
A Billion Open Interfaces for Eve and Mallory:

MitM, DoS, and Tracking Attacks on

iOS and macOS Through Apple Wireless Direct Link

Milan Stute
TU Darmstadt

Sashank Narain
Northeastern University

Alex Mariotto
TU Darmstadt

Alexander Heinrich
TU Darmstadt

David Kreitschmann
TU Darmstadt

Guevara Noubir
Northeastern University

Matthias Hollick
TU Darmstadt

Abstract

Apple Wireless Direct Link (AWDL) is a key protocol in

Apple’s ecosystem used by over one billion iOS and macOS

devices for device-to-device communications. AWDL is a pro-

prietary extension of the IEEE 802.11 (Wi-Fi) standard and

integrates with Bluetooth Low Energy (BLE) for providing

services such as Apple AirDrop. We conduct the first security

and privacy analysis of AWDL and its integration with BLE.

We uncover several security and privacy vulnerabilities rang-

ing from design flaws to implementation bugs leading to a

man-in-the-middle (MitM) attack enabling stealthy modifica-

tion of files transmitted via AirDrop, denial-of-service (DoS)

attacks preventing communication, privacy leaks that enable

user identification and long-term tracking undermining MAC

address randomization, and DoS attacks enabling targeted or

simultaneous crashing of all neighboring devices. The flaws

span across AirDrop’s BLE discovery mechanism, AWDL

synchronization, UI design, and Wi-Fi driver implementation.

Our analysis is based on a combination of reverse engineering

of protocols and code supported by analyzing patents. We pro-

vide proof-of-concept implementations and demonstrate that

the attacks can be mounted using a low-cost ($20) micro:bit

device and an off-the-shelf Wi-Fi card. We propose practical

and effective countermeasures. While Apple was able to issue

a fix for a DoS attack vulnerability after our responsible dis-

closure, the other security and privacy vulnerabilities require

the redesign of some of their services.

1 Introduction

With deployments on over one billion devices, spanning

several Apple operating systems (iOS, macOS, tvOS, and

watchOS) and an increasing variety of devices (Mac, iPhone,

iPad, Apple Watch, Apple TV, and HomePod), Apple Wire-

less Direct Link (AWDL) is ubiquitous and plays a key role

in enabling device-to-device communications in the Apple

ecosystem. The AWDL protocol is little understood, partially

due to its proprietary nature, especially when it comes to se-

curity and privacy. Considering the well-known rocky history

of wireless protocols’ security, with various flaws being re-

peatedly discovered in Bluetooth [7], WEP [74], WPA2 [88],

GSM [12], UMTS [57], and LTE [51], the lack of informa-

tion regarding AWDL security is a significant concern given

the increasing number of services that rely on it, particularly

Apple’s AirDrop and AirPlay. It is also noteworthy that the

design of AWDL and integration with Bluetooth Low Energy

(BLE) are (1) driven by optimizing energy and bandwidth and

(2) the devices do not require an existing Wi-Fi access point

(AP) with secure connections but are open to communicat-

ing with arbitrary devices, thus, potentially exposing various

attack vectors.

We conduct the first, to the best of our knowledge, security

analysis of AWDL and its integration with BLE, starting with

the reverse engineering of protocols and code supported by

analyzing patents. Our analysis reveals several security and

privacy vulnerabilities ranging from design flaws to imple-

mentation bugs enabling different kinds of attacks: we present

a man-in-the-middle (MitM) attack enabling stealthy modi-

fication of files transmitted via AirDrop, a denial-of-service

(DoS) attack preventing communication between devices, pri-

vacy leaks allowing user identification and long-term tracking

undermining MAC address randomization, and targeted DoS

and blackout DoS attacks (i. e., enabling simultaneous crash-

ing of all neighboring devices). The flaws span AirDrop’s

BLE discovery mechanism, AWDL synchronization, UI de-

sign, and Wi-Fi driver implementation. We demonstrate that

the attacks can be stealthy, low-cost, and launched by devices

not connected to the target Wi-Fi network. We provide proof-

of-concept (PoC) implementations and demonstrate that the

attacks can be mounted using a low-cost ($20) micro:bit de-

vice and an off-the-shelf Wi-Fi card. The impact of these find-

ings goes beyond Apple’s ecosystem as the Wi-Fi Alliance

adopted AWDL as the basis for Neighbor Awareness Network-

ing (NAN) [19, 94] which, therefore, might be susceptible to

similar attacks. Moreover, Google Android provides a NAN

API since 2017 pending manufacturer support [38].

Specifically, our contributions are threefold. First, we dis-

cover security and privacy vulnerabilities in AWDL and Air-

Drop and present four novel network-based attacks on iOS

and macOS. These attacks are:

(1) A long-term device tracking attack which works in spite

of MAC randomization, and may reveal personal infor-

mation such as the name of the device owner (over 75%

of experiment cases).

(2) A DoS attack aiming at the election mechanism of

AWDL to deliberately desynchronize the targets’ chan-

nel sequences effectively preventing communication.

(3) A MitM attack which intercepts and modifies files trans-

mitted via AirDrop, effectively allowing for planting

malicious files.

(4) Two DoS attack on Apple’s AWDL implementations in

the Wi-Fi driver. The attacks allow crashing Apple de-

vices in proximity by injecting specially crafted frames.

