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Abstract

In this work we consider the problem of parameter learning for vari-
ational image denoising models. The learning problem is formulated as
a bilevel optimization problem, where the lower level problem is given
by the variational model and the higher level problem is expressed by
means of a loss function that penalizes errors between the solution of
the lower level problem and the ground truth data. We consider a class
of image denoising models incorporating ℓp-norm based analysis priors
using a fixed set of linear operators. We devise semi-smooth Newton
methods to solve the resulting non-smooth bilevel optimization prob-
lems and show that the optimized image denoising models can achieve
state-of-the-art performance.

Keywords: Regularization parameter, image denoising, learning theory,
non-differentiable optimization, bilevel optimization, semi-smooth Newton
algorithm.
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1 Introduction

Variational approaches had great success in solving inverse problems in imag-
ing, such as image restoration, optical flow and stereo vision. The fundamen-
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tal principle behind these approaches is to devise the solution of the inverse
problem as the minimizer of an energy functional, which is designed such
that its minimum-energy state reflects the characteristic properties of the
solution. For example, popular priors assume that the solution is piecewise
constant or piecewise smooth.

Usually, variational models incorporate a number of free parameters.
These parameters are used for example to tradeoff between regularization
and data fidelity or to locally adapt the variational model to the input data.
Selecting optimal parameters is by far not trivial. A possible procedure to
determine these free parameters is to evaluate the performance of the varia-
tional model on some test data with known optimal solution by performing
an exhaustive search over a range of useful parameters settings. This is te-
dious and becomes infeasible already for more than two or three parameters.

In this work a systematic approach for the above procedure will be pro-
vided. We cast parameter selection as a learning problem. Given a certain
variational model, the task consists in learning the parameters such that the
variational model minimizes a certain loss functional on a training database.
This naturally leads to a bi-level optimization problem of the following form:

(1.1)




min
ϑ≥0

E(x(ϑ))

subject to x(ϑ) ∈ argmin
x

F(x, ϑ)

The bi-level problem consists in a lower-level optimization whose solution
x(ϑ) is an argument of the higher-level minimization problem. The aim of
the bi-level problem is then to find a parameter vector ϑ such that E(x(ϑ))
attains a minimum value.

Concerning the choice of regularization parameters the literature typi-
cally distinguishes between a-posteriori and a-priori parameter rules, as well
as error-free parameter choice rules, see e.g. [10, 12], and the references cited
there. The discrepancy principle is a prominent example for an a-posteriori
rule, where the regularization parameter is determined such that the data fi-
delity term at the optimum equals the size of the noise level. Here we require
knowledge of the noise level as well as the noisy data. A-priori rules deter-
mine the regularization parameter solely from knowledge of the noise level.
The class of parameter free methods includes generalized cross validation
and balancing principles between the error in the fidelity and the regular-
ization terms. Most of the work on parameter choice techniques addresses
the case of a single scalar parameter.

Bilevel optimization problems are an active research area in their own
right, see e.g. [2] and the references provided there. Here we only analyze the
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specific bilevel problem (1.1) to the extent that is required to propose and
investigate numerical methods for its solution. In this work the functional E
of the upper level problem will be smooth while for the lower level problem
we distinguish between a smooth quadratic and the non-smooth ℓ1 and ℓ 1

2

cases.
For the application of image restoration, bilevel optimization has been

used by Tappen et al. in [28, 29, 27] to learn the parameters of different
Markov random field models. In particular, they showed that bilevel opti-
mization provides an effective learning method, as it overcomes the typical
problems of classical probabilistic learning methods that require to com-
pute the partition function of the underyling probability density function.
However, while Tappen et al. used gradient methods for learning that do
not come along with any convergence guarantees, we propose fast Newton
methods that come along with locally super-linear convergence. It will turn
out that our proposed Newton algorithms do not only provide an effective
learning framework but also lead to image restoration results superior to
that reported in [27]. We mainly attribute this fact to the ability of our
proposed algorithms to be more successful in finding a (local) minimizer of
the bilevel optimization problems, than the gradient methods used in [27].
In [24], a bilevel learning approach was proposed for sparse analysis prior
learning using an ℓ1 model. The approach is similar to [27] as it uses im-
plicit differentiation to compute the gradient of the higher level problem
with respect to the learning parameters.

Let us give a brief summary of the contents of the following sections. In
Section 2 we present the precise problem statement and provide some prelim-
inaries. The smooth case with a single as well as multiple priors is aqnalyzed
in Section 3. We investigate aspects of the geometry of the value functional
E and develop a Newton algorithm for the solution of the inequality con-
strained problem (1.1). Section 4 is devoted to existence of (1.1) and the
derivation of an optimality condition by means of a regularisation procedure
for the case when the lower level problem is non-smooth. The regularized
problems are semi-smooth and thus we propose a semi-smooth Newton algo-
rithm for their solution. Numerical experiments for a wide variety of priors
and for images of different qualitative features are presented in Section 5.
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2 Preliminaries

In this work we put our emphasis on the following class of problems:
(2.1)



min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

F(x, ϑ) = 1
p

q∑
k=1

ϑk‖Kkx‖pp + 1
2‖x− f‖22.

The lower-level optimization problems F(x, ϑ) consists of a data and of
a regularization term. The data term penalizes the squared ℓ2 -norm of
the discrepancy between the noisy image f ∈ R

n and the unknown image
x ∈ R

n. The regularization term is a sum of q ≥ 1 so-called analysis based
priors (see e.g. [31]), penalizing the ℓpp -norms

‖Kkx‖pp =
n∑

i=1

|(Kkx)i|p

of the result of applying linear operators Kk ∈ R
m×n, 1 ≤ k ≤ q to x. We

shall consider primarily the cases p ∈ {1, 2}, and in numerical experiments
also p = 1

2 . The importance of the priors ‖Kkx‖pp, 1 ≤ k ≤ q are weighted
by parameters ϑk ≥ 0, which are assembled in a parameter vector ϑ =
(ϑ1, ..., ϑq).

The higher-level optimization problem E(x(ϑ)) penalizes the discrep-
ancy between the minimizer of the lower level optimization problem x(ϑ)
and given ground truth data g ∈ R

n by means of the squared 2-norm. In
some situations we will eliminate x which leads to a reduced single-level
optimization problem E(ϑ), as opposed to the bi-level optimization problem
E(x(ϑ)).

We frequently make use of a standard inner product on R
n denoted

by 〈·, ·〉, which induces the 2-norm ‖·‖2 = 〈·, ·〉
1

2 . We further denote by
ker(K) = {x ∈ R

n : Kx = 0} the kernel of K and by ran(K) = {Kx : x ∈
R
n} the range or column space of K. The operation max on a vector x ∈ R

n

is understood to operate elementwise, i.e.

max(0, x) = (max(0, x1), . . . ,max(0, xn)) .

To obtain some insight into the cost functional E associated to (1.1) let
us investigate the scalar-valued case, i.e. x, f, g ∈ R, q = 1 and K1 = 1.
For p = 2 and by combining the lower level problem with the higher level
problem we arrive at the single level problem

min
ϑ≥0

Eℓ2(ϑ) =
(

f

1 + ϑ
− g

)2

.
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Figure 1: Shape of the reduced single level problems for the ℓ2 and the ℓ1
case.

We plot its graph for the scalar-valued case in Figure 1 (a) for various choices
of the ratio f/g. It is easy to show that all sublevel sets of Eℓ2(ϑ) are convex
and hence Eℓ2(ϑ) is quasiconvex. In the case of p = 1 the single level problem
becomes

min
ϑ≥0

Eℓ1(ϑ) = (max(0, |f | − ϑ) sgn(f)− g)2 ,

which is non-smooth since the solution to the lower level problem coincides
with f for all ϑ larger than a threshold value. Figure 1 (b) shows Eℓ1(ϑ) again
for various choices of the ratio f/g. Again, it can be shown that Eℓ1(ϑ) is
quasiconvex. The quasi-convexity is of interest since it improves the chance
that optimization algorithms find the optimal regularization parameters of
the models. In the following section a sufficient condition is found that the
guarantees this property also for the multi-dimensional, single prior case for
ℓ2 models.

3 The ℓ2 model

3.1 Single prior

Let us first consider the most simple instance of (2.1) where we set p = 2 and
q = 1, which corresponds to computing the optimal regularization parameter
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in a classical Tikhonov regularization functional:

(3.1)




min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22
subject to x(ϑ) = argmin

x

ϑ
2‖Kx‖22 + 1

2‖x− f‖22,

Solving the lower-level optimization problem we find x(ϑ) = (I+ϑKTK)−1f
and hence (3.1) is equivalent to

(3.2) min
ϑ≥0

E(ϑ) = ‖(I + ϑKTK)−1f − g‖22.

It will be convenient to introduce K = KTK ∈ R
n×n. Every element x ∈ R

n

can be uniquely decomposed as

x = xN + x⊥ ∈ ker(K)⊕ ran(K).

In our first result, we give a condition which ensures the existence of a
minimizer of (3.2).

Proposition 3.1. If ‖f⊥ − g⊥‖2 < ‖g⊥‖2, then (3.2) admits a solution
ϑ∗ ≥ 0. If moreover 〈Kf, f − g〉 > 0, then ϑ∗ > 0.

Proof. Let {ϑn}∞n=1, with ϑn ≥ 0 be a minimizing sequence, i.e.

(3.3) lim
n→∞

E(ϑn) = inf
ϑ≥0

E(ϑ).

We argue that lim
n→∞

ϑn = ∞ is impossible. In fact,

‖(I + ϑnK)−1f − g‖22 = ‖(I + ϑnK)−1f⊥ − g⊥‖22+‖(I + ϑnK)−1fN − gN‖22,

and hence, if lim
n→∞

ϑn = ∞, then

(3.4) lim
n→∞

‖(I + ϑnK)−1f − g‖22 = ‖g⊥‖22 + ‖fN − gN‖22.

From (3.3), (3.4) and the assumptions on f⊥ and g⊥ we have

lim
n→∞

E(ϑn) = ‖g⊥‖22 + ‖fN − gN‖22 > ‖f⊥ − g⊥‖22 + ‖fN − gN‖22 = E(0),

which is a contradiction and thus {ϑn} is bounded. It follows that there
exists a convergent subsequence and an accumulation point ϑ∗ ∈ [0,∞).
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Since ϑ → E(ϑ) is continuous, it follows from (3.3) that every accumulation
point is a solution to (3.2).

Now we assume that ϑ∗ = 0 and note that

(3.5) E ′(ϑ) = −
〈
(I + ϑK)−2Kf, (I + ϑK)−1f − g

〉
.

We find E ′(0) = −〈Kf, f − g〉 which by assumption is strictly negative. This
contradicts that 0 is a minimum and hence ϑ∗ ∈ (0,∞).

Remark 3.2. IfK = I and ‖f‖2 = ‖g‖2 = 1, then the condition 〈Kf, f − g〉 >
0 becomes 1 > 〈f, g〉 which is equivalent to assuming that f 6= g.

We next turn to investigate some of the properties of E(ϑ). We shall use
that

(3.6) E ′′(ϑ) = 3
〈
(I + ϑK)−4Kf,Kf

〉
− 2

〈
(I + ϑK)−3Kf,Kg

〉
.

Since K ≥ 0 is symmetric, every element x ∈ R
n can be expressed as

x =

r∑

i=1

xiei + xN ,

where {ei} are the normalized eigenvectors of K corresponding to nontrivial
eigenvalues 0 < λ1 ≤ · · · ≤ λr, r ≤ n of K. If r = n, then ker(K) = {0}. We

shall express f⊥ =
r∑

i=1
fiei and g⊥ =

r∑
i=1

giei.

3.1.1 The noise-free case

In this and the following subsections we investigate qualitative properties of
E(ϑ). We first consider the special case f⊥ = g⊥, which we refer to as the
noise-free case.

Proposition 3.3. Assume that f⊥ = g⊥ and f⊥ 6= 0.

(a) Then ϑ∗ = 0 is the unique global solution to (3.2). Moreover, ϑ → E(ϑ)
is strictly increasing from ‖fN − gN‖22 to ‖g⊥‖22 + ‖fN − gN‖22, it is
strictly convex for ϑ ∈ [0, 1

2λr
) and concave for ϑ ∈ ( 1

2λ1
,∞).

(b) If λr ≤ 2λ1, then there exists a unique ϑ̃ ∈ [ 1
2λr

, 1
2λ1

] such that E(ϑ) is
convex for ϑ ∈ [0, ϑ̃) and concave for ϑ ∈ (ϑ̃,∞).
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Proof.

(a) Note that E(0) = ‖fN − gN‖22 and

lim
ϑ→∞

‖(I + ϑK)−1f − g‖22 = lim
ϑ→∞

‖(I + ϑK)−1(fN + f⊥)− g‖22
= ‖g⊥‖22 + ‖fN − gN‖22 .

