve the upper level problem. Our computa-
tional experiments indicate that large-sized instances can
be solved in reasonable time. Based on the analysis of an
illustrative case, the network of mammography centers in
Montreal, we derive managerial insights with regards to the
impact of capacity pooling on the level of participation and
the trade-off between capacity pooling and spatial coverage
provided by the facility network.

Our model can be generalized or extended in a number of
ways. First, although the model aims at a non-appointment

or “walk-in” system, it is possible to calibrate the model to
represent the presence of an appointment system at each
facility. Under an appointment system, one of the most
significant client attraction factors is the waiting time for
the appointment rather than the waiting time at the fa-
cility. Assuming that clients always take the first available
appointment and there are no cancelations or no-shows, an
M/M/C queue can be used for approximating an appoint-
ment system. To calibrate the travel time and the waiting
time for an appointment, we can replace Equation (2) by
the following weighted time function,

T̄i j = αti j + W̄(a j , s j ), i ∈ N, j ∈ S, (27)

where α is a constant to balance travel time and wait time
and it can be estimated empirically. Also, the slope γ in
Equation (5) needs to be calibrated accordingly. The other
elements of the model remain the same. During preliminary
experiments, however, we found out that the computational
requirements of the allocation algorithm drastically in-
crease as the participation function becomes flatter (cor-
responding to longer appointment waiting times due to
high congestion). Thus, the development of an efficient
allocation algorithm for dealing with preventive care fa-
cilities that use appointment systems remains a challenge
for future research. Alternatively, the use of simulation for
modeling an appointment system seems to be a promising
research direction.

Second, the model presented here can also be applied
to other service environments, such as in the context of
networks of banks and post offices. The incorporation
of congestion in modeling clients’ decision making in
these service sectors is also crucial. Although the detailed
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Preventive healthcare networks with congestion 877

formulations may be different, the overall structure of the
bilevel model and especially the user equilibrium problem
remain the same, and our solution methodology can be
easily adapted for solving the arising problems.

Third, although we only use the accessibility of a facility
(i.e., the total time spent in getting service) as a determinant
of client attraction, other factors of attractiveness could be
included as well. Fundamentally, these factors can be di-
vided into two categories, static and dynamic. The static
factors of attractiveness such as travel time, service time,
facility type, and facility reputation typically will not be in-
fluenced by the allocation of clients. In contrast, dynamic
factors, including the mean waiting time and the average
number of clients in the system, depend on the collective
outcome of the decisions of all clients, and the resulting
user equilibrium needs to be determined. This article mod-
els a user equilibrium based on a single dynamic factor in
the context of preventive healthcare facility network de-
sign. The incorporation of a user equilibrium with multiple
dynamic factors needs further work.

Finally, this article studies the issue of capacity optimiza-
tion from the perspective of allocating a given number of
servers. Under the presence of technology alternatives, it
may be relevant to optimize the service rate or the through-
put at each facility, subject to a budget constraint. This
extension constitutes a fruitful avenue for future research.

Acknowledgements

This research was supported in part by a Discovery Grant
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC grant 183631). The authors ac-
knowledge the comments and suggestions of the associate
editor and two anonymous referees, which were helpful in
improving the article.

References

Abdulaal, M. and LeBlanc, L.J. (1979) Continuous equilibrium network
design models. Transportation Research B, 13, 19–32.

Berman, O. and Krass, D. (2002) Facility location problems with stochas-
tic demands and congestion, in Facility Location: Applications and
Theory, Drezner, Z. and. Hamacher, H.W. (eds.), Springer, New
York, NY, pp. 331–373.

Chao, X., Liu, L. and Zheng, S. (2003) Resource allocation in multisite
service systems with intersite customer flows. Management Science,
49(12), 1739–1752.

Dafermos, S.C. (1968) Traffic assignment and resource allocation in
transportation networks. Ph.D. Dissertation, Johns Hopkins Uni-
versity, Baltimore, MD.

Daskin, M.S. and Dean, L.K. (2004) Location of health care facilities,
in Operations Research and Health Care: A Handbook of Methods
and Applications, Brandeau, M.L., Sainfort, F. and Pierskalla, W.P.
(eds.), Kluwer, New York, NY, pp. 43–76.

Facione, N.C. (1999) Breast cancer screening in relation to access to
health services. Oncology Nursing Forum, 26, 689–696.