The attacks can be targeted to a single victim or affect

all neighboring devices at the same time.

Second, we propose practical mitigations for all four at-

tacks. Third, we publish open source implementations of both

AWDL and AirDrop as the byproducts of our reverse engi-

neering efforts to stimulate future research in this area.

The rest of this paper is structured as follows. Section 2

provides background information on AWDL. Section 3 shows

the results of reverse engineering AirDrop. Section 4 presents

an attack to activate AWDL on devices in proximity, while

Section 5 shows how we leverage this activation mechanism

for user tracking attacks. Sections 6 and 7 feature the desyn-

chronization DoS attack and the MitM attack, respectively.

Section 8 reports implementation security vulnerabilities and

Section 9 concludes this work. We discuss mitigation tech-

niques and related work in subsections of the respective sec-

tions describing the attacks.

2 Background on Apple Wireless Direct Link

AWDL is a proprietary wireless ad hoc protocol based on the

IEEE 802.11 standard. In this section, we rely on the reverse

engineering efforts of the Open Wireless Link project [81] and

summarize the operation of AWDL as presented in [79, 80].

At its core, AWDL uses a channel hopping mechanism to

enable “simultaneous” communication with an AP and other

AWDL nodes on different channels. This channel hopping is

implemented as a sequence of so-called Availability Windows

(AWs). For each AW, a node indicates if it is available for

direct communication and, if so, on which channel it will be.

The channel value can be the channel of its AP, one of the

dedicated AWDL social channels (6, 44, or 149), or zero indi-

cating that it will not be listening on any channel. Each node

announces its own sequence s consisting of 16 AWs1 regularly

in AWDL-specific IEEE 802.11 Action Frames (AFs). We call

the length of such a full 16-AW sequence a period τ. Each AW

1Actually, [79] differentiates between AWs, Extension Windows (EWs),

and Extended Availability Windows (EAWs) where one EAW consists of

one AW and three EWs. In this work, we abstract from the smaller entities

and simply use the term AW to refer to an EAW.

0 0

φ s2 os1

44 44 4444 00 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 00 0 0 044 0 0 00 6 44 0 044 0 00

ττ τ

time t

1

Figure 1: AWDL synchronization depicting period, phase

offset, and the overlap function of two channel sequences.

has a length of 64 Time Units (TUs) where 1 TU = 1024 µs,

so τ ≈ 1 s. Figure 1 depicts these and the following concepts.

To allow nodes to meet and exchange data on the same

channel, they need to align their sequences in the time domain.

AWDL nodes elect a common master and use its AFs as

a time reference to achieve synchronization. Each master

node transmits synchronization parameters which consist of

the current AW sequence number i (0 to 216 − 1) and the

time until the next AW starts based on its local clock tAW.

When receiving an AF from its master at time TRx, a node

approximates TAW, the start of the next AW i+1 in local time

as:2

TAW ≈ tAW +TRx (1)

and correct its clock accordingly. Eq. (1) does not achieve

perfect alignment as it ignores the transmission delay as well

as delays in the sender’s Tx and receiver’s Rx chains. The

phase φ denotes the effective clock offset between two nodes.

Typically, φ ≤ 3 ms in practice [79].

A node transmits frames to another AWDL node during

AWs where the channels of both nodes are the same. We de-

note the overlap as the relative communication opportunities

during one period: an overlap of one means that two nodes are

on the same AWDL channel during all 16 AWs, while zero

means that they are never on the same channel. Formally, we

define the overlap O as the integral over the overlap function

o of two sequences s1 and s2 taking into account the phase

where s(t) is the τ-periodic continuation of a sequence, i. e.,

s(t +nτ) = s(t),∀n ∈ N. Then,

o(s1,s2,φ, t) =

{

1 if s1(t) = s2(t −φ) 6= 0

0 otherwise
(2)

and

O(s1,s2,φ) =
∫ τ

t=0
o(s1,s2,φ, t) . (3)

3 Reverse Engineering AirDrop

AirDrop is an application that allows iOS and macOS users

to exchange files between devices using AWDL as transport.

2Simplification of [79, Eq. (1)].

We reverse-engineered the AirDrop protocol by employing

a MitM HTTPS proxy [20] and using a popular disassem-

bler on macOS’ sharingd daemon and Sharing framework

where AirDrop is implemented. Based on our findings, we re-

implement AirDrop in Python and make it available as open

source software [78]. Next, we discuss how different discover-

ability settings affect the user experience. Then, we describe

the technical protocol flow and, finally, explain the difference

between authenticated and unauthenticated connections.

3.1 Discoverability User Setting

When opening the sharing pane (see left screenshot in Fig. 2)

in AirDrop, nearby devices will appear in the user interface

depending on their discoverability setting [2]. In particular,

devices can be discovered (1) by everybody or (2) by contacts

only. Alternatively, (3) the receiving off setting disables any

AirDrop connection requests. AirDrop requires Wi-Fi and

Bluetooth to be enabled. By default, Wi-Fi and Bluetooth

are enabled, and AirDrop is set to contacts only. In addition,

we found that devices need to be unlocked to be discovered.

Based on a user study that we present in Section 5.2, we

found that 80 % of the participants enable AirDrop (59.4 % in

contacts only and 20.6 % in everybody mode) while the other

20 % disabled it. For the rest of the paper, we assume that a

target device has AirDrop enabled and is unlocked.