By (3.5) and since f⊥ = g⊥ we have

E ′(ϑ) = −
r∑

i=1

(
λi

(1 + λiϑ)3
− λi

(1 + λiϑ)2
)f2

i =

r∑

i=1

λ2
iϑ

(1 + λiϑ)3
f2
i .

Therefore E ′(0) = 0 and E ′(ϑ) > 0 for ϑ > 0, where we use that f⊥ 6= 0.
Hence E is strictly increasing from ‖fN − gN‖22 to ‖g⊥‖22+‖fN − gN‖22.
Similarly we find that

E ′′(ϑ) =
r∑

i=1

(
3λ2

i

(1 + λiϑ)4
− 2λ2

i

(1 + λiϑ)3
)f2

i =
r∑

i=1

λ2
i

(1 + λiϑ)4
(1−2λiϑ)f

2
i .

Hence E ′′ is strictly convex for ϑ ∈ [0, 1
2λm

) and strictly concave for

ϑ ∈ ( 1
2λ1

,∞).

(b) We express E ′′(ϑ) =
r∑

i=1
hi where

hi =
λ2
i

(1 + λiϑ)4
(1− 2λiϑ)f

2
i and h′i =

−6λ3
i

(1 + λiϑ)5
(1− λiϑ)f

2
i .

We note that hi is strictly monotonically decreasing on [0, 1
λi
) for i =

1, . . . , r, and hence E ′′ is strictly decreasing on [0, 1
λr
). We have that

E ′′(ϑ) > 0 for ϑ ∈ [0,
1

2λr
) and E ′′(ϑ) < 0 for ϑ ∈ (

1

2λ1
,∞)

Together with λr ≤ 2λ1 these observations imply the claim.
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Figure 2: The noise-free case. (a) shows the discrete cosine signals g and f ,
where we used an offset value of c = 1/2. (b) shows the function values of
E(ϑ) in dependence of the parameter ϑ.

Example 3.4. Let g = (g1, . . . , gn) be a discrete cosine defined by gi =
cos(8πi/n), 1 ≤ i ≤ n and let f = (f1, . . . , fn) be a shifted version com-
puted as fi = gi + c, c ∈ R. Figure 2 (a) plots the signal g for n = 100
together with its shifted version f , where c = 1/2. Furthermore, let K be
a finite differences approximation of a one-dimensional gradient operator,
i.e. (Kx)(i) = x(i + 1) − x(i) if 1 ≤ i < n and (Kx)(n) = 0. Note that
since (c, ..., c)T ∈ ker(K), c ∈ R, we have that g⊥ = f⊥. The nontrivial
eigenvalues of K are given in ascending order by

λi = 4 sin2((iπ)/(2n)) , i = 1, ..., n− 1 .

According to Proposition 3.3 we find that E is strictly convex for ϑ ∈ [0, 0.125)
and strictly concave for ϑ ∈ (506.648,∞). See also Figure 2.

3.1.2 The noisy case

The following result provides sufficient conditions for convexity and concav-
ity of E , for the case where f⊥ may differ from g⊥.

Proposition 3.5. (convexity/concavity).

(a) If ‖Kg‖2 < 3
2‖Kf‖2, then E is strictly convex on

(
0,

1

‖K‖2

(√
3

2

‖Kf‖2
‖Kg‖2

− 1

))
.
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Figure 3: The noisy case. (a) shows the discrete cosine signals g and its noisy
version f with additive Gaussian noise with a standard deviation of σ = 1/4.
(b) shows the function values of E(ϑ) in dependence of the parameter ϑ
together with the bound of strict convexity which is computed according to
Proposition 3.5 (a).

(b) If f⊥ 6= 0, then E is strictly convex on (0, ϑ), where

ϑ = minfigi>0
1
λi
(

3f2
i

2figi
− 1). If figi ≤ 0 for i = 1, . . . ,m, then ϑ = ∞.

(c) If
r∑

i=1

1
λ2
i

figi > 0, then there exists ϑ̃ such that E is strictly concave on

(ϑ̃,∞).

Proof.

(a) We have

1 = ‖(I + ϑK)−1(I + ϑK)‖2 ≤ ‖(I + ϑK)−1‖2‖(I + ϑK)‖2 ,

from which together with ‖(I + ϑK)‖2 ≤ 1 + ϑ‖K‖2 it follows that

1

1 + ϑ‖K‖2
≤ 1

‖(I + ϑK)‖2
≤ ‖(I + ϑK)−1‖2 ≤ 1 ,

where the upper bound follows from the fact that (I + ϑK) is positive
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definite. From (3.6) we have

E ′′(ϑ) ≥ ‖(I + ϑK)−2Kf‖2
(
3‖(I + ϑK)−2Kf‖2 − 2‖(I + ϑK)−1Kg‖2

)

≥ ‖(I + ϑK)−2Kf‖2
(

3

(1 + ϑ‖K‖2)2
‖Kf‖2 − 2‖Kg‖2

)
> 0,

provided that ϑ ∈ (0, 1
‖K‖2 (

√
3
2
‖Kf‖2
‖Kg‖2 − 1)).

(b) Let P = {i ∈ {1, . . . ,m} : figi > 0}. Utilizing (3.6) we find
(3.7)

E ′′(ϑ) = 3

m∑

i=1

λ2
i

(1 + ϑλi)4
f2
i − 2

m∑

i=1

λ2
i

(1 + ϑλi)3
figi

≥ 3

m∑

i=1,i/∈P

λ2
i

(1 + ϑλi)4
f2
i +

m∑

i∈P

λ2
i

(1 + ϑλi)4
(3f2

i − 2figi(1 + ϑλi)) > 0,

for ϑ ∈ (0, ϑ). Here we also use that f⊥ 6= 0.

(c) For ϑ ≥ 1
λ1

we have

E ′′(ϑ) ≤ 3

ϑ4

r∑

i=1

1

λ2
i

f2
i −

2

ϑ3

r∑

i=1

λi

( 1ϑ + λi)3
figi ≤

3

ϑ4

1

λ2
1

‖f‖22−
1

4ϑ3

r∑

i=1

1

λ2
i

figi

and the claim follows.

Example 3.6. Let g and K be as defined in Example 3.4, but now let f
be a noisy version of g, where we added zero-mean Gaussian noise with
σ = 1/4. Figure 3 (a) plots the cosine signal g for n = 100 together with
its noisy version f . According to Proposition 3.5 (a). We get that E is

strictly convex on ϑ ∈ (0, ϑ̃), where ϑ̃ = 1
‖K‖2

(√
3
2
‖Kf‖2
‖Kg‖2 − 1

)
is computed

as ϑ̃ = 0.8932. See Figure 3, where the typical quasiconvex behavior of the
learning functional E can be observed.

3.1.3 A remark on the infinite-dimensional case

Let K be a closed densely defined linear operator between Hilbert spaces
H and Y , with H separable. Then K = K∗K is a selfadjoint nonnegative
operator in H with dense domain that we denote by dom(K), see e.g. [18],
page 326. Moreover, for every λ with Reλ > 0 the resolvent (K + λI)−1

11



exists as bounded linear operator on H, see e.g. [18], page 279. Within this
setting we consider for g ∈ H, f ∈ H and ϑ ≥ 0

(3.8)




min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖2H
subject to x(ϑ) = argmin

x

ϑ
2‖Kx‖2Y + 1

2‖x− f‖2H .

The necessary and sufficient optimality condition for the lower level problem
is given by

(3.9) (I + ϑK)x = f.

It has a unique solution x(ϑ) ∈ H for each ϑ ≥ 0. If ϑ > 0 then x(ϑ) ∈
dom(K). Again we have an equivalent reduced problem

(3.10) min
ϑ≥0

E(ϑ) = ‖(I + ϑK)−1f − g‖2H ,

and the orthogonal decomposition

x = xN + x⊥ ∈ ker(K)⊕ ran(K),

where the closure is taken in H. We assume that (I +ϑK)−1 is compact for
some (or equivalent all) ϑ > 0. Then the spectrum of K consists entirely of
isolated eigenvalues 0 < λ1 ≤ λ2 . . . of finite multiplicity plus possibly the

eigenvalue 0, and every x ∈ H can be expressed as x =
∞∑
i=1

xiei + xN with

xN ∈ ker(K) and ei eigenvectors of K, associated to the eigenvalues 6= 0.
We have the analogue of Proposition 3.1.

Proposition 3.7. If ‖f⊥ − g⊥‖H < ‖g⊥‖H , then (3.10) admits a solution
ϑ∗ ≥ 0. If moreover, f ∈ dom(K) and 〈Kf, f − g〉H > 0, then ϑ∗ > 0.

Proof. Using the fact that (I +ϑK)−1 leaves ker(K) and (ker(K)⊥ invariant
we can proceed as in the proof of Proposition 3.1 to get the first part of the
result. Note that limϑ→0+(I + ϑK)v = v for all v ∈ H. Consequently E ′(ϑ)
is continuous on [0,∞) if f ∈ dom(K). The proof of the second part now
follows as the one of Proposition 3.1.

3.2 Multiple priors

In this section we study the ℓ2 model with multiple priors, i.e. p = 2 and
q ≥ 1. It is defined as

(3.11) min
x∈Rn

1

2

q∑

k=1

ϑk‖Kkx‖22 +
1

2
‖x− f‖22,

12



with the parameter vector ϑ = (ϑ1, . . . , ϑq) ≥ 0. The minimum of the above
problems is characterized by

x+

q∑

k=1

ϑkKkx = f,

or equivalently x = (I +
q∑

k=1

ϑkKk)
−1f . The reduced quadratic learning

functional is then given by

(3.12) min
ϑ≥0

E(ϑ) = 1

2
‖(I +

q∑

k=1

ϑkKk)
−1f − g‖22.

For convenience we introduce the symmetric positive definite matrix

R = (I +

q∑

k=1

ϑkKk)
−1.

To guarantee existence the following condition will be used

inf{‖x̃− g‖2 : x̃ ∈ ker(Kk) for some k = 1, . . . , q} > ‖f − g‖2.(3.13)

We observe that in case ker(Kk) = {0} for all k, condition (3.13) amounts
to ‖g‖2 > ‖f − g‖2. If q = 1, then (3.13) is equivalent to assuming that
‖g⊥‖2 > ‖f⊥ − g⊥‖2. This condition was already used for the single-
parameter case in Proposition 3.1.

Proposition 3.8. If (3.13) holds and ker(Kk)∩ ker(Kl) = {0} for all k 6= l,
then (3.12) admits a solution.

Proof. Let {ϑn}∞n=1 denote a minimizing sequence and suppose that lim
n→∞

‖ϑn‖2 =
∞. Then there exist index sets J ⊆ {1, . . . , q}, J = {1, . . . , q} \ J and a
constant κ1 such that

(3.14) lim
n→∞

ϑn
k = ∞ for k ∈ J , and |ϑn

k | ≤ κ1 for k ∈ J and all n.

We set

(3.15) xn = (I +

q∑

k=1

ϑn
kKk)

−1f.
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Clearly {xn} is bounded and hence on a subsequence, denoted by the same
index, lim

n→∞
xn = x̂ for some x̂ ∈ R

n. From (3.15)

∑

k∈J
ϑn
kKkx

n = f − (xn +
∑

k∈J

ϑn
kKkx

n).

Taking the inner product with xn and observing that the righthand side is
bounded

min
k∈J

ϑn
k

∑

k∈J
‖Kkx

n‖22 ≤ κ2

for a constant κ2 independent of n. Since min
k∈J

ϑn
k → ∞ for n → ∞ we find

lim
n→∞

Kkx
n = Kkx̂ = 0 for all , meaning that x̂ ∈ ker(Kk) for all k ∈ J .

Since {ϑn} was chosen as minimizing sequence we obtain

inf
ϑ≥0

E(ϑ) = lim
n→∞

‖xn − g‖22 = ‖x̂− g‖22 > ‖f − g‖22 = E(0)

where we used (3.13). This is a contradiction and hence every minimizing
sequence is bounded. Since ϑ → E(ϑ) is continuous the claim follows.

The partial derivatives of E with respect to ϑk are given by

(∇E(ϑ))k = −〈Rf − g,RKkRf〉 for k = 1, . . . , q,

where R is evaluated at ϑ. Taking into account the inequality constraint
ϑ ≥ 0 in (3.12), the first order necessary condition is given by

(3.16) ∇E(ϑ∗)− µ = 0, µ ≥ 0, ϑ∗ ≥ 0, 〈µ, ϑ∗〉 = 0,

where µ ∈ R
q is the Lagrange multiplier associated to the constraint ϑ ≥ 0.

It can be checked that the three last conditions can be equivalently expressed
as

µ−max(0, µ− cϑ) = 0.