Florian, M. and Hearn, D. (1995) Network equilibrium models and algo-
rithms, in Handbooks in Operations Research and Management Sci-

ence: Volume 8 Network Routing, Elsevier, New York, NY, pp. 485–
550.

Glover, F. (1986) Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research, 13, 533–
549.

Gornick, M.E., Eggers, P.W. and Riley, G.F. (2004) Associations of race,
education, and patterns of preventive service use with stage of cancer
at time of diagnosis. Health Services Research, 39, 1403–1427.

Gunes, E.D., Chick, S.E. and Zeynep, A.O. (2004) Breast cancer screening
services: trade-offs in quality, capacity, outreach, and centralization.
Health Care Management Science, 7, 291–303.

Health Canada. (2005) Mammography, available at http://www.hc-
sc.gc.ca/hl-vs/iyh-vsv/med/mammog-eng.php, accessed August
19, 2010.

Judge, G.G. and Takayama, T. (1973) Studies in Economic Planning over
Space and Time, North-Holland, Amsterdam, The Netherlands.

Kelley, C.T. (1999) Iterative Methods for Optimization, SIAM, Philadel-
phia, PA.

Kleinrock, L. (1975) Queueing System I: Theory, Wiley, New York, NY.
Kontogiorgis, S. and Tibbs, R.W. (2005) An efficient approximation to

wait time in M/M/c queues with application to staffing planning,
in Proceedings of the 43rd Annual ACM Southeast Regional Con-
ference, volume 2, Association for Computing Machinery (ACM),
New York, NY, pp. 98–102.

Magnanti, T.L. and Wong, R.L. (1984) Network design and transporta-
tion planning: models and algorithms. Transportation Science, 18,
1–55.

Marcotte, P. (1986) Network design problem with congestion effects: a
case of bilevel programming. Mathematical Programming, 34, 142–
162.

Marcotte, P., Marquis, G. and Zubieta, L. (1992) A Newton-SOR method
for spatial price equilibrium. Transportation Science, 26, 36–47.

Marianov, V. (2003) Location of multiple-server congestible facilities for
maximizing expected demand, when services are non-essential. An-
nals of Operations Research, 123, 125–141.

Marianov, V., Rios, M. and Barros, F.J. (2005) Allocating servers to
facilities, when demand is elastic to travel and waiting times. RAIRO
Operations Research, 39, 143–162.

Marianov, V., Rios, M. and Icaza, M.J. (2008) Facility location for market
capture when users rank facilities by shorter travel and waiting times.
European Journal of Operational Research, 191, 32–44.

Marianov, V. and Serra, D. (2002) Location problems in the public
sector, in Facility Location: Applications and Theory, Drezner, Z.
and Hamacher, H.W. (eds.), Springer, New York, NY, pp. 119–
150.

McNoe, B., Richardson, A.K. and Elwood, J.M. (1996) Factors affecting
participation in mammography screening. New Zealand Medical
Journal, 109, 359–362.

Nagurney, A. (1992) The application of variational inequality theory to
the study of spatial equilibrium and disequilibrium, in Readings in
Econometric Theory and Practice: A Volume in Honor of George
Judge, Grinths, W.E., Lutkepohl, H. and Bock, M.E. (eds.), North-
Holland, Amsterdam, The Netherlands, pp. 327–355.

Nagurney, A. (1999) Network Economics: A Variational Inequality Ap-
proach, Kluwer, Norwell, MA.

National Cancer Institute of Canada. (2006) Progress in can-
cer control: screening. Annual statistics special report, avail-
able at http://www.phac-aspc.gc.ca/publicat/prccc-relccc/pdf/
F244 HC Cancer Rpt English.pdf, accessed August 19, 2010.

Nolte, S. (2008) The future of the world suger market—a spatial price
equilibrium analysis. Working paper, University of Ghent, Belgium.

Public Health Agency of Canada. (2006) Organized breast cancer
screening programs in canada—report on program performance in
2001 and 2002, available at http://www.phac-aspc.gc.ca/publicat/
obcsp-podcs01/index-ena.php, accessed August 19, 2010..

Samuelson, P.A. (1952) Spatial price equilibrium and linear program-
ming. American Economic Review, 42, 283–303.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 d

e 
M

on
tr

ea
l]

 a
t 1

3:
27

 0
1 

Fe
br

ua
ry

 2
01

2 



878 Zhang et al.

Takayama, T. and Judge, G.G. (1964) An intertemporal price equilibrium
model. Journal of Farm Economics, 46, 477–484.