3.2 Protocol and User Interaction

We describe all mechanisms involved in AirDrop including

discovery, authentication, and data transfer with a visual aid in

Fig. 2. The sender initiates the discovery procedure and trans-

fers the data while the receiver responds to requests: (1a) The

sender emits BLE advertisements including its hashed contact

identifiers (see Section 4.1 for details), while the prospec-

tive AirDrop receiver regularly scans for BLE advertisements.

(1b) The receiver compares the sender’s contact hashes with

contact identifiers in its own address book if set to contacts-

only mode. If there is at least one match or if the receiver

is in everyone mode, the receiver activates its AWDL inter-

face. (1c) Using mDNS/DNS-SD, the sender starts to look

for AirDrop service instances via the AWDL interface. (2)

For each discovered service, the sender establishes an HTTPS

connection with the receiver and performs a full authentica-

tion handshake (Discover). If authentication is successful, the

receiver appears as an icon in the sender’s UI. (3) When the

user selects a receiver, AirDrop sends a request containing

metadata and a thumbnail of the file (Ask). The receiver de-

cides whether they want to accept. If so, the sender continues

to transfer the actual file (Upload).

Next, we discuss the client and server TLS certificates and

explain their usage in combination with the sender’s and re-

ceiver’s record data to establish an authenticated connection.

Sender Receiver

regularly

perform

BLE scans

if in everyone

mode or contact

hash matches,

activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisement
with short contact hashes

HTTP POST /Discover
with sender’s record data

HTTP POST /Ask
with sender’s record data

HTTP POST /Upload
with file

Establish TLS connection with

client and server certificates

All subsequent

communication

uses AWDL

HTTP 200 OK

with receiver’s record data

For every service

discovered, start

HTTPS discovery

Select receiver

Prompt to

decide whether

to accept file

Establish TLS connection with

client and server certificates

Receiver appears

in sharing pane

(with contact

photo if record

data is valid)

HTTP 200 OK

Start file transfer

if accepted (200)

TLS teardown

TLS teardown

HTTP 200 OK

if record data is

valid, include

own record data

in response

(1c) Ask for service AirDrop

Service available at

instance 1fa518393a98 PTR

Instance 1fa518393a98 is at

Janes-iPhone.local:8770 SRV

IP address of Janes-iPhone.local

is fe80::90b6:7ff:fecc:46 AAAA

Service discovery

via mDNS

(1) DISCOVERY

(2) AUTHENTI-

CATION

(3) DATA

TRANSFER

Figure 2: Typical AirDrop protocol workflow including

screenshots [2] where user interaction is required.

Apple Root CA σRA

Apple Application

Integration CA σAAI

Apple Application

Integration 2 CA σAAI2

com.apple.idms.appleid.

prd.<UUID> σUUID

Apple ID Validation

Record <X> σVR

Signed by

Apple owns private key

User owns private key

Protects TLS connection Signs record data

Figure 3: Certificates and CAs involved in AirDrop. Boxes

contain the certificates’ common names.

3.3 (Un)authenticated Connections

AirDrop will always try to set up what we call an authenti-

cated connection. Such a connection can only be established

between users with an Apple ID and that have each other in

their address books. Authentication involves multiple certifi-

cates and CAs that we depict in Fig. 3. In order to authenticate,

a device needs to prove that it “owns” a certain contact identi-

fier ci such as email address or phone number associated with

its Apple ID, while the verifying device checks whether it

has ci in its address book. When establishing a TLS connec-

tion, AirDrop uses a device-specific Apple-signed certificate

σUUID containing a UUID. σUUID is issued when a user logs

into the device with its Apple ID. The UUID is not tied to any

contact identifiers, so AirDrop uses an Apple-signed record

data “blob” RD containing the UUID and all contact identi-

fiers c1, . . . ,cn that are registered with the user’s Apple ID in

a hashed form. This record data is retrieved once from Apple

and then presented for any subsequent AirDrop connection.

Formally, RD is a tuple:

RD = UUID,SHA2(c1) , . . . ,SHA2(cn) . (4)

The signed record data RDσ additionally includes a signature

and a certificate chain (Fig. 3):

RDσ = RD,sign(σVR,RD) ,σVR,σAAI2 , (5)

where sign(σ,X) is the signature of σ over X . When authenti-

cating, a node computes SHA2 over each contact identifier in

its address book and compares them with the hashes contained

in the presented RDσ and verifies that the UUID matches the

certificate of the current TLS connection. The latter effec-

tively prevents reuse of RDσ by an attacker using a different

TLS certificate.

AirDrop transparently treats a connection as unauthenti-

cated if the sender or receiver fails to provide an Apple-signed

TLS certificate or valid record data. This means that AirDrop

will establish an unauthenticated connection with devices that

use a self-signed certificate and provide no record data. While

AirDrop’s authentication mechanism appears to be crypto-

0 1 2 3

Length (2) Type (0x01) Flags (0x1b) Length (23)

Type (0xff) Apple (0x4c00) Subtype (0x05)

Length (18) Zero bytes (0x00)

. . .

. . . 0x01 Contact Identifier 1

Contact Identifier 2 Contact Identifier 3

Contact Identifier 4 0x00

Figure 4: AirDrop BLE advertisement format showing seman-

tics and values of individual bytes.

graphically well-designed, we show in Section 7 how to down-

grade an authenticated connection to an unauthenticated one

and launch a MitM attack on the data transfer.