For the Hessian of E we obtain for k = 1, . . . , q and l = 1, . . . , q the expression

∇2E(ϑ) = M1 +M2,

where

(M1)k,l = 〈RKkRf,RKlRf〉 and (M2)k,l = 〈Rf − g,RKkRKlRf +RKlRKkRf〉

are symmetric matrices.
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Let A = {k ∈ {1, . . . , q} : (ϑ∗)k = 0} denote the set of active constraints
for some local solution ϑ∗ of (3.11). Then, the second order necessary opti-
mality condition implies that

(3.17) ∇2E(ϑ∗) is semidefinite on T,

where T is the tangent space of the active constraints T = {ϑ ∈ R
q : ϑk =

0 for all k ∈ A}. Note that M1 is a Gram-matrix corresponding to the
vectors {RKkRf}qk=1. We assume that

(3.18) {Kky}qk=1 is linearly independent for any y ∈ R
n.

Then, with y = Rf and since R is positive definite, {RKkRf}mk=1 is linearly
independent and M1 is nonsingular. If ‖Rf − g‖2 is sufficiently small, then
M1 +M2 is nonsingular as well. This implies that ∇2E(ϑ∗) > 0 on R

q. We
summarize our discussion in a theorem.

Theorem 3.9. Assume that (3.18) is satisfied and let ϑ∗ be a local solution
of (3.11). Then, if

(3.19) ‖(I +
q∑

k=1

ϑ∗
kKk)

−1f − g‖2 is sufficiently small,

the second order sufficient optimality condition is satisfied at ϑ∗, in partic-
ular, ϑ∗ is a locally unique minimum.

Note that for f = g we have ϑ∗ = 0 as global solution. Therefore (3.19)
can be interpreted as smallness condition on the error in the data.

3.3 Newton algorithm

We propose and analyse a semi-smooth Newton scheme to solve (3.12). For
this purpose we express the necessary optimality condition (3.16) in the form

(3.20)

{
∇E(ϑ∗)− µ = 0

µ−max(0, µ− cϑ) = 0,

where c > 0 is an arbitrarily fixed constant. To solve (3.20) we utilize
a semi-smooth Newton algorithm which is outlined in Algorithm 3.1. To
analyze this algorithm the vectors δϑ and δµ are decomposed into inactive
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Algorithm 3.1 Newton Learning for ℓ2 (NL-ℓ2)

(i) Choose (ϑ0, µ0) ∈ R
r × R

q, set n = 0

(ii) Determine An = {k : µn
k − cϑn

k ≥ 0}, In = {k : µn
k − cϑn

k < 0}

(iii) Assign M = ∇2E(ϑn), P = diag(pk), Q = diag(qk) where

pk =

{
c if k ∈ An

0 if k ∈ In qk =

{
0 if k ∈ An

1 if k ∈ In.

(iv) Solve for (δϑ, δµ)

(3.21)

(
M −I
P Q

)(
δϑ
δµ

)
= −

(
∇E(ϑn)− µn

µn −max(0, µn − cϑn)

)

(v) (ϑn+1, µn+1) = (ϑn, µn) + (δϑ, δµ), set n = n+ 1 and goto (ii).

and active components (δϑ)I , (δϑ)A and (δµ)I , (δµ)A respectively, and M
is partitioned accordingly

M =

(
MII MIA
MAI MAA

)
.

Here, for notational convenience the unknowns are ordered in such a manner
that the inactive coordinates appear first and the active ones last, and the
iteration index for the sets An and In is dropped. From the second equation
in (3.21) we obtain

(3.22) (δϑ)A = −ϑn
A, (δµ)I = −µn

I , ϑn+1
A = 0, µn+1

I = 0.

Turning to the first equation in (3.21) we first solve for the inactive compo-
nents of δϑ by

(3.23) MII(δϑ)I = −MIA(δϑ)A − (∇E(ϑn))I

and then assign

(δµ)A = MAI(δϑ)I +MAA(δϑ)A + (∇E(ϑn))A − µn
A.

Note that while (3.21) is asymmetric, system (3.23) which is of the dimension
of the inactive set, is symmetric.
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Theorem 3.10. Let ϑ∗ be a local solution of (3.12) with associated La-
grange multiplier µ∗, and suppose that (3.18) and (3.19) hold. Then, if
‖(ϑ0, µ0)− (ϑ∗, µ∗)‖2 is sufficiently small, the iterations of Algorithm 3.1
converge superlinearly to (ϑ∗, µ∗).

Proof. We verify here the requirements for superlinear convergence of the
semi-smooth Newton method as given in e.g. [17],pg.238. The max-operation
is well-known to be semi-smooth, see e.g. [17, 30] and the references given
there and Dmax(0, x) = χ{x≥0} is a generalized or Newton derivative. Here
(χ{x≥0})i = 1 if xi ≥ 0 and (χ{x≥0})i = 0 otherwise. This choice of gener-
alized derivative determines step (iii) of Algorithm 3.1. The proof will be
finished, if we argue that the system matrices

H(ϑ, µ) =

(
M(ϑ) −I
P (ϑ, µ) Q(ϑ, µ)

)

are invertible with uniformly bounded inverses in a neighborhood Bρ(ϑ
∗, µ∗)

of (ϑ∗, µ∗) for some radius ρ > 0. The notation H(ϑ, µ) emphasizes the
dependence of M,P, and Q on ϑ and µ. The discussion before Theorem 3.10
implies that ∇2E(ϑ∗) = M(ϑ∗) > 0. Hence there exists a neighborhood
Bρ(ϑ

∗), with ρ > 0, and κ > 0 such that ‖M−1(ϑ)‖2 ≤ κ for all ϑ ∈ Bρ(ϑ
∗).

In particular, this implies that ‖M(ϑ)−1
II‖2 ≤ κ for all ϑ ∈ Bρ(ϑ

∗) and any
combination of I ∈ {1, . . . , q}. Now consider for ϑ ∈ Bρ(ϑ

∗), µ ∈ R
q and

(y, z) ∈ R
2q

(3.24) H(ϑ, µ)

(
δϑ
δµ

)
=

(
y
z

)

As in the computation before the statement of the theorem we find

(δϑ)A =
1

c
zA, (δµ)I = zI .

From the first equation in (3.24) we find

MII(ϑ)(δϑ)I = −1

c
MIA(ϑ)zA + zI + yI ,

(δµ)A = MAI(δϑ)I +MAA(δϑ)A − yA.

Combining these equalities, invertibility of H(ϑ, µ) with uniformly bounded
inverses for (ϑ, µ) in a neighborhood of (ϑ∗, µ∗) follows.
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4 The ℓ1 model

In this section we analyse variational models with ℓ1 and hence non-differentiable
regularization terms. This type of model has great impact in signal process-
ing, in particular in imaging and compressed sensing.

4.1 Problem formulation and existence

(4.1)





min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

q∑
k=1

ϑk‖Kkx‖1 + 1
2‖x− f‖22 .

The lower level problem (4.1) admits a unique solution x = x(ϑ). Its
optimality condition is given by

(4.2)





q∑

k=1

ϑkK
∗
kλ

k + x = f

λk
i ∈

{
sgn(Kkx)i if (Kkx)i 6= 0

[−1, 1] if (Kkx)i = 0.

We have the following existence result analogous to Proposition 3.1.

Proposition 4.1. If (3.13) holds, then (4.1) admits a solution ϑ∗ ≥ 0.

Proof. We first argue that ϑ → x(ϑ), with x(ϑ) the solution to the lower
level problem, is continuous. Let ϑn → ϑ and xn = x(ϑn). Since

q∑

k=1

ϑn
k‖Kkxn‖1 +

1

2
‖xn − f‖22 ≤

1

2
‖f‖22

the sequence {xn} is bounded and hence it admits a convergent subsequence
xnk

→ x. We need to argue that x = x(ϑ). For this purpose we note that

q∑

k=1

ϑn
k‖Kkxn‖1 +

1

2
‖xn − f‖22 ≤

q∑

k=1

ϑn
k‖Kkx‖1 +

1

2
‖x− f‖22 for all x ∈ R

n

implies that

q∑

k=1

ϑk‖Kkx‖1 +
1

2
‖x− f‖22 ≤

q∑

k=1

ϑk‖Kkx‖1 +
1

2
‖x− f‖22 for all x ∈ R

n,
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and hence x = x(ϑ), since the solution to the lower level problem is unique.
Next, let {ϑn}∞n=1 be a minimizing sequence and abbreviate xn = x(ϑn). If
limn→∞ ‖ϑn‖2 = ∞ determine J as in (3.14). Since

r∑

k=1

ϑn
k‖Kkxn‖1 +

1

2
‖xn − f‖22 ≤

1

2
‖f‖22

we deduce that {xn}∞n=1 is bounded and that limn→∞ ‖Kixn‖1 = 0 for all
i ∈ J . Hence there exists a subsequence, denoted by the same symbol, and
x̂ such that limn→∞ xn = x̂ and Kix̂ = 0 for all i ∈ J . In particular, x̂ is
contained in the kernel of at least one operator Ki and thus by (3.13)

inf ϑ≥0E(x(ϑ)) = lim
n→∞

E(xn) = lim
n→∞

‖xn − g‖22 = ‖x̂− g‖22 < ‖f − g‖22 = E(x(0)),

which contradicts the choice of {ϑn}∞n=1 as minimizing sequence. Hence
{ϑn}∞n=1is bounded in R

q. Consequently there exists another subsequence
denoted by the same symbol, and ϑ∗ ∈ [0,∞) such that limn→∞ ϑn = ϑ∗.
Since ϑ → x(ϑ), and hence ϑ → E(x(ϑ)) are continuous, it follows that every
accumulation point ϑ∗ of {ϑn} is a solution to (4.1), and x∗ = x(ϑ∗).

Remark 4.2. In case of only one prior, we can give a sufficient condition to
exclude the case that ϑ∗ = 0. For this purpose we assume that

(4.3) (Kg)i = 0 if (Kf)i = 0 and 〈Kf − g,
Kf

|Kf | 〉 > 0,

where Kf
|Kf | is interpreted componentwise as (Kf)i

|(Kf)i| , if (Kf)i 6= 0 and (Kf)i
|(Kf)i|

is interpreted as some element in [−1, 1], if (Kf)i = 0. We now exclude that
ϑ∗ = 0 is the minimum. For this purpose we argue that d

dϑE(x(ϑ))|ϑ=0+

exists and is negative. We have

E(x(ϑ))− E(x(0)) = 〈x(ϑ) + x(0)− 2g, x(ϑ)− x(0)〉

= −ϑ 〈x(ϑ) + f − 2,K∗λ(ϑ)〉 = −ϑ 〈K(x(ϑ) + f − 2g), λ(ϑ)〉 ,

where we use that x(0) = f.
Let I = {i : (Kx(0))i 6= 0}. Then (Kx(ϑ))i 6= 0, for all i ∈ I and all
ϑ > 0 sufficiently small. For these i and ϑ we have

λi(ϑ) =
(Kx(ϑ))i
|(Kx(ϑ))i|

→ (Kx(0))i
|(Kx(0))i|

.
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For i /∈ I we have λi(ϑ) ∈ [−1, 1] and (K(x(ϑ) + f − 2g))i → 0 for ϑ → 0+,
where we use that lim

ϑ→0+
x(ϑ)i = fi and (4.3). Therefore

lim
ϑ→0+

1

ϑ
(E(x(ϑ))− E(x(0))) = −2

〈
K(f − g),

Kf

|Kf |

〉
,

and ϑ → E(x(ϑ)) is differentiable at ϑ = 0+. By (4.3) we have d
dtE(x(ϑ))|ϑ=0+ <

0 and hence ϑ = 0 cannot be a solution to (4.1). We note that the condition〈
K(f − g), Kf

|Kf |

〉
> 0 can equally well be expressed as 〈K(f − g), λ(0)〉 > 0

for any Lagrange multiplier λ(0) associated to ϑ = 0.

4.2 Optimality system

To derive an optimality system for (4.1) we use a regularization approach
and consider

(4.4)





min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

q∑

k=1

ϑk

m∑

j=1

nε((Kkx)j) +
1

2
‖x− f‖22,

where, for ε > 0,

(4.5) nε(t) =





− 1

8ε3
t4 +

3

4ε
t2 +

3ε

8
if |t| < ε

|t| else .

The following properties of nε will be used repeatedly
(4.6)



nε ∈ C2(R,R), nε(±ε) = ±ε, n′
ε(±ε) = ±1, n′′

ε(±ε) = 0, n′
ε(t) ∈ [−1, 1]

n′′
ε(t) ∈ [0,

3

2ε
], nε(t) ≥ t for all t ∈ R.