Takayama, T. and Judge, G.G. (1971) Spatial and Temporal Price and
Allocation Models, North-Holland, Amsterdam, The Netherlands.

U.S. Food and Drug Administration. (1999) The Mammography Quality
Standards Act Final Regulations, available at http://www.fda.
gov/downloads/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm094441.pdf, accessed August 19, 2010.

Verter, V. and Lapierre, S.D. (2002) Location of preventive health care
facilities. Annals of Operations Research, 110, 123–132.

Ville de Montreal. 2008. Theme maps: sociodemographic and economic
atlas for Montreal, Available at http://ville.montreal.qc.ca/portal/
page? pageid=2077, 2455180& dad=portal& Schema=PORTAL,
accessed August 19, 2010.

Walker, K. 1977. Current issues in the provision of health care services.
Journal of Consumer Affairs, 11, 52–62.

Zhang, Y., Berman, O. and Verter, V. (2009) Incorporating congestion in
preventive healthcare facility network design. European Journal of
Operational Research, 198, 922–935.

Zimmerman, S. (1997) Factors influencing hispanic participation in
prostate cancer screening. Oncology Nursing Forum, 24, 499–504.

Appendices

Appendix 1

Proof of Theorem 1. First, it is shown that if x∗ ∈ X(y)
satisfies Equation (7) then it also satisfies Equation (9).

Note that given s, for a fixed pair (i, j ), i ∈ N, j ∈ S, one
must have that:

(W̄(a∗
j , s j ) + ti j − Ti (p∗

i )) × (xi j − x∗
i j ) ≥ 0, (A1)

for any non-negative xi j . Hence, summing over all pairs,
one has that,

n∑
i=1

∑
j∈S

(W̄(a∗
j , s j ) + ti j − Ti (p∗

i )) × (xi j − x∗
i j ) ≥ 0,

∀xi j ≥ 0. (A2)

Using Equations (1), (4) and some algebra, Equation (A2)
yields:

n∑
i=1

∑
j∈S

ti j (xi j − x∗
i j ) +

∑
j∈S

W̄(a∗
j , s j )(a j − a∗

j )

−
n∑

i=1

Ti (p∗
i )(pi − p∗

i ) ≥ 0, ∀xi j ≥ 0, (A3)

which, in vector natation, gives us Equation (9).

Now it is shown that if x∗ ∈ X(y) satisfies Equation (9)
then it also satisfies Equation (7). For simplicity, utilize
Equation (9) expanded as Equation (A2). For any pair
(k, l), let xi j = x∗

i j , ∀(i, j ) �= (k, l), i ∈ N, j ∈ S, and then
Equation (A2) simplifies to

(W̄(a∗
l , sk) + tkl − Tk(p∗

l )) × (xkl − x∗
kl ) ≥ 0, (A4)

from which Equation (7) follows for this (k, l) and conse-
quently for every pair. �
Proof of Theorem 2. The Jacobian matrix can be rep-
resented as ∇F(z) = JA + JB, where JA and JB, two
mn × mn matrices, are defined as

JA =

⎡
⎢⎢⎢⎢⎣

JA1 0 · · · 0
0 JA2 · · · 0
...

. . .
...

0 0 · · · JAn

⎤
⎥⎥⎥⎥⎦ , JB =

⎡
⎢⎢⎢⎢⎣

JB1 JB1 · · · JB1

JB1 JB1 · · · JB1

...
. . .

...
JB1 JB1 · · · JB1

⎤
⎥⎥⎥⎥⎦ .

JA j is a n × n matrix in which all elements are equal to

1(
µ − ∑n

i=1 zi j
)2 ,

and JB1 is a n × n diagonal matrix as

JB1 =

⎡
⎢⎢⎢⎢⎢⎣

1
λh1γ

0 · · · 0

0 1
λh2γ

· · · 0
...

. . .
...

0 0 · · · 1
λhmγ

⎤
⎥⎥⎥⎥⎥⎦ .

We can also obtain that:

vTJAv =
m∑

j=1

⎡
⎢⎣ 1(

µ − ∑n
i=1 zi j

)2

⎛
⎝ jn∑

k=( j−1)n+1

vk

⎞
⎠

2
⎤
⎥⎦ ≥ 0

∀v ∈ Rmn,

vTJBv =
n∑

i=1

⎡
⎣ 1

λhiγ

(
m∑

k=1

v(k−1)n+i

)2
⎤
⎦ ≥ 0 ∀v ∈ Rmn.