4 Activating AWDL on Devices in Proximity

Some of the attacks demonstrated in this work require the

targets’ AWDL interface to be active, which is typically not

the case since an application has to request activation explic-

itly [79]. We have found that the BLE discovery mechanism

integrated with AirDrop (see Section 3) can be exploited to

activate all AWDL devices in proximity. Devices in everyone

mode will enable AWDL immediately after receiving any

AirDrop BLE advertisement. We analyze the theoretical per-

formance of brute forcing the truncated contact hash values in

AirDrop’s BLE advertisements (Fig. 2) to activate the AWDL

interfaces of targets in the default contacts-only mode. Finally,

we build a PoC leveraging a low-cost ($20) BBC micro:bit

device and experimentally confirm that the attack is feasible

in practice with a target response time of about one second

for devices that have 100 contact identifiers in their address

book.

4.1 AirDrop BLE Advertisements

We show the actual BLE advertisement frames [17, Vol. 3,

Sec. 11] that AirDrop uses including four contact identifier

hashes in Fig. 4. They are broadcast as non-connectable

undirected advertising (ADV_NONCONN_IND). The frames use

manufacturer-specific data fields that have fixed values except

for the contact hashes. In fact, we found that the contact hashes

are the first two bytes of the SHA2 digest of the sender’s con-

tact identifiers that are also included in the record data (see

Section 3.3). If the sender has less than four identifiers, the

remaining contact hash fields are set to zero. Due to the short

length, it appears feasible to use brute force to try all possible

values.3

3Note that the sender still has to provide the complete hash during the

HTTPS handshake before the receiver accepts the data on an authenticated

connection.

Table 1: Symbols

SYMBOL DESCRIPTION

S Contact hash search space

C Contacts in the target’s address book

w Target’s BLE scan window

i Target’s BLE scan interval

iPHY Attacker’s BLE PHY injection interval

r Effective contact hash brute force rate

n Tried hash values per scan window

p (p j) Hit probability after one (or j) scans

4.2 Brute Force Analysis

We assume that the attacker does not know the target’s con-

tacts and, thus, attempts to enable the target’s AWDL interface

using brute force. As the target has at least one contact identi-

fier (the address book contains at least the user’s own Apple

ID), the attacker needs to try S= 216 = 65536 hashes in the

worst case. Thus, the challenge for the attacker is to quickly

send a large number of BLE advertisements while the target is

conducting a BLE scan. In the following, we analyze how fast

the attacker can deplete the search space and how successful

they would be. We start investigating the results for a single

BLE scan window and then extend our analysis to multiple

scan intervals.

One Scan Window. Let the attacker inject BLE advertise-

ment frames at the physical layer with an interval of iPHY.

Further, consider that the attacker has a single radio and that

BLE uses three advertisement channels [17]. Also, recall that

an AirDrop BLE frame has room for four contact hashes.

Then, the attacker’s effective brute force rate r can be calcu-

lated as:

r =
4

3 · iPHY
. (6)

Now, we can compute the number of hash values n that the

attacker can inject per scan window w [17] as:

n = w · r . (7)

Let X be a random variable, and P(X = k) denote the proba-

bility that the target “sees” k known contact hashes during one

scan window. Since the attacker moves through the search

space sequentially, we can formulate the problem using the

urn model in drawing without replacement mode which re-

sults in a hypergeometric distribution. We get:

P(X = k) =

(

n
k

)(

S−n
C−k

)

(

S

C

) . (8)

In particular, the attacker only requires one hit to activate the

target’s AWDL interface whose probability we call p:

p = P(X ≥ 1) = 1−P(X = 0)

= 1−

(

n
0

)(

S−n
C−0

)

(

S

C

) = 1−

(

S−n
C

)

(

S

C

) . (9)

Using the Stirling’s approximation
(

n
k

)

≈ nk

k! for k << n, we

can simplify Eq. (9) as:

p ≈ 1−
(S−n)C

C!

SC

C!

= 1−
(S−n)C

SC

= 1−

(

S−n

S

)C

= 1−
(

1−
n

S

)C

. (10)

Multiple Scan Intervals. BLE devices perform scans regu-

larly at a fixed interval i [17]. Let Y be a random variable

indicating that the attacker has a hit (Y = 1) or not (Y = 0)

during one scan. We assume that the attacker does not know

when the target’s scan window starts and, therefore, that Y

is i.i.d. between scans.4 Let j indicate the target’s jth scan

since the attacker started their brute force attack. Then, the

probability that the attacker had k hits after j scans is given

by a binomial distribution:

P(Y = k) =

(

j

k

)

pk(1− p) j−k . (11)

Again, the attacker needs at least one hit whose probability

we denote as p j (note that p1 = p):

p j = P(Y ≥ 1) = 1−P(Y = 0) = 1− (1− p) j . (12)

With Eq. (10), we get:

p j ≈ 1−
(

1−
n

S

) jC

. (13)

We know that j depends on the time since the attack started

and the target’s BLE scan interval i (the target performs one

BLE scan of length w per interval). Let t denote the attack

duration, then j ≤ ⌊t/i⌋. Finally, we denote the success prob-

ability at time t as

p(t)≈ 1−
(

1−
wr

S

)tC/i

. (14)