Furthermore, we have

n′
ε(t) =

{
− 1

2ε3
t3 + 3

2ε t if |t| < ε
sgn(t) else

n′′
ε(t) =

{
− 3

2ε3
t2 + 3

2ε if |t| < ε
0 else
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n′′′
ε (t) =





− 3
ε3
t if |t| < ε{

0, 3
ε2

}
if t = −ε{

− 3
ε2
, 0
}

if t = ε
0 else.

At t = ±ε we consider, for the time being, the third derivative to be multi-
valued consisting of the right and left directional derivatives. It is simple to
argue the existence of a unique lower-level solution xε(ϑ) for each ε > 0. It
is characterized as the solution x = x(ϑ) to

(4.7) x+

q∑

k=1

ϑkK
T
k N

′
ε(Kkx) = f,

where
N ′

ε(Kkx) = (n′
ε((Kkx)1), . . . , n

′
ε((Kkx)m))T ∈ R

m.

Since t → n′
ε(t) is monotone, the operator x → x +

q∑
k=1

ϑkK
T
k N

′
ε(Kkx) is

strictly monotone and hence the solution to (4.7) is unique. Using (4.7) it
follows that ϑ → xε(ϑ) is differentiable on [0,∞)q for each ε > 0, with the
sensitivity equation given by

(4.8) Dϑx+ [KT
k N

′
ε(Kkx)] +

q∑

k=1

ϑkK
T
k N

′′
ε (Kkx)KkDϑx = 0

where

Dϑx ∈ R
n×q, [KT

k N
′
ε(Kkx)] = (KT

1 N
′
ε(K1x), . . . ,K

T
q N

′
ε(Kqx)) ∈ R

n×q

and
N ′′

ε (Kkx) = diag(n′′
ε((Kkx)1), . . . , n

′′
ε((Kkx)m)) ∈ R

m×m.

Let ϑε denote a solution to (4.4), which exists under the assumption of
Proposition 4.1. Then the first order optimality condition for (4.4) is given
by
(4.9)
DϑE(xε(ϑε))(ϑ− ϑε) = 2 〈xε(ϑε)− g,Dϑx(ϑε)(ϑ− ϑε)〉 ≥ 0, for all ϑ ≥ 0.

To eliminate Dϑxε from the first order condition (4.9) we introduce the
adjoint equation

(4.10) p+

q∑

k=1

ϑkK
T
k N

′′
ε (Kkx)Kkp = −(xε(ϑε)− g).
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Since n′′
ε ≥ 0 the adjoint equation admits a unique solution. Taking the

inner product of (4.8) with p and of (4.10) with Dϑx(ϑε) we obtain
(4.11)
DϑE(xε(ϑε))(ϑ− ϑε) = 2

〈
p, [KT

k N
′
ε(Kkxε(ϑε))](ϑ− ϑε)

〉
≥ 0 for all ϑ ≥ 0

or equivalently

(4.12)
〈
N ′

ε(Kkxε(ϑε)),Kkp
〉
(ϑk − ϑε,k) ≥ 0 for all ϑk > 0, k = 1, . . . q.

Summarizing, the necessary optimality condition for the regularized problem
is given by
(4.13)



xε +

q∑

k=1

ϑε,kK
T
k N

′
ε(Kkxε) = f (primal equation)

pε +

q∑

k=1

ϑε,kK
T
k N

′′
ε (Kkxε)Kkpε = −(xε − g) (adjoint equation)

〈
N ′

ε(Kkxε),Kkpε
〉
(ϑk − ϑ∗

ε,k) ≥ 0, for all ϑk ≥ 0, k = 1, . . . , q (optimality) .

The last expression in (4.13) can equally well be expressed asN ′
ε(Kkx)

TKkp ∈
−∂IR+(ϑ∗

k), where IR+ is the indicator function of R+ and ∂IR+(ϑ∗
k) denotes

the subdifferential evaluated at ϑ∗
k, k = 1, . . . , r. To obtain an optimality

system for the original problem (4.1) we shall pass to the limit ε → 0+ in
(4.13). A similar procedure was used in [9] in the context of optimal con-
trol of a Bingham fluid; in this case the minimization variable appears as
affine, rather than as multiplicative term like in our case and a different
type of regularization was used. Alternatively a first order condition can be
obtained by using the Mordukovich calculus compare [23] for mathematical
programming problems with equilibrium constraints.

Theorem 4.3. Let ϑ∗ ≥ 0 denote a solution to (4.1) with associated state
x∗ = x(ϑ∗). Then there exists an adjoint state p ∈ R

n and multipliers λk ∈
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R
m, k = 1, . . . , q and ξ ∈ R

n satisfying the following optimality system

(4.14)





x∗ +
q∑

k=1

ϑ∗
kK

T
k λk = f,

(λk)i ∈
{
sgn(Kkx

∗)i if (Kkx
∗)i 6= 0

[−1, 1] if (Kkx
∗)i = 0

p+ ξ = −(x∗ − g),

〈λk,Kkp〉 ∈ −∂IR+(ϑ∗
k)

〈ξ, p〉 ≥ 0,

〈x∗ − g, p〉 ≤ 0,

〈ξ, x∗〉 = 0,

(Kkp)i = 0 if |(λk)i| < 1, for k = 1, . . . , q, i = 1, . . .m.

Proof. The proof of theorem 4.3 is given in the appendix.

Remark 4.4. Before closing this subsection we comment on the chosen reg-
ularization nε of the norm function in (4.5), by comparing to other choices
that were made in related cases. The optimality condition for the lower level
problem in (4.4) with q = 1 is given by

x+ ϑKTλ = f

where λi ∈ ∂(|(Kx)i|), which can also be expressed as

(4.15)

{
x+ ϑKTλ = f

|Kx| ⊗ λ = Kx, |λ|∞ ≤ 1,

where a ⊗ b = (a1b1, . . . , anbn). The same system is obtained by Fenchel
dualization of the lower level problem in (4.4) with λ chosen as the dual
variable. A regularization of this primal-dual formulation is obtained by re-
placing coordinate-wise the norm operation |t| in (4.15) by ñε(t) =

2
√
t2 + ε.

Such an approach was used for TV-regularized problems in [5], and it is also
related to taught string algorithm as pointed out in [13]. Alternatively a
localized regularization can be chosen by setting

(4.16) n̂ε(t) =





1

2ε
t2 +

ε

2
if |t| < ε

|t| else ,

as used in [9, 14], for example. Let us compute to which kind of regular-
ized primal formulation, the primal-dual formulation (4.15) regularized by
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(4.16) would lead, i.e. we replace the generalized derivative λ ∈ ∂(|Kx|) by
Kx

n̂ε(Kx) , coordinate-wise, and compute the antiderivatives to obtain a new

regularization ñε(|Kx|). Carrying this out coordinate-wise we obtain

(4.17) ñε(t) =





ε[log(
ε

2
+

t2

2ε
)− log(

ε

2
)] if |t| < ε

(|t|+ ε(log(2)− 1)) else .

This regularization of n(t) is again C2-regular with monotone derivative ñ′
ε,

which is essential for the solvability of the necessary condition associated to
the lower-level problem. Differently from (4.4), ñε(t) acts globally and the
expressions for the derivations are rational functions rather than polynomi-
als. Thus we prefer (4.4) over (4.17).

4.3 Necessary second order optimality condition

Here we derive a second order necessary condition for local solutions of
(4.4). Beyond the intrinsic relevance for describing the structure of the sec-
ond order necessary condition its discussion is motivated by the fact that
we introduce a second order sufficient condition in the following subsection
in order to analyse a semi-smooth Newton method for solving (4.13). Of
course, it is desirable that the gap between necessary and sufficient opti-
mality condition is small. We henceforth drop the dependence of (ϑ, x, p),
solution to (4.13) on ε > 0.

In principle, the derivation of the second order conditions is quite stan-
dard, see e.g. [21], Section 10.5. Our situation, however, it is complicated
due to the lack of second order smoothness of the equality constraint in
(4.4). Second order conditions for general semi-smooth optimization prob-
lems were investigated for instance in [6]. Our situation here is somewhat
different, however. First, only the constraints lack sufficient regularity, while
the objective functional is regular, and secondly the null-space representa-
tion of the linearized equality has a special structure since the variables
x ∈ R

n can be represented in terms of ϑ ∈ R
n. It is therefore appropriate

to give an independent derivation.
Let ϑ denote a local solution to (4.4) with associated state x = x(ϑ),

(i.e. the dependence of the solution on ε > 0 is dropped here). We denote
the set of strongly active indices by

AS = {k :
〈
N ′

ε(Kkx),Kkp
〉
> 0}.
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On this set ϑk = 0 is determined by the necessary conditions. The critical
cone for the necessary second order condition is defined by

C = {ϑ ∈ R
q : ϑk = 0 for k ∈ AS , ϑk ≥ 0 if ϑk = 0}.

For any ϑ̂ ∈ C we have ϑ + tϑ̂ ≥ 0 for all t ≥ 0 sufficiently small. For
convenience we also recall the primal equation

(4.18) x+

q∑

k=1

ϑkK
T
k N

′
ε(Kkx) = f.

The directional derivative of x with respect to ϑ at ϑ in direction ϑ̂ is denoted
by ẋ ∈ R

n. It satisfies

(4.19) L1ẋ+ L2ϑ̂ = 0.

Here L1 ∈ R
n×n and L2 ∈ Rn×q are given by

L1 = I +

q∑

k=1

ϑkK
T
k N

′′
ε (Kkx)Kk, L2 = (KT

q N
′(Kqx), . . . ,K

T
q N

′(Kqx)).

We shall need the third derivatives of t → nε((Kkx(ϑ̄ + tϑ̂))i) at t =
0, which requires attention in case |(Kkx(ϑ))i| = ε. If (Kkx(ϑ

∗))i = ε
and d

dt((Kkx(ϑ + tϑ̂))i)|t=0 = (Kkẋ)i > 0, then by the formulas above
(4.7) we have that the third order directional derivative is 0, if on the
other hand (Kkẋ)i < 0 then the third order right directional derivative
is n′′′

ε ((Kkx(ϑ))i) = − 3
ε3
(Kkx(ϑ))i. Finally, if (Kkx(ϑ̇)i = 0, then the third

right directional derivative is multivalued with values in {0,− 3
ε3
, (Kkx(ϑ))i}.

Summarizing, if nε((Kkx(ϑ))i) = ε then we denote the third order direc-
tional derivative of t → nε((Kkx(ϑ + tϑ̂))i)|t=0 by n′′′

ε,ϑ̂
(Kkx(ϑ))i and it is

given by

n′′′
ε,ϑ̂

((Kkx(ϑ))i) ∈





0 if (Kkẋ)i > 0, (Kkx(ϑ))i = ε

− 3

ε3
(Kkx(ϑ))i if (Kkẋ)i < 0, (Kkx(ϑ))i = ε

{0,− 3

ε3
(Kkx(ϑ))i} if (Kkẋ)i = 0, (Kkx(ϑ))i = ε.

We shall see that the expression n′′′
ε,ϑ̂

(Kkx(ϑ))i always appears as factor

with (Kkẋ(ϑ))i, and we note that the expression n′′′
ε,ϑ̂

((Kkx(ϑ))i)(Kkẋ(ϑ))i is
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single valued. The expressions for the case (Kkx(ϑ))i = −ε can be derived in
a completely analogous manner. If |(Kkx(ϑ))i| 6= ε, then the third derivative
of t → nε(Kkx(ϑ + tϑ̂))i|t=0 is clearly well defined. It is again denoted by
n′′′
ε,ϑ̂

((Kkx(ϑ))i). The expression for the third directional right derivative of

t → Nε,ϑ̂(Kkx(ϑ)) is obtained from

N ′′′
ε,ϑ̂

(Kkx(ϑ)) = diag
(
n′′′
ε,ϑ̂

((Kkx(ϑ))1), . . . , n
′′′((Kkx(ϑ))m)

)
.

Associated to the local solution (x, ϑ) we recall the adjoint equation,
which we now express as

(4.20) L1p = −(x− g)

Finally we introduce the Lagrangian associated to (4.1)

L̂(x, ϑ, p) = 1

2
‖x− g‖22 + 〈p, x+

q∑

k=1

ϑkK
T
k N

′
ε(Kkx)− f〉.

We are now prepared to establish a second necessary condition for (4.1) at
(x, ϑ).

Theorem 4.5. (Second order necessary condition) With the notation for
N ′′′

ε,ϑ̂
introduced above we have

0 ≤ (ẋT , ϑ̂T )


I +

q∑
i=1

ϑiK
T
i N

′′′
ε,ϑ̂

(Kix)diag (Kp)Ki R

RT 0



(
ẋ

ϑ̂

)

for each ϑ ∈ C. Here R ∈ R
n×q is given by

R = (KT
1 N

′′
ε (K1x)K1p, . . . ,K

T
q N

′′
ε (Kqx)Kqp)

and ẋ satisfies (4.19).