Therefore, ∇F(z) is symmetric and positive semi-definite,
since JA and JB are both positive semi-definite. �
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Appendix 2
The performance of the approximation

Table A1. The performance of the approximation

µ = 5, C = 4 µ = 2, C = 10 µ = 1, C = 20
a = 0.998, b = 3.159, d = 0.709 a = 0.983, b = 9.524, d = 0.393 a = 0.957, b = 19.854, d = 0.234

τ Exact Approximation Error (%) Exact Approximation Error (%) Exact Approximation Error (%)

2.0 0.200 0.203 1.44 0.500 0.513 2.57 1.000 1.023 2.31
2.5 0.200 0.202 1.00 0.500 0.510 2.02 1.000 1.019 1.91
3.0 0.200 0.201 0.62 0.500 0.508 1.51 1.000 1.015 1.53
3.5 0.200 0.201 0.31 0.500 0.505 1.03 1.000 1.012 1.16
4.0 0.201 0.201 0.05 0.500 0.503 0.60 1.000 1.008 0.81
4.5 0.201 0.201 0.17 0.500 0.501 0.19 1.000 1.005 0.47
5.0 0.201 0.201 0.34 0.500 0.499 0.17 1.000 1.002 0.16
5.5 0.202 0.201 0.47 0.500 0.498 0.49 1.000 0.999 0.14
6.0 0.203 0.202 0.56 0.500 0.496 0.77 1.000 0.996 0.41
6.5 0.204 0.202 0.62 0.500 0.495 1.00 1.000 0.993 0.66
7.0 0.205 0.203 0.66 0.500 0.494 1.19 1.000 0.991 0.89
7.5 0.206 0.205 0.67 0.500 0.494 1.34 1.000 0.989 1.09
8.0 0.208 0.206 0.66 0.501 0.493 1.45 1.000 0.987 1.26
8.5 0.209 0.208 0.63 0.501 0.494 1.51 1.000 0.986 1.40
9.0 0.212 0.210 0.58 0.502 0.494 1.52 1.000 0.985 1.50
9.5 0.214 0.213 0.53 0.503 0.495 1.50 1.000 0.984 1.57
10.0 0.217 0.216 0.46 0.504 0.496 1.44 1.000 0.984 1.60
10.5 0.221 0.220 0.39 0.505 0.498 1.34 1.001 0.985 1.59
11.0 0.225 0.224 0.31 0.507 0.501 1.20 1.001 0.986 1.54
11.5 0.230 0.230 0.23 0.509 0.504 1.04 1.002 0.987 1.44
12.0 0.236 0.236 0.15 0.513 0.508 0.85 1.003 0.990 1.30
12.5 0.243 0.242 0.07 0.517 0.513 0.64 1.005 0.994 1.11
13.0 0.251 0.251 0.01 0.522 0.520 0.41 1.007 0.998 0.88
13.5 0.260 0.260 0.08 0.529 0.528 0.16 1.011 1.004 0.62
14.0 0.271 0.272 0.15 0.537 0.537 0.09 1.016 1.012 0.32
14.5 0.285 0.286 0.21 0.548 0.549 0.33 1.022 1.023 0.01
15.0 0.302 0.303 0.25 0.561 0.565 0.57 1.032 1.036 0.36
15.5 0.323 0.324 0.29 0.579 0.584 0.79 1.045 1.053 0.71
16.0 0.349 0.350 0.31 0.602 0.608 0.98 1.064 1.075 1.06
16.5 0.383 0.385 0.32 0.633 0.641 1.13 1.090 1.105 1.37
17.0 0.430 0.431 0.31 0.677 0.685 1.21 1.128 1.147 1.64
17.5 0.495 0.497 0.28 0.739 0.748 1.21 1.185 1.207 1.80
18.0 0.594 0.595 0.23 0.834 0.844 1.10 1.275 1.298 1.79
18.5 0.759 0.760 0.15 0.997 1.005 0.83 1.432 1.454 1.51
19.0 1.091 1.092 0.05 1.326 1.330 0.35 1.755 1.769 0.76
19.5 2.090 2.089 0.08 2.321 2.311 0.44 2.745 2.721 0.87
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