4.3 Jailbreaking BLE Advertisements

The Bluetooth standard imposes a minimum advertisement

interval5 of 100 ms for non-connectable undirected adver-

tising [17, Vol. 6, Sec. 4.4.2.2], which we found is usually

4If the attacker knew the start of each scan window, they could follow a

better strategy by only sending advertisements while the target is performing

a scan. This way, they would deterministically succeed after they had gone

through S once.
5The BLE advertisement interval accounts for a frame transmission on

each of the three advertisement channels.

uint8_t *le_adv = airdrop_init_template()

for (uint16_t h = 0; /* loop */; h += 4) {

airdrop_set_hashes(le_adv, h, h+1, h+2, h+3);

for (uint16_t chan = 37; chan < 40; chan++) {

le_adv_tx(le_adv, chan);

sleep(0.625 /* in milliseconds */); } }

Figure 5: C pseudo code of our BLE brute force attack

enforced in the BLE firmware. By complying to the stan-

dard, the attacker would need at least 216 = 27 minutes to

iterate through the entire search space once. If the attacker

had access to the BLE physical layer to control and sched-

ule individual transmissions, they could circumvent the stan-

dard’s restrictions and, thus, iterate through the search space

much faster. To this end, we extend an open source BLE

firmware [65] for the Nordic nRF51822 [63] chipset to im-

plement our brute force attack. In principle, our attack imple-

mentation is very simple and shown in Fig. 5. We use a send

interval of iPHY = 0.625 ms resulting in r = 2133.3 s-1 which

allows the attack to iterate through S in only 216/ f = 30.72 s.

By using three BLE radios (one for each advertisement chan-

nel), we could reduce this time to 10.24 s. However, we show

that using one radio is sufficient in practice.

4.4 Target Response Times Micro Benchmark

We measure the target response time, i. e., the time it takes for

a target to turn on its AWDL interface when being exposed

to our attack. In particular, we measure the response time for

a contacts-only receiver that has 10, 100, and 1000 contact

identifiers in their address book. In addition, we include ref-

erence measurements for a receiver in everyone mode under

the same attack.

Setup. For the experiment, we use a Wi-Fi sniffer (Broadcom

BCM4360) to receive AWDL AFs and a $20 micro:bit de-

vice [58] to inject BLE advertisements. To get the response

times, we start a brute force attack and measure the time until

we receive the first AF from the target. We then stop the attack

and wait until the target stops sending AFs which means that

the AWDL interface has turned off. Then, we start over to

collect 50 measurements per setting.

Results. We show the results for an iPhone 8 (iOS 12) in

Fig. 6. The plot also includes the analytical response time

distribution based on Eq. (14), assuming a BLE scan window

w and interval i of 30 ms and 300 ms, respectively.6. We can

make several observations: (1) Our analytical model does not

capture our experimental results precisely but approximates

them within an order of magnitude which is sufficient for our

purposes. (2) The median response time of targets with only

10 contact identifiers in their address book is 10 seconds and

6https://lists.apple.com/archives/bluetooth-dev/2014/

Sep/msg00001.html

10 100 1000 Everyone

Contact Identifiers

10−2

10−1

100

101

102

R
es
p
on

se
T
im

e
[s
]

Experiment

Analysis

Figure 6: Time it takes until target turns on its AWDL inter-

face after being exposed to our brute force attack.

decreases to about 1 second when more contacts are available.

We found that a user has more than 136 contacts on average

based on a user study that we describe in Section 5.2. (3)

This means that the brute force attack is feasible for scenarios

where the target will be in the attacker’s communication range

for a few seconds.

5 Privacy: Tracking Apple Device Users

In this section, we assess privacy issues in AWDL and find

that AWDL devices are easily trackable. First, we discuss

protocol fields that enable tracking. Then, we leverage the

attack presented in Section 4 to perform an experimental

vulnerability assessment at different locations and compare

the results with a user study spanning 500 participants. Finally,

we discuss possible mitigations.

5.1 Identifying Devices and Users via AWDL

Protocol Fields

Even though AWDL implements MAC randomization for the

IEEE 802.11 header, AWDL-specific fields contain long-term

device identifiers that disclose sensitive information about the

user, undermining MAC randomization. In particular, AWDL

includes the following sensitive fields in the AFs which de-

vices broadcast in the clear multiple times per second when

the AWDL interface is active:

• The hostname may include parts of the user’s name, e. g.,

“Janes-iPhone,” which is the default when setting up a

new device.

• The real MAC address as well as the AP the device is

currently connected to.

• The device class differentiates between devices running

macOS, iOS/watchOS, and tvOS.

• In combination with the protocol version, this can be

used to infer the OS version, e. g., AWDL v2 is used in

macOS 10.12 while AWDL v3 is used in macOS 10.13.

The attacker could exploit the OS information during

https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html
https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html

reconnaissance to mount attacks on vulnerable driver

implementations.

Targets need to broadcast AFs to make these vulnerabilities ex-

ploitable, which an attacker can practically enforce by mount-

ing the attack presented in Section 4.