Proof. Let ϑ̂ ∈ C, set ϑ(t) = ϑ+ tϑ̂, and let x = x(t) denote the solution to

(4.21) x+

q∑

k=1

(ϑk + tϑ̂k)K
T
k N

′
ε(Kkx) = f,

where t > 0, and ẋ the solution to (4.19). In the following computation
it is assumed that t is sufficiently small so that ϑ + tϑ̂ ≥ 0 and such that
E(ϑ(t)) ≥ E(ϑ). Consequently we have

(4.22) 0 ≤ L̂(x(t), ϑ(t), p)− L̂(x, ϑ, p).
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and moreover
∇x L̂(x, ϑ, p) = 0.

Therefore we find, using |a|2 − |b|2 − 2 〈a− b, b〉 = |a− b|2, and ϑ̂ ∈ C in the
first equality below, that

0 ≤ L̂(x(t), ϑ(t), p)− L̂(x, ϑ, p)−
〈
∇x L̂(x, ϑ, p), x(t)− x

〉

=
1

2
||x(t)− g||22 −

1

2
||x− g||22 − 〈x(t)− x, x− g〉

+ 〈p,
q∑

k=1

(ϑk + tϑ̂k)K
T
k N

′
ε(Kkx(t))−

q∑

k=1

ϑkK
T
k (N

′
ε(Kkx))

−
q∑

k=1

tϑ̂kK
T
k N

′
ε(Kkx)−

q∑

k=1

ϑkK
T
k N

′′(Kkx)Kk(x(t)− x)〉

=
1

2
||x(t)− x||2 + 〈p,

q∑

k=1

ϑkK
T
k (N

′
ε(Kkx(t))−N ′

ε(Kkx)−N ′′
ε (Kx)Kk(x(t)− x))〉

+ 〈p,
q∑

k=1

tϑ̂kK
T
k (N

′
ε(Kkx(t))−N ′

ε(Kkx))〉.

By the discussion preceeding the statement of the theorem we obtain that

lim
t→0+

1

t2
(N ′

ε(Kkx(t))−N ′
ε(Kkx)−N ′′

ε (Kkx)Kk(x(t)− x))

= lim
t→0+

1

t2
(
N ′

ε(Kkx(t))−N ′
ε(Kkx)−N ′′

ε (Kkx)Kk(x(t)− x)

− 1

2
N ′′′

ε (Kkx)diag(Kk(x(t)− x))Kk(x(t)− x)

+
1

2
N ′′′

ε,ϑ̂
(Kkx)diag(Kk(x(t)− x))Kk(x(t)− x)

)

=
1

2
N ′′′

ε,ϑ̂
(Kkx)diag(Kkẋ)Kkẋ

As a consequence we have

0 ≤ 1

2
||ẋ||2 + 1

2
〈p,

q∑

k=1

ϑkK
T
k N

′′′
ε,ϑ̂

(Kkx)diag(Kkẋ)Kkẋ〉+ 〈p,
q∑

k=1

ϑ̂kK
T
k N

′′
ε (Kkx)Kkẋ〉

=
1

2
||ẋ||2 + 1

2

q∑

k=1

ϑk〈diag(Kkp)N
′′′
ε,ϑ̂

(Kkx)(Kkẋ),Kkẋ〉

+

q∑

k=1

ϑk〈KT
k N

′′
ε (Kkx)Kkp, x〉,
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which can be expressed as

0 ≤ (ẋT , ϑ̂T )


I +

q∑
k=1

ϑkK
T
k N

′′′
ε,ϑ̂

(Kkx)diag (Kkp)Kk R

RT 0



(
ẋ

ϑ̂

)

as desired.

From the discussion before Theorem 3.1 we recall that the coordinates
of N ′′′

ε,ϑ̂
(Kix̂)Kiẋ and hence of N ′′′

ε,ϑ̂
(Kix̂)diag(Kp)Kiẋ are single valued.

4.4 Semi-smooth Newton algorithms

In this subsection a semi-smooth Newton method for solving the necessary
optimality system (4.13) for the regularized problem (4.4) is developed and
analyzed. Convergence of the regularized problem to the original one was
already studied in Theorem 4.3. We utilize that the optimality condition
in (4.11) can equivalently be expressed by means of the complementarity
formulation

(
〈
N ′

ε(Kkx),Kkp
〉
)q×1 − µ = 0

µ−max(0, µ− cϑ) = 0,

where

(
〈
N ′

ε(Kkx),Kkp
〉
)q×1 = (

〈
N ′

ε(K1x),K1p
〉
, . . . ,

〈
N ′

ε(Krx),Krp
〉
),

c is any positive scalar and max operates coordinate-wise.
System (4.11) can therefore be expressed equivalently as

(4.23) G(x, ϑ, p, µ) = 0,

where

G(x, ϑ, p, µ) =




p+
q∑

k=1

ϑkK
T
k N

′′
ε (Kkx)Kkp+ x− g

(〈N ′
ε(Kkx), Kkp〉)q×1 − µ

q∑
k=1

ϑkK
T
k N

′
ε(Kkx) + x− f

µ−max(0, µ− cϑ)




.

The reason for exchanging the order of the equations is to create symmetries
in the generalized Jacobian J(x, ϑ, p, µ) of G(x, ϑ, p, µ) to be specified below.
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In what follows we specify the value of n′′′(t) at t = ±ε to be 0. We could
equally well take ∓ 3

ε2
. For (x, ϑ, p, µ) ∈ R

n × R
q × R

n × R
q we define

L1(x, ϑ) = I +

q∑

k=1

ϑkK
T
k N

′′
ε (Kkx)Kk, L2(x) = (KT

1 N
′
ε(K1x), . . . ,K

T
q N

′
ε(Kqx)),

R(x) = (KT
1 N

′′
ε (Kkx)K1p, . . . ,K

T
q N

′′
ε (Kqx)Krp) ∈ R

n×q,

Max′(0, µ) = diag(max′(0, µ1), . . . ,max′(0, µq)),

where

max′(0, µk) =

{
1 if µk > 0

0 if µk ≤ 0.

We note that there exists a neighborhood U We find that the generalized
Jacobian of G is given by
(4.24)

J(x, ϑ, p, µ) =




Q(x, ϑ, p) R(x) L1(x, ϑ) 0

R(x)T 0 LT
2
(x) −I

L1(x, ϑ) L2(x) 0 0

0 cMax′(0, µ− cϑ) 0 I −Max′(0, µ− cϑ)




,

where

Q(x, ϑ, p) = I +

q∑

k=1

ϑkK
T
k N

′′′
ε (Kkx) diag(Kkp)Kk.

A positive definiteness assumption of the upper 2×2 block of J(x, ϑ, p, µ) will
be required. Let (x, ϑ, p, µ) denote a solution to G(x, ϑ, p, µ) = 0. Further
let U = U(x, ϑ, p, µ) denote an open neighborhood of (x, ϑ, p, µ) and set

(4.25) A(ϑ, µ) = {k : µk − cϑk > 0},
and

C = {δϑ ∈ R
q : δϑk = 0 if k ∈ A(ϑ, µ)}.

Note that at the solution we have ϑkµk = 0, and µk ≥ 0, ϑk ≥ 0, and hence
A(ϑ, µ) = {k : µk > 0} coincides with the strongly active set of Section 3.3.
We shall utilize the following assumption:

(H1)





There exists a bounded neighborhood U = U(x, ϑ, p, µ)
such that for all (x, ϑ, p, µ) ∈ U

(δxT , δϑT )

(
Q(x, ϑ, p) R(x)

R(x) 0

)(
δx
δϑ

)
> 0

for all ϑ ∈ C and L1(x, ϑ)δx+ L2(x)δϑ = 0.
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Note that µ does not appear in the positive definite condition, but bound-
edness of the µ-coordinates in U will be used below.

Comparing (H1) to the second order necessary condition of Theorem 4.5
we note that (H1) requires positive definiteness in a neighborhood of (x, ϑ, p),
that perturbations of the active set need to be admitted and that the values
of n′′′

ε at t = ±ε are fixed, whereas in Theorem 4.5 they appear as directional
derivatives. For the purpose of this subsection the choice of max′(0, µk) could
be 0 at µk = 0. This would change A(ϑ, µ) = {k : µk − cϑk ≥ 0}, but the
following convergence result would remain unchanged.

By (H1) and the fact that t → n′′′
ε (t) has only finitely many discontinu-

ities, there exists κ > 0 such that

(δxT , δϑT )

(
Q(x, ϑ, p) R(x)
RT (x) 0

)(
δx
δϑ

)
≥ κ‖

(
δx
δϑ

)
‖22,

for all ϑ ∈ C, L1(x, ϑ)δx+ L2(x)δϑ = 0, and (x, ϑ, p, µ) ∈ U.

Proposition 4.6. If (H1) holds, then J(x, ϑ, p, µ) is regular for each (x, ϑ, p, µ) ∈
U and the inverses are uniformly bounded.

Proof. Let (x, ϑ, p, µ) ∈ U , set A = A(ϑ, µ) as definded above, and let I =
{1, . . . r} \ A. We show that J(x, ϑ, p, µ) is injective. Let (δx, δϑ, δp, δµ) ∈
R
n × R

q × R
n × R

q and assume that

(4.26) J(x, ϑ, p, µ)




δx
δϑ
δp
δµ


 = 0.

We partition δϑ into coordinates associated to inactive δϑI and active δϑA
coordinates, and similarily for δµ. The columns of R(x) corresponding to
inactive coordinates are denoted by R(x)I and analogously for L2(x)I . Thus
R(x)I is of dimension n × #(I), where #(I) denotes the cardinality of I.
From the last equation in (4.26) we have

δϑA = 0 and δµI = 0.

From the third equation in (4.26) we have

(4.27) L1(x, ϑ)δx+ L2(x)δϑ = L1(x, ϑ)δx+ L2(x)I(δϑ)I = 0.

Now from equations one and two of (4.26)

(4.28)
Q(x, ϑ, p)δx+R(x)IδϑI = −LT

1 (x, ϑ)p

(R(x)I)
T δx = −(L2(x)I)

T p
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where we use that (δµ)I = 0. Since by (H1) the matrix

(
Q RI
RT

I 0

)
is positive

definite on ker (L1(x, ϑ), L2(x)I) and the right hand side is in its orthogonal
complement, we find δx = 0 and δϑI = 0. From the first equation in (4.26)
we deduce that δp = 0. The third equation, evaluated for the A-coordinates
implies that δµA = 0, and hence J(x, ϑ, p, µ) is a regular matrix. Since U is
bounded, its closure is compact. Now by a compactness argument, and the
fact that J(x, ϑ, p, µ) has at most finitely many discontinuities in x, uniform
boundedness of the inverses follows.

A semi-smooth Newton algorithm for solving G(x, ϑ, p, µ) = 0 can now
be specified.

Algorithm 4.1 Newton Learning for ℓ1 (NL-ℓ1)

(i) Choose (x0, ϑ0, p0, µ0) ∈ R
n × R

q × R
n × R

q, set n = 0,

(ii) Solve J(xn, ϑn, pn, µn)




δx
δϑ
δp
δµ


 = −G(xn, ϑn, pn, µn),

(iii) Update (xn+1, ϑn+1, pn+1, µn+1) = (xn, ϑn, pn, µn) + (δx, δϑ, δp, δµ),
set n = n+ 1 and goto (ii).

Theorem 4.7. Let (x, ϑ, p, µ) denote a solution of G(x, ϑ, p, µ) = 0 and
assume that (H1) holds. Then Algorithm 4.1 converges locally superlinearly.

Proof. Using wellknown characterizations for semi-smooth functions, see e.g.
[30] pg. 27, it can be argued that G is semi-smooth. Together with uniform
boundedness of the generalized Jacobians J(x, ϑ, p, µ) in a neighborhood of
(x, ϑ, p, µ) the claim follows, see e.g. [30], pg. 29.

In numerical optimization Algorithm 4.1, which arises as Newton al-
gorithm applied to the optimality condition, is frequently referred to as
sequential quadratic programming (SQP-) algorithm. The algorithm can
equivalently be obtained be iteratively minimizing a quadratic approxima-
tion to the cost and a linear (in x and ϑ) approximation to the constraining
equation, which in our case is the necessary optimality condition to the
lower level problem. Algorithm 4.1 is closely related to applying a New-
ton algorithm to the reduced functional ϑ → E(x(ϑ)), where x(ϑ) satisfied
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the nonlinear constraining equation. They differ by the property that the
primal updates of the Newton algorithm applied to the reduced functional
ϑ → E(x(ϑ)) live on the nonlinear constraining manifold, while iterates of
Algorithm 4.1 are contained in the tangent space to the constraint at the
current iterate. It is well-known that the former of these two algorithms
can obtained from the latter by introducing feasibility steps, [16]. For the
current problem this is given in Algorithm 4.2.

Algorithm 4.2 Reduced Newton Learning for ℓ1 (RNL-ℓ1)

(i) Choose (ϑ0, µ0) ∈ R
q × R

q, set n = 0,

(ii) Solve x+
q∑

k=1

ϑnKT
k N

′
ε(Kkx) = f for xn (primal feasibility step),

(iii) Solve L1(x
n, ϑn)p = −(xn − g) for pn (dual feasibility step),

(iv) Solve J(xn, ϑn, pn, µn)




δx
δϑ
δp
δµ


 = −G(xn, ϑn, pn, µn),

(v) Update (ϑn+1, µn+1) = (ϑn, µn)+ (δϑ, δµ), set n = n+1 and goto (ii).

Due to the feasibility steps the right hand side of step (iii) in Algorithm
4.2 has the form

G(x, ϑ, p, µ) =




0

(〈N ′
ε(Kkx), Kkp〉)q×1 − µ

0

µ−max(0, µ− cϑ)




.

For any solution (x, ϑ, p, µ) to G(x, ϑ, p, µ) = 0 we have ϑ̄ ≥ 0. Hence
L1(x̄, ϑ̄) is positive definite, and the implicit function theorem implies the
existence neighborhoods U(x) × U(ϑ) such that for each ϑ ∈ U(ϑ) there
exists a solution x = x(ϑ) ∈ U(x̄) satisfying

(4.29) x+

q∑

k=1

ϑkK
T
k N

′
ε(Kkx)− f = 0.
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Moreover ϑ → x(ϑ) is continuously differentiable from U(ϑ) to U(x̄). The
solution in step(ii) of Algorithm 4.2 is chosen to satisfy xn ∈ U(x̄). Without
loss of generality we may assume that {(x, ϑ) : (x, ϑ, p, µ) ∈ U((x̄, ϑ̄, p̄, µ̄))} ⊂
U(x̄)×U(ϑ̄) , where U(x̄, ϑ̄, p̄, µ̄) was introduced in (H1), and that L1(x, ϑ)
is regular with uniformly bounded inverses for all (x, ϑ) ∈ U(x̄)×U(ϑ̄). For
nonnegative ϑ this property is obviously satisfied for all x.

In numerical practice we switched from Algorithm 4.2 to Algorithm ??

for small values of epsilon (e.g. ε ≤ 10−2). Moreover we used a reduced form
of the system in step (iii) which will be detailed after addressing convergence
for Algorithm 4.2.

Theorem 4.8. Let (x, ϑ, p, µ) be a solution to G(x, ϑ, p, µ) = 0. If (H1)
holds, then the iterates of Algorithm 4.2 converge locally superlinearly.

Proof. The proof can be given by standard arguments and hence it suffices
to give the main steps.
The iteration can be characterized by

(4.30) zn → ẑn+1 = zn + δz → zn+1 = (xn+1, ϑn + δϑ, pn+1, µn + δµ),

where zn = (xn, ϑn, pn, µn), and δz = (δx, δϑ, δp, δµ) is the solution to the
system in step (iii) in Algorithm 4.2. The first step in (4.30) is a semi-smooth
Newton step and hence

(4.31) ‖zn + δz − z̄‖ = o(‖zn − z̄‖),

where z̄ = (x̄, ϑ̄, p̄, µ̄), and the norm ‖ · ‖ is taken in R
n × R

q × R
n × R

q.
Arguing iteratively, (4.31) together with the Lipschitz estimates below, we
find that the iterates zn ∈ U(x̄, ϑ̄, p̄, µ̄), if ‖(x0, ϑ0) − (x̄, ϑ̄)‖ is sufficiently
small.

Since ϑ → x(ϑ) is C1 on U(ϑ̄) there exists as constant K1 such that
‖x(ϑ)− x̄‖ ≤ K1‖ϑ− ϑ̄‖ for all ϑ ∈ U(ϑ), and in particular

(4.32) ‖x(ϑn+1)− x̄‖ = ‖xn+1 − x̄‖ ≤ K1‖ϑn+1 − ϑ̄‖ = o(‖ϑn − ϑ̄‖).

Moreover we find that

L1(x
n+1, ϑn+1)(pn+1 − p̄) = −(L1(x

n+1, ϑn+1)− L1(x̄, ϑ̄)) p̄+ x̄− xn+1,

and therefore there exists a constant K2, independent of n, such that

(4.33) ‖pn+1 − p̄‖ ≤ K2‖(xn+1, ϑn+1)− (x̄, ϑ̄)‖ = o(‖ϑn − ϑ̄‖).

Combining (4.31) - (4.33) the claim follows.
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We next express step (iv) of Algorithm 4.2 in terms of the variables
(ϑ, µ). From the first and third equations of (iv) we derive

δp = −L−1
1 Qδx+Rδϑ

δϑ = −L−1
1 L2 δx.

Here and below we drop the dependence of L1, L2, R and Q on the current
iterate (xn, ϑn, pn). The second equation of (iv) gives

(4.34) RT δx+ LT
2 δp− δµ = −G3.

Introducing the symmetric matrix

P (xn, ϑn, pn) = LT
2 L

−1
1 QL−1

1 L2 −RTL−1
1 L2 − LT

2 L
−1
1 R,

and δx and δµ in terms of δϑ in (4.34) we obtain

P (xn, ϑn, pn) δϑ− δµ = −G2(x
n, pn, µn).

Combined with the forth equation in (iii) we obtain the asymmetric system
(4.35)(

P (xn, ϑn, pn) −I

cMax′(0, µn − cϑn) I −Max′(0, µn − cϑn)

)(
δϑ
δµ

)
=

(
−G2(x

n, pn, µn)
−G4(ϑ

n, µn)

)
.

The second equality (4.35) can be expressed as

cMax′(0, µn−cϑn) δϑ+(I−Max′(0, µn−cϑn)) δµ+µn−max(0, µn−cϑn) = 0.

This implies that

(4.36) ϑn+1
A = 0 and µn+1

I = 0,

where A = A(ϑn, µn) is defined in (4.25) with (ϑ, µ) replaced by (ϑn, µn)
and the subscript A with ϑn+1

A was defined in the proof of Proposition 4.6.
Finally we partition the coordinates into active and inactive ones, so

that, after possible reordering, x = (xI , xA). Accordingly P (xn, ϑn, pn) is
split into block matrices

P (xn, ϑn, pn) =

(
P (xn, ϑn, pn)I P (xn, ϑn, pn)I,A

P (xn, ϑn, pn)A,I P (xn, ϑn, pn)A

)
.

Thus (4.35) is equivalent to solving the symmetric system

P (xn, ϑn, pn)I δϑI = −〈N ′
ε(Kix), Kip〉I + P (xn, ϑn, pn)I,Aϑ

n
A,

where we use that δϑA = −ϑA, and assigning

µn+1
A = (P δϑ)A + 〈N ′

ε(Kix), Kip〉A,
and ϑn+1

A , µn+1
I = 0 according to (4.36).
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(a) (b)

Figure 4: Subset of the ground truth data g extracted from the BSDS500
database [1] and the noisy data f using a noise level of σ = 25.

5 Numerical realization

In our numerical experiments, we consider the problem of learning the op-
timal regularization parameters for the ℓ1 model with multiple priors from
a set of training data (gi, fi), i = 1...N ,





min
ϑ≥0

E(x(ϑ)) =
N∑
i=1

‖xi(ϑ)− gi‖22

subject to xi(ϑ) = argmin
x

q∑
k=1

ϑi‖Kkx‖1 + 1
2‖x− fi‖22.

To generate the training data, we first randomly sample N = 64 patches of
size w × h = 64 × 64 from the BSDS500 image segmentation database [1]
and store them into vectors gi ∈ R

wh . The reason for sampling random
patches in a large database is to generate samples of a large diversity by
simultaneously minimizing the amount of training data. Then, we generate
the noisy versions fi ∈ R

wh by adding Gaussian noise with different standard
deviations σ ∈ {15, 25, 50} to gi. Figure 4 shows an exemplary subset of the
training data together with a noisy version.

In previous sections, we did not consider the case of multiple training
data (gi, fi). However, we can easily convert the learning problem for mul-
tiple training data to the form (4.1) by stacking up all gi and fi to large
vectors, i.e. g̃ = (g1, ..., gN ) and f̃ = (f1, ..., fN ) and by defining the linear
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(a) 1st

(b) 1st + 2nd

(c) DCT3

(d) DCT5

Figure 5: Different sets of filters used in the experiments.

operators K̃k as the N ×N block-diagonal matrices

(5.1) K̃k = diag(Kk, ...,Kk︸ ︷︷ ︸
N times

) .

Then, we can treat the multiple training data problem as a single training
data problem with a modified linear operator K̃ and the analysis carried
out in the previous sections can be applied.

The linear operators Kk ∈ R
m×n we consider in our experiments are gen-

erated from local filter kernels κk ∈ R
µ×ν such that the matrix-vector prod-

uct Kkx is equal to the two dimensional convolution of the two-dimensional
image x with the filter kernel κk, i.e.

Kkx = x ∗ κk ,

where ∗ denotes the two-dimensional convolution operation. Note that for
the matrix vector product Kkx, the image is treated as a column vector

36



whereas for the two-dimensional convolution with the filter kernels κk, the
image is treated as a two-dimensional array.

For the filter kernels we consider various choices, e.g. standard finite
difference approximations of first- and second-order derivatives or higher-
order linear operators obtained from the basis vectors of the two-dimensional
discrete cosine transform (DCT). Figure 5 shows the filter kernels we used
in our experiments. For the boundary conditions, we modify the linear
operators in a way such that the image data is reflected at the boundaries.

5.1 Learning

In the following sections we show how to learn the optimal regularization
parameters ϑ in the multiple prior ℓ1 model. We shall study two approaches:
A first approach that reduces the ℓ1 learning problem to a sequence of
reweighted ℓ2 learning problems which will be solved using Algorithm 3.1
and a second approach that directly solves the ℓ1 learning problem using
the reduced Newton algorithm 4.2. We will compare the performances of
both approaches and finally show preliminary extensions to solving the opti-
mal parameters of a non-convex ℓ 1

2

model. All algorithms are implemented

in Matlab and are executed on a 2.60GHz i5 CPU running a 64Bit Linux
system.

5.1.1 Iteratively reweighted ℓ2 learning

Motivated by the fixed point algorithm for solving the lower-level ℓ1 prob-
lems [32, 8], we consider a sequence of reweighted ℓ2 problems for learning
the optimal regularization parameters of the ℓ1 problem.

Let nε be the ε regularized Huber-ℓ1 norm

(5.2) nε(t) =

{
t2

2ε +
ε
2 if |t| ≤ ε

|t| else .

Given a point t̂, we can bound nε(t) from above via the quadratic function [3]

nε(t) ≤
1

2

(
t2

max(ε, |t̂|)
+ max(ε, |t̂|)

)
.

Now, assume, we are given an x̂ which is sufficiently close to the optimal
solution of the lower level problem. We can then approximate the ℓ1 bilevel
learning problem as a quadratic single level problem

min
ϑ≥0

E(ϑ) = 1

2
‖(I +

q∑

k=1

ϑkKk(x̂))
−1f − g‖22 ,
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where

Kk(x̂) = KT
k diag(

1

max(ε, |(Kkx̂)1|)
, ...,

1

max(ε, |(Kkx̂)m|))Kk ,

is the weighted linear operator. This motivates an iterative algorithm which
starts with an initial estimate of x̂ and then solves a sequence of quadratic
single level problems with iteratively updated versions of x̂. The outline
of algorithm is presented in Algorithm 5.1. The most involved step in the

Algorithm 5.1 Iteratively Reweighted Learning for ℓ2 (IRL-ℓ2)

(i) Set n = 0, ϑ = 0, x̂ = f

(ii) Compute Kk(x̂) = KT
k diag(

1
max(ε,|(Kkx̂)1|) , ...,

1
max(ε,|(Kkx̂)m|))Kk

(iii) Solve

ϑn = argmin
ϑ≥0

E(ϑ) = 1

2
‖(I +

q∑

k=1

ϑkKk(x̂))
−1f − g‖22

using Algorithm 3.1

(iv) Compute x̂ = (I +
q∑

k=1

ϑn
kKk(x̂))

−1f

(v) Set n = n+ 1, goto (ii)

algorithm is computing the solution of the weighted ℓ2 single level problem
which is carried out by using the semi-smooth Newton Algorithm 3.1. In our
experiments, we observe that the Hessian matrix M involved in the Newton
equation (3.21) can have negative eigenvalues which means that the Newton
direction is not a descend direction. In view of the higher level function E(ϑ)
as depicted in Figure 1, this comes as no suprise given the concave behavior
of E(ϑ) away from zero. In this case we use a positive definite approximation
of M by flipping the signs of the negative eigenvalues (see [22] for more
details). It is important to point out that M is always positive definite
when the iterate becomes sufficiently close to the optimal solution which
enables the algorithms local superlinear convergence. During the iterations
of Algorithm 3.1, we always perform full steps in µ and in ϑi, ∀i ∈ An and
carry out a Armijo-type linesearch in ϑi, ∀i ∈ In using the function value of
the higher level optimization problem as the merit function. We set ε = 10−3
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in the Huber-regularized | · | function in (5.2). The iterations of the inner
Algorithm 3.1 are stopped, when a maximum number of inner iterations
maxiter1 = 100 is reached or the normalized residual, i.e. the ℓ2 norm of
the right hand side of (3.21) devided by its number of elements is less than
a tolerance of tol1 = 10−6. We stop the iterates of the outer Algorithm 5.1,
when a maximum number of outer iterations maxiter2 = 100 is reached or
the normalized outer residual, that is the ℓ2 norm of (3.21) using ϑn and
recomputing x̂ is below a tolerance of tol2 = 10−3.