5.2 A Survey on the Potential of Apple Device

User Tracking

The hostname set by default during Apple iOS and macOS

device installation includes the user’s name [3]. Due to its

frame structure, the AWDL protocol aids an adversary in map-

ping a hostname with the MAC address of the device. This

enables them to track users even if users change this hostname

on their device. The combination also enables more sophis-

ticated threats as the person’s name can be combined with

information from public databases (e. g., US census [86]) to

infer their home and work locations, while the MAC address

can be used to track them in real-time. To assess what percent-

age of device hostnames contain parts of the owner’s name,

we conducted a survey among 500 Apple device users on

Amazon Mechanical Turk. This survey contained questions7

relevant to the attacks demonstrated in this paper, and we re-

port the statistics in the relevant sections. In particular, in the

context of tracking, we asked the surveyors if it was easy for

other users to find their device because their hostname con-

tained parts of their real name. We report the results of this

question along with the results of an experimental evaluation

in the next section.

5.3 Experimental Vulnerability Analysis

To demonstrate the feasibility of user tracking using AWDL,

we collect the number of discovered devices and check

whether that device’s hostname includes a person’s name

in four different locations within the US. We selected the

locations to reflect static as well as dynamic environments. In

particular, we recorded at a departure gate of an airport, in the

reading section of a public library, in a moving metro train,

and in the food court of a university.

Determining Whether a Hostname Contains a Person’s

Name. We use two databases to determine whether a host-

name contains a person’s name: the 2010 US Census [85]

containing 162 253 family names, and the 1918–2017 baby

names from the US Social Security Administration [87] con-

taining 96 743 given names. When detecting a new AWDL

node, we check string segments separated by hyphens against

these two databases.8 Note that when one segment matches

7The survey questionnaire is available at https://goo.gl/forms/

0okC4UphTQBnQ0FB3
8If a segment ends with the letter “s,” we also check the segment with-

out a trailing “s.” In addition, we ignore segments containing common de-

vice names such as “iPhone,” “Mac,” etc. For example, for the hostname

“Johns-iPhone,” we try to match the strings “Johns” and “John” to our name

databases.

Airport Library Metro University

Location

0

25

50

75

100

125

C
ou

n
t

Advertisements

Brute Force

Static

None

Figure 7: Discovered AWDL devices at one location during

one minute.

Given and Family

12.6%

None 24.1%

Only Family

2.3% Only Given
61.0%

Given and Family

None

Only Family

Only Given

Figure 8: Persons’ names distribution in hostnames.

the given name database, it is not matched again as a fam-

ily name because it is more likely that an Apple device will

include a person’s given name [3].

Ethical Statement. To preserve user privacy and not having

to store any sensitive user information, we fully automated

the name matching procedure. In particular, we only stored

salted hashes of the discovered hostnames (to differentiate

between devices) together with two bits indicating whether

the hostname contained a given or a family name. The salt

was generated randomly, kept in memory only, and discarded

after the completion of each experiment.

Setup. We do the measurements (a) without an attack (pas-

sive), (b) with static BLE advertisements containing only the

“zero” contact hash, and (c) with our BLE brute force ap-

proach. With (b), only devices in the everyone mode should

respond, with (c) we also capture those that are in contacts-

only mode. We run each setting for 60 seconds and repeat

it 10 times per location. To avoid statistical bias, we cycle

through the (a) to (c) settings back to back in each iteration

and use a cooldown time of 40 seconds between them. The

cooldown ensures that all devices in proximity have turned

off their AWDL interfaces again.

Experimental Results. Fig. 7 shows the number of discov-

ered AWDL devices in the different locations. By using the

https://goo.gl/forms/0okC4UphTQBnQ0FB3
https://goo.gl/forms/0okC4UphTQBnQ0FB3

brute force approach, we can discover about twice as many de-

vices compared to sending only regular advertisements. This

means that in our experiments, approximately 50 % of the

Apple devices are in AirDrop’s everyone mode. Our survey

complements our experimental results by indicating that 20 %

of Apple device users have AirDrop turned off and, thus, are

not trackable via AWDL. It is interesting to note that we are

able to pick up AWDL devices even when not sending any

advertisements. This can happen if a device (not controlled

by us) sends out advertisements itself, for example, when a

user opens the AirDrop sharing pane which apparently oc-

curred regularly at the university location. Finally, we found

that among all discovered devices, more than 75 % contain

a person’s name in the hostname. Most devices contain only

a given name which is the default for freshly set up Apple

devices [3], some contain a combination of a given and family

name, and very few contain only a family name. Our survey

confirms these results as 68 % answered that it was “easy”

or “very easy” for others to recognize their device because it

contained their name.

Outlook for Large-Scale Attack. In this analysis, we show

what kind of information a motivated attacker would be able

to collect. We used a single fixed physical location for each

experiment and did not attempt to track any user movement.

However, given that we can receive unique identifiers of Ap-

ple devices (Wi-Fi MAC address and hostname), mounting

a large-scale tracking attack should be trivial for an adver-

sary that can deploy multiple low-cost Wi-Fi and BLE nodes

throughout an area.

5.4 Mitigation

We present a short-term solution and then propose two mit-

igation techniques that remove stable device identifiers to

prevent user tracking via AWDL.

Disable AirDrop. Until Apple fixes the problem, the only

way to thwart user tracking is to disable AirDrop completely.

This presents a countermeasure to our attack presented in Sec-

tion 4, i. e., the AWDL interface cannot be remotely activated

via BLE advertisements.

Hide Real MAC Address When Not Connected to an AP.

When a device connects to an AP it uses its real MAC address

for communication, in which case AWDL does not disclose

new information. However, we have found that the MAC

address is occasionally included in AFs even when the device

is not connected to an AP. This appears to be unintended

behavior and should be fixed via a software update.