5.1.2 Direct ℓ1 learning

Next we discuss the reduced Newton learning algorithm for ℓ1 problems as
presented in Algorithm 4.2. In step (ii) of the algorithm, we need to per-
form the primal feasibility step which amounts to computing the minimizer
of the lower level problem. For this, we use a a standard primal Newton
algorithm with Armijo-type backtracking linesearch which takes on average
10-20 iterations to bring the normalized residual of the primal equation be-
low a threshold of tol1 = 10−9). In step (iii) of the algorithm we need
to compute the dual feasibility step which we solve by using the Matlab
mldivide command. We again use a positive definite approximation of the
matrix P in (4.35) in case it has negative eigenvalues, by flipping the signs
of the negative eigenvalues. Furthermore we perform full steps on µ and ϑi,
∀i ∈ An and an Armijo-type backracking linesearch on ϑi, ∀i ∈ In using
the higher level problem E(ϑ) as the merit function. We set ε = 10−3 in
the 4-th order polynomial approximation of the | · | function in (4.5). We
stop the algorithm when a maximum number of iterations maxiter = 100 is
reached or the normalized residual, i.e. the ℓ2 norm of the right hand side of
the Newton equation in step (iv) devided by its number of elements is less
a tolerance of tol2 = 10−3.

5.1.3 Results

Table 1 shows the result of learning the optimal regularization parameters
on natural images for various linear operators and noise levels using the it-
eratively reweighted ℓ2 learning algorithm (IRL-ℓ2) and the reduced Newton
ℓ1 learning algorithm (RNL-ℓ1).

In general, one can see that the energy of the higher level problem E(ϑ)
decreases with the diversity of the filter banks and equivalently, the quality of
the ℓ1 models increase with the diversity of the differentiation order included
in the filter banks. Observe that the largest performance increase comes

39



Algorithm IRL-ℓ2

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
1st 107 163.19 145 303.21 191 602.83
1st + 2nd 119 152.98 190 282.91 174 563.86
DCT3 132 148.79 141 272.60 183 545.46
DCT5 101 147.67 150 268.12 506 529.83

Algorithm RNL-ℓ1

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
1st 8 162.87 24 302.69 16 601,88
1st + 2nd 18 152.45 33 282.02 43 562.44
DCT3 12 147.55 20 270.62 37 542.90
DCT5 16 144.69 44 265.41 100 525.97

Table 1: Results for the ℓ1 learning algorithms on natural images. The table
shows the number of Newton steps and the value of the higher- level problem
E(ϑ).

through adding second-order filters to the first-order derivative filters. We
also performed experiments where we added first-order derivative filters to
the DCT filter banks and it happened that the weights of the first-order
filters where set to zero by the learning algorithm. This experiment suggests
that the first-order filters and hence the classical total variation prior is not
very suitable for natural images. In contrast, we observed that on randomly
generated piecewise constant images the learning algorithm always preferred
first-order filters over any additional higher order filter, which suggest that
for piecewise constant images, the total variation is already a very good
prior.

Comparing the results of the IRL-ℓ2 and RNL-ℓ1 algorithms, one can
clearly see that RNL-ℓ1 needs far less Newton steps to converge. This can
be explained by the fact that the IRL-ℓ2 algorithm performs a fixed-point
iteration by solving a sequence of re-weighted ℓ2 learning problems and hence
the overall algorithm is in principle a first-order algorithm. In contrast, the
RNL-ℓ1 algorithm is a full Newton algorithm on the original ℓ1 learning
problem and hence exhibits super-linear convergence.
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Figure 6: Negative log probability density function (PDF) of the filter re-
sponse of a DCT5 filter applied to natural images. Note that the

√
| · |

function provides the best fit to the heavy tailed shape of the true density
function.

Furthermore, one can see that the RNL-ℓ1 algorithm stops at slightly
smaller energies. This is explained by the fact that for a fixed value of ε the
function (4.5) utilized in the RNL-ℓ1 algorithm is a better approximation to
the true | · | function than the Huber function (5.2) utilized in the IRL-ℓ2
algorithm. We also tried to us a smaller ε in the IRL-ℓ2 which however lead
to convergence problems.

5.1.4 Learning of a non-convex ℓ 1

2

model

It is well known that the probability density function (PDF) of the responses
of zero mean linear filters (e.g. DCT filters) on natural images have heavily
tailed distributions [15]. Figure 6 plots the negative log PDF of last DCT5
filter shown in Figure 5 applied to natural images together with different
model fits. One can clearly see that the | · |2 function provides a bad fit
to the negative log PDF which is consistent with the inferior performance
of quadratic energies for image regularization. Although the | · | function
provides a much better fit than the |·|2 function, the

√
| · | function represents

an almost perfect model. However, while the | · | function is still convex the√
| · | is non-convex which makes the lower problem much harder to solve.
Our aim is now to show that we can utilize the algorithms developed

in this paper to learn the optimal regularization parameters of a model
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involving the non-convex ℓ 1

2

quasi-norm. We shall see that this simple non-

convex model achieves excellent image denoising results very close to state-
of-the-art algorithms.

The bilevel learning problem involving the non-convex ℓ 1

2

quasi-norm is

given by





min
ϑ≥0

E(x(ϑ)) =
l∑

i=1
‖xi(ϑ)− gi‖22

subject to xi(ϑ) = argmin
x

2
q∑

k=1

ϑk‖Kkx‖
1

2
1

2

+ 1
2‖x− fi‖22 ,

where ‖Kkx‖
1

2
1

2

=
∑n

i=1

√
|(Kkx)i|. In order to apply our learning algo-

rithms, we need to regularize the above problem. Similar to (4.5) we use a
locally regularized approximation of the

√
| · | function:

(5.3) nε(t) =





− 3t4

32
√
ε7

+
7t2

16
√
ε3

+
21
√
ε

32
if |t| < ε

√
|t| else ,

with derivatives

n′
ε(t) =

{
− 3t3

8
√
ε7

+ 7t

8
√
ε3

|t| < ε
t

2
√

|t|3
else ,

n′′
ε(t) =

{
− 9t2

8
√
ε7

+ 7

8
√
ε3

if |t| < ε

− 1

4
√

|t|3
else ,

n′′′
ε (t) =

{ − 9t

4
√
ε7

if |t| < ε
3t

8
√

|t|7
else .

For learning, we use the reduced Newton Algorithm 4.2, which can be easily
adapted to the ℓ 1

2

setting by replacing the regularized ℓ1 norm with the

regularized ℓ 1

2

quasi-norm. We term the resulting algorithm the reduced

Newton ℓ 1

2

learning algorithm (RNL-ℓ 1

2

).

In our experiments we observe that the Hessian matrix in the ℓ 1

2

case

can have strongly negative eigenvalues and that computing a positive defi-
nite approximation of the Hessian by simply flipping the signs of the negative
eigenvalues does not always lead to a very good second order approximation.
This results in a worse convergence bahavior of the algorithm. We stop the
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algorithm after the normalized residual is below a tolerance of tol = 10−3,
or a maximum number of iterations maxiter = 100 is reached. The inves-
tigation of an improved Newton algorithm, for example the development of
a trust region Newton method is subject to future work. For computing
the primal feasibility step, we use the limited memory BFGS quasi-Newton
method [20], where again for convergence reasons, we set ε = 10−2 in the ε
regularized

√
| · | function (5.3). The development of an algorithm that can

handle smaller ε is left to future work. Table 2 shows the results of apply-

Algorithm RNL-ℓ 1

2

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
DCT3 47 134.02 100 253.35 100 527.13
DCT5 13 128.63 100 240.63 100 500.83

Table 2: Results for the ℓ 1

2

learning algorithm on natural images. of Newton

steps and the value of the higher level problem E(ϑ).

ing the RNL-ℓ 1

2

to natural images using DCT3 and DCT5 filter banks and

various noise levels. Observe that the RNL-ℓ 1

2

algorithm takes significantly

more iterations than the RNL-ℓ1 algorithm. However, as already said, our
predominant aim is to show the potential of the non-convex ℓ 1

2

model and

hence also the limitations of the convex ℓ1 model. Comparing the function
values of E(ϑ) using the ℓ 1

2

models to the function values when using ℓ1
models as shown in Table 1 we can see that the non-convex ℓ 1

2

models lead

to significantly lower function values which means that the ℓ 1

2

can recover

images which are closer to the ground-truth images.

5.2 Testing

In this section we use the learned models from the last section to evaluate
their denoising performance on unseen images from the BSDS500 database [1].
Furthermore, we will show comparisons to related methods as well as state-
of-the-art algorithms.

In this work, we inherently assumed that the noise level of the images
is known in advance. We point out that this assumption is reasonable also
for practical problems since in many cases, the noise level can be computed
from the image acquisition process, can be specified by the user, or can be
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estimated by separate algorithms [19].
Having given the noise level, we compute the solution of the lower-level

problems using the first-order primal-dual algorithm [4] with the precon-
ditioning described in [25] in case of the ℓ1 models and used the limited
memory BFGS quasi-Newton method [20] in case of the ℓ 1

2

models. Note

that for testing we require only a moderate accuracy of the minimizers of the
lower-level problems and hence we stopped the algorithms after the change
of the function value was below a threshold of tol = 10−3.

5.2.1 Results of the ℓ1 model

Figures 7, 8 and 9 show the denoising results of the learned ℓ1 models on
natural images containing zero-mean Gaussian noise of various standard
deviations, σ ∈ {15, 25, 50}. One can observe that larger filter banks con-
sistently lead to a better image denoising performance, where in particular,
the DCT filters are much better in recovering textured areas. Furthermore
one can see that while the first-order filters lead to cartoon-like images (see
the detail views in the last rows of the figures), the higher order filters lead
to much more naturally appearing results.

From the experiments we can observe an interesting limitation of the
ℓ1 models. While the step from simple first-order priors (i.e. the total
variation) to higher order priors (e.g. second-order derivatives or DCT3)
gives the largest performance increase, the performance seems to saturate
when further increasing the diversity of the filter banks (e.g. from DCT3
to DCT5) and hence we expect that the performance of ℓ1 models cannot
be improved much more by keep adding priors to the model. We do not
think that this is due to a wrong set of priors (we also experimented with
dictionary priors such as SVD and ICA priors) but is an inherent limitation
of the ℓ1 model. Indeed, we will see that switching from the convex ℓ1 model
to the non-convex ℓ 1

2

model will overcome this limitation.

5.2.2 Comparison between the ℓ1 model and the ℓ 1

2

model

Figure 10 shows a comparison between the convex ℓ1 model and the non-
convex ℓ 1

2

model using the DCT5 filter bank for different noise levels. One

can clearly see that the non-convex ℓ 1

2

model leads to significantly better

denoising results and the difference is higher for smaller noise levels. We
can characterize the qualitative differences between the ℓ1 model and the ℓ 1

2

model as follows:
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(i) The ℓ 1

2

model leads to a better preservation of the contrast in the re-

constructed image than the ℓ1 model. Let us interpret both models in
terms of a shrinking process. It is known that the ℓ1 model performs
in principle a soft-shrinkage of the coefficient which shrinks the coef-
ficients independently of their strength. The ℓ 1

2

, however, performs

a stronger shrinkage of smaller coefficients and a weaker shrinkage of
larger coefficients which results in a better preservation of the contrast.

(ii) The ℓ1 model is not very successful in recovering homogeneous areas
although it preserves textured regions very well. This effect comes
from the convexity of the ℓ1 norm which cannot distinguish very well
between homogeneous regions and textured regions. In contrast, the
concave shape of the ℓ 1

2

norm is much more successful in distinguishing

textured and non-textured areas and hence gives better results.