Randomize Hostname for AWDL. Apple devices transmit

their hostname in AWDL AFs as well as the mDNS responses

during service discovery that are used to find AirDrop in-

stances (see Section 3). As a countermeasure, we propose

to use randomized hostname with AWDL similar to MAC

address randomization. If an application such as AirDrop

needs the real hostname for identification, it should only be

transmitted via an encrypted and authenticated channel such

as TLS. In fact, AirDrop already transmits the device name in

the HTTPS handshake and uses this name in the UI ignoring

the hostname from mDNS responses. Therefore, hostname

randomization would not require any changes to the AirDrop

implementation which would retain backward compatibility.

5.5 Related Work: User Tracking

Several related works have studied the topic of user tracking

from mobile devices. Some common attack vectors include us-

ing the GPS sensor [35, 48, 55, 83, 95], cellular [5, 44, 50, 67],

Wi-Fi [15, 40, 69, 96, 97], radio interface fingerprinting [90],

and motion sensors [25, 39, 59, 61, 62]. We believe that the

above works are orthogonal to our approach, and could be

used in conjunction with our approach to improve tracking

performance. Many countermeasures have also been pro-

posed to prevent tracking from the above vectors. Some

of them include recommending new location frameworks

and privacy metrics [9, 28, 29, 30, 49, 64], location obfusca-

tion [1, 6, 18, 72, 92], location cloaking [42, 43], synthesizing

locations [16, 46, 53, 82, 98], sensor data obfuscation [22, 23],

and permission analysis [32, 45, 68]. Along with resource per-

missions on mobile devices, these countermeasures limit the

practicality of some of the above attacks.

Some device-specific identifiers have also been used for

tracking, e. g., IMEI [36, 93], BLE addresses [24, 31, 47], and

MAC addresses [21, 33, 54, 60]. While IMEI-based tracking

can be easily mitigated by protecting access to this infor-

mation, BLE is a dominant standard for fitness trackers and

smartphone communication and their addresses must be ex-

posed. Tracking using BLE identifiers has been demonstrated

to be easy. However, our approach has the added benefit for an

attacker that the hostname is exposed. This allows inferring

additional user information such as home and work locations,

family members, or movement patterns, which are useful for

more targeted tracking [34, 84]. Like BLE addresses, MAC

addresses are also essential as they form the backbone of layer

2 network communication and must be exposed for network-

ing (e. g., Wi-Fi probe requests).

MAC address randomization has been proposed to prevent

device tracking through Wi-Fi probe requests [11, 26]. Today,

both Apple and Google implement MAC address randomiza-

tion in their mobile operating systems. Randomization does

improve user privacy; however, some works have demon-

strated that devices are still trackable. For example, [89] im-

plemented an algorithm using probe request fingerprinting

that has a 50 percent success rate for tracking users for 20

minutes. Another work [56] demonstrated that MAC random-

ization could be defeated through timing attacks, where a

signature based on inter-frame arrival times of probe requests

can be used to group frames coming from the same device

with distinct MAC addresses. Their framework could group

random MAC addresses of the same device up to 75% of

cases for about 500 devices. Our work advances the scalabil-

s2

s1

44 44 4444 044 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

(a) In normal operation, two channel sequences result in non-zero

overlap, allowing two nodes to communicate. In this example, they

can communicate during four out of 16 EAWs.

s2

s1

440 0 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

φ = τ/4

(b) A phase shift of a quarter period (φ = τ/4) results in zero overlap

preventing the two nodes from communicating with each other.

Figure 9: Sketch of the desynchronization attack.

ity, tracking time and accuracy of the prior works. We show

that, owing to implementation nuances in the AWDL proto-

col, an adversary can track millions of Apple device owners

globally with 100 % accuracy.

6 DoS: Impairing Communication with

Desynchronization

AWDL does not employ any security mechanisms. Instead,

Apple decided to leave security mechanisms to the upper lay-

ers. Thus, while end-to-end confidentiality and integrity can

be achieved using a secure transport protocol such as TLS,

AWDL frames are vulnerable to forgery which renders any

upper layer using AWDL susceptible to attacks on availability.

In this section, we present a novel DoS attack that targets

AWDL’s synchronization mechanism (Section 2) to prevent

two nodes from communication with each other. In the fol-

lowing, we describe a novel desynchronization attack which

aims to minimize the channel sequence overlap of two targets.

Next, we evaluate the attack’s performance and present an

effective mitigation method. Finally, we discuss related work.

6.1 Desynchronizing Two Targets

We exploit AWDL’s synchronization mechanism to reduce

the channel overlap by inducing an artificial phase offset be-

tween two targets. In order to succeed, the attacker needs to

(1) get recognized as the master by both targets, (2) commu-

nicate with each target separately to (3) send different sets

of synchronization parameters that result in zero (or mini-

mal) channel overlap. Figure 9 depicts the non-zero overlap

in normal operation and the zero overlap as the result of the

desynchronization attack. We describe the three steps in the

following.

(1) Winning the Master Election. The master election in

AWDL is based on a numeric comparison of two values that

are transmitted in the election parameters. The first value

0 5 10 15 20 25 30

Time [s]

0

2

4

P
h
as
e
O
ff
se
t
[π
/
16
]

John–Jane

Attack Start

Figure 10: Phase offset between two targets before and after

mounting a desynchronization attack which induces a phase

shift of φ = τ/4.

is called metric, and each node draws one randomly upon

initialization. The numeric range of the metric is bounded

and depends on the AWDL version that runs on the node [79].