(iii) As already pointed out above, further increasing the diversity of the
ℓ1 model does not improve the denoising performance. In contrast,
the performance of the ℓ 1

2

can be further improved by increasing the

diversity of the filter bank (see also Table 2).

In [27], Samuel and Tappen proposed a bilevel learning algorithm to
learn the optimal filters (comparable to a dictionary) of the so-called Fields
of Experts (FoE) model of Roth and Black [26]. The FoE model uses a sum
of priors involving non-convex potential functions related to the negative log
density of a Student-t distribution. The optimization algorithm is a plain
gradient descend algorithm, where the gradients are computed using implicit
differentiation. Since the FoE model has much more degrees of freedom as
our simple models, one would expect that the FoE model would lead to
better results. However, it turns out that our simple convex ℓ1 model leads
to comparable and our non-convex ℓ 1

2

model leads to significantly better

results (see Figure 11 for an example). We do not exactly know the reason
for the improved performance of our simpler model, but possibly, our Newton
algorithms are distinctly more accurate in approximating (locally) optimal
solutions than the gradient descend methods that are used in [27]. This fact
justifies the use of Newton algorithms for this kind of learning problems.

5.2.3 Comparison to state-of-the-art methods

In our last experiment, we compare the results of our ℓ1 and ℓ 1

2

models to

state-of-the art algorithms. Figure 12 shows a comparison of the proposed
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models to the Fields of Experts (FoE) model of Roth and Black [26], the
KSVD dictionary learning algorithm of Elad and Aharon [11], the recently
proposed Gaussian mixture model (GMM) of Zoran and Weiss [33] and
the BM3D algorithm of Dabov et al. [7] which define the current state-of-
the-art in image denoising. One can see that while the convex ℓ1 model
cannot compete with the current state-of-the-art, the non-convex ℓ 1

2

model

is clearly state-of-the-art. Note that the two methods GMM and BM3D
which are superior to our ℓ 1

2

are much more involved. For example, the

GMM method uses a generic image prior consisting of a Gaussian mixture
model with 200 components, each of them specified by a 64× 64 covariance
matrix. Decomposing these covariance matrices into its eigenvectors, we end
up with a total of 12800 filters whereas our ℓ 1

2

model uses only 24 DCT5

filters. The BM3D method is still the best method on this example, although
it can also lead to strange artifacts, as can be seen from the overemphasis
of the stripe-like texture in the detail view in Figure 12.

6 Conclusion and Outlook

In this paper we have proposed semi-smooth Newton methods for learning
the optimal regularization parameters in variational image denoising mod-
els including the smooth ℓ2 norm as well as the non-smooth ℓ1 norm. The
parameters are learned in a way such that the minimizers of the variational
models give the best approximation to given ground truth solutions. This
naturally leads to a bilevel optimization approach with the higher level prob-
lem being a loss function that minimizes the error between the the solution
of the lower level optimization problem (the variational model) and given
ground truth data. We have analyzed the structure of the arising bilevel
optimization problems and in case of a ℓ2 model with a single prior we were
able to show that the problem is quasiconvex in the regularization parame-
ter.

We have proposed and analyzed semi-smooth Newton methods that lead
to efficient learning algorithms with guaranteed locally superlinear conver-
gence. We tested the algorithms on natural image denoising problems using
different noise levels and different sets of regularization priors. We have
demonstrated the our proposed Newton algorithms can efficiently find opti-
mal regularization parameters requiring approximately 20 Newton iterations
on average.

Furthermore we have presented preliminary results on applying the bilevel
learning framework to variational models including the non-smooth and non-
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(a) clean (b) noisy (24.61) (c) 1st(29.12)

(d) 1st + 2nd(29.31) (e) DCT3(29.50) (f) DCT5(29.49)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 7: Image denoising performance of the trained ℓ1 model for a natural
image and σ = 15. The numbers shown in the brackets refer to PSNR values
with respect to the clean image.

convex ℓ 1

2

norm. In particular, we have shown that switching from the ℓ1
norm to the ℓ 1

2

consistently improved the denoising performance over the ℓ1
models.

Future work should include the investigation of data fidelity terms dif-
ferent of quadratic ones and a further analysis of models incorporating the
non-convex ℓ 1

2

norm.

A Proof of Theorem 4.3

The proof is given in several steps.

(i) First we need to adress convergence of the solutions ϑε to (4.4) as ε →
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(a) clean (b) noisy (20.17) (c) 1st(28.17)

(d) 1st + 2nd(28.73) (e) DCT3(28.81) (f) DCT5(28.93)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 8: Image denoising performance of the trained ℓ1 model for a natural
image and σ = 25. The numbers shown in the brackets refer to PSNR values
with respect to the clean image.

0+. It is not difficult to see that convergent subsequences of ϑε converge
to a solution of (4.1) but since the solutions to (4.1) are not unique,
this may not be the desired one. For this reason we adapt Barbu’s
trick and introduce (only for the purpose of deriving the optimality
condition) the auxiliary problem

(A.1)





min
ϑ≥0

‖x(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22

subject to x(ϑ) = argmin
x

q∑

k=1

ϑk‖Kkx‖1 +
1

2
‖x− f‖22,
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(a) clean (b) noisy(14.15) (c) 1st(22.97)

(d) 1st + 2nd(23.15) (e) DCT3(23.28) (f) DCT5(23.31)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 9: Image denoising performance of the trained ℓ1 model for a natural
image and σ = 50. The numbers shown in the brackets refer to PSNR values
with respect to the clean image.

and the auxiliary regularized problem
(A.2)



min
ϑ≥0

‖x(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22

subject to x(ϑ) = argmin
x

q∑

k=1

ϑk

m∑

i=1

nε((Kkx)i) +
1

2
‖x− f‖22.

Adding the term ‖ϑ− ϑ∗‖22 to the cost has no effect on the discussion
preceeding the statement of the theorem. Problem (A.1) has ϑ∗ as
unique solution. The necessarily optimality condition for (A.2) con-
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(a) ℓ1(29.49) (b) ℓ1(28.93) (c) ℓ1(23.31)

(d) ℓ 1

2

(30.24) (e) ℓ 1

2

(29.19) (f) ℓ 1

2

(23.42)

(g) ℓ1 (h) ℓ 1

2

(i) ℓ1 (j) ℓ 1

2

(k) ℓ1 (l) ℓ 1

2

Figure 10: Comparison between the convex ℓ1 model and the non-convex ℓ 1

2

model for different noise levels and using DCT5 filters. The numbers shown
in the brackets refer to PSNR values with respect to the clean image.

sists of the first two equations in (4.13) and
(A.3)
(
〈
N ′

ε(Kkxε),Kkpε
〉
+2(ϑε,k−ϑ∗

k))(ϑk−ϑε,k) ≥ 0, for all ϑk ≥ 0, k = 1, . . . , q.

Let {ϑε}ε>0 denote a family of solutions to (A.2). Since ϑ∗ is subop-
timal for (A.2) we obtain that

‖ϑε − ϑ∗‖2 ≤ ‖x(ϑ∗)− g‖2 + ‖ϑ∗‖2

and therefore {ϑε}ε>0 is bounded. By the first equation in (4.13)
the family xε = x(ϑε) is bounded as well. Hence there exists a
subsequence, denoted by the same symbol, and ϑ ∈ R

q such that
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(a) clean (b) noisy(20.17)

(c) FoE-bi (29.33) (d) ℓ1(29.33) (e) ℓ 1

2

(29.70)

Figure 11: Comparison between our ℓ1 and ℓ 1

2

models using DCT5 filters and

the bilelvel-optimized Fields of Experts (FoE-bi) model [27]. The numbers
shown in the brackets refer to PSNR values with respect to the clean image.

limε→0+ ϑε = ϑ and limε→0+ xε(ϑε) = x(ϑ). Taking the limit ε → 0+

in
‖xε(ϑε)− g‖22 + ‖ϑε − ϑ∗‖22 ≤ ‖xε(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22,

where xε(ϑ) = argmin
x

q∑

k=1

ϑk

m∑

i=1

nε((Kkx)i) +
1

2
‖x− f‖22,

we obtain

‖x(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22 ≤ ‖x(ϑ)− g‖2 + ‖ϑ− ϑ∗‖22

for all ϑ ≥ 0, where x(ϑ) = argmin
x

q∑

k=1

ϑk‖Kkx‖1 +
1

2
‖x − f‖22. By

construction this implies that ϑ = ϑ∗.

Let us henceforth set (λε)k = N ′
ε(Kkxε), and ξε =

q∑
k=1

ϑε,kK
T
k N

′′
ε (Kkxε)Kkpε.

(ii) By (4.13) and the properties of nε the families {pε}ε>0, {(λε)k}ε>0, and
{ξε}ε>0 are bounded. Note that the boundedness of {ξε}ε>0 follows
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(a) clean (b) noisy(20.17) (c) ℓ1(28.46) (d) ℓ 1

2

(29.26)

(e) FoE(28.72) (f) KSVD(29.19) (g) GMM(29.48) (h) BM3D(29.53)

(i) clean (j) noisy (k) ℓ1 (l) ℓ 1

2

(m) FoE (n) KSVD (o) GMM (p) BM3D

Figure 12: Comparison between the proposed ℓ1 and ℓ 1

2

models to the Fields

of Experts (FoE) model of Roth and Black [26], the KSVD dictionary learn-
ing algorithm of Elad and Aharon [11], the recently proposed Gaussian mix-
ture model (GMM) of Zoran and Weiss [33] and the BM3D algorithm of
Dabov et al. [7]. The numbers shown in the brackets refer to PSNR values
with respect to the clean image.

from the adjoint equation, since {pε}ε>0 is bounded. Hence, possibly
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after taking another subsequence, there exist p, λk, k = 1, . . . , q, and
ξ such that

(pε, λε,k, ξε) −→ (p, λ, ξ) as ε → 0+.

We can now pass to the limit in the first and second equation of (4.13)
and in (A.3) to obtain the first, third and fourth equation of (4.14).
Moreover 0 ≤ limε→0+ 〈ξε, pε〉 = 〈ξ, p〉, which gives the fifth assertion
in (4.14). Passing to the limit in λε we find the second assertion of
(4.14). Taking the inner product of the adjoint equation with pε and
passing to the limit we obtain the sixth equation in (4.14).

(iii) To verify the last two claims, we note at first that by the adjoint
equation

‖pε‖22 + |
q∑

k=1

ϑε,k

〈
N ′′

ε (Kkxε)Kkpε,Kkpε
〉
| ≤ ‖xε − g‖ ‖pε‖2.

Consequently {
q∑

k=1

ϑε,k‖
√

N ′′
ε (Kkxε)Kkpε‖22}ε>0 is bounded. We have

| 〈ξε, xε〉 | = |
q∑

k=1

ϑε,k

〈
N ′′

ε (Kkxε)Kkpε,Kkxε
〉
|

≤
q∑

i=1

ϑε,k||
√
N ′′

ε (Kkxε)Kkpε‖2 ‖
√

N ′′
ε (Kkxε)Kkxε‖2

≤ (

q∑

k=1

ϑε,k||
√
N ′′

ε (Kkxε)Kkpε‖22)
1

2 (

q∑

k=1

ϑε,k||
√

N ′′
ε (Kkxε)Kkxε‖22)

1

2
ε→0+→ 0,

by the properties of n′′
ε . Therefore | 〈ξ, x∗〉 | = limε→0+ | 〈ξε, xε〉 | = 0

which is the seventh claim in (4.14). To verify the last one we set
Iε,k = {i : |(Kkxε)i| < ε} and find

0 ≤
m∑

i=1

|(Kkpε)i| (1− |(λε,k)i|)

=

m∑

i∈Iε,k
|(Kkpε)i| (1− | 3

2ε
(Kkx)i −

1

2ε3
(Kkx)

3
i |)

≤
m∑

i∈Iε,k
|
√
n′′(Kkxε)(Kkpε)i|

1√
n′′((Kkxε)i)

(1− | 3
2ε

(Kkxε)i −
1

2ε3
(Kkxε)

3
i |)

≤ ‖
√
n′′(Kkxε) (Kkpε)‖2

( ∑

i∈Iε,k

1

n′′((Kkxε)i)
(1− | 3

2ε
(Kkxε)i −

1

2ε3
(Kkxε)

3
i |)2
) 1

2
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Utilizing that n′′(t) = − 3
2ε3

t2+ 3
2ε , for |t| < ε one argues that limε→0+ sup

|t|≤ε

1
n′′(t)(1−

| 32ε t− 1
2ε3

t3|)2 = 0 and hence
µ∑

i=1
(Kkp)i(1− |(λi)i|) = 0, as desired.
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