The second value is called counter which is initialized to a

random value and increases linearly over time while the node

is elected as a master. Given the metric and counter values

of two nodes A and B as (mA,cA) and (mB,cB), respectively,

then, A wins the master election if

cA > cB ∨ (cA = cB ∧mA > mB) (15)

and loses otherwise. To consistently win the election, the

attacker sets c and m to their maximum values.

(2) Unicasting AFs. The attacker needs to send the synchro-

nization parameters to each target without the other one notic-

ing. We have found that while AFs are typically sent to the

broadcast MAC address ff:ff:ff:ff:ff:ff, AWDL nodes

also accept unicast AFs. Therefore, the attacker can unicast

their AFs to make sure that only the intended target receives

them.

(3) Phase Shift: Different Synchronization Parameters.

To desynchronize two targets, the attacker needs to send in-

compatible synchronization parameters that will result in a

controllable offset. We explain how the attacker calculates the

relevant parameters i and tAW for both targets. Let us assume

that the attack starts at some time Ts. An AF sent to the first

target at some time TTx with t =
⌊

TTx−Ts
1024

⌋

(in TU) will include

the following parameters:

i =

(⌊

t mod 64

16

⌋

+4
⌊ t

64

⌋

)

mod 216 and, (16)

tAW = 64− t mod 64 . (17)

For the second target, the attacker will calculate t as tφ =
⌊

TTx−Ts−φ
1024

⌋

and compute iφ, t
φ
AW analogously to Eqs. (16)

and (17). We verify the correctness of these calculations ex-

perimentally and show the resulting phase offset between two

targets for a target phase φ = τ/4 in Fig. 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Phase Shift φ [π/16]

0.00

0.25

0.50

0.75

1.00

Overlap (inverse)

Packet Loss

Figure 11: Packet loss for different phase shifts.

6.2 Evaluating Packet Loss

We evaluate the impact of our desynchronization attack by

measuring the packet loss via the ping program. In particu-

lar, we use an APU board [66] equipped with a Qualcomm

Atheros AR928X Wi-Fi card to act as an attacker which can

inject AWDL AFs. The ICMP echo requests are sent from

a MacBook Pro (Late 2015, macOS 10.13) to an iPhone 8

(iOS 12). The attacker induces different phase shifts spanning

one period. The sender emits 100 ICMP echo requests per

experiment which we repeat 10 times and plot the resulting

packet loss in Fig. 11. The error bars indicate the standard

deviation. In addition, we include the inverse channel overlap

(see Section 2) which is calculated for two identical sequences

which we have observed were the most common ones during

our experiment: 44,44,44,0,0,0,0,0,6,44,44,0,0,0,0,0.

At φ = 0, there is no attack, while at φ = 16, the targets are

desynchronized by a full period which unsurprisingly does

impair communication reliability. The other results indicate

that the desynchronization attack significantly degrades com-

munication between the targets, peaking at phase shifts where

the targets are off by a quarter (φ= 4) and three-quarter period

(φ = 12) which is where the channel overlap has its minima

(and the inverse overlap its maxima). At these settings, the

packet loss is almost 100 %. Surprisingly, some phase shifts

(e. g., φ = 6,7,9,10,15) result in less packet loss than the

overlap predicts. We suspect the reason to be retransmissions

on the MAC layer (up to 7 times in Wi-Fi [73]) which, at the

cost of longer latency, increase the chance that a frame will

be received in a subsequent AW.

6.3 Mitigating Desynchronization

Devices can mitigate our desynchronization attack by discard-

ing unicast AFs. Not accepting unicast frames is an extremely

effective and practical countermeasure because it will cause

all nodes in range to process the same information exclu-

sively. While this does not prevent an attacker from winning

the master election and, thus, sending invalid synchronization

parameters, as all nodes process the same frames, it becomes

much harder to create a deterministic offset between two tar-

gets. A more sophisticated attacker could employ attacks on

the PHY layer (e. g., using directional antennæ) to achieve a

similar effect as that of unicasting. However, such attacks are

difficult to carry out in practice.

6.4 Related Work: Reactive Jamming

At first glance, our desynchronization attack achieves a simi-

lar effect as a reactive jammer [37, 52, 70, 91]. However, the

desynchronization attack can be more attractive for two rea-

sons: first, desynchronization in principle needs less energy

than a jamming attack. The desynchronization attacker only

needs to emit one frame every 1.5 s to maintain their position

as a master node because AWDL nodes elect a new master if

they have not received an AF for more than 1.5 s from their

current one. In contrast, a reactive jammer needs to emit a

jamming signal for every packet that the target sends. Second,

it allows intercepting frames from its targets which enables

to mount more sophisticated MitM attacks as presented in

Section 7. In contrast, a normal jammer kills the frame in

transit disallowing anyone (even the attacker themselves) to

decode the frame [70]. There exist more sophisticated receiver

designs that cancel out the jammer’s own signal, but this typi-

cally requires special hardware [37]. Our desynchronization

attack only requires a system with an off-the-shelf Wi-Fi chip

and, thus, could even be implemented in a smartphone [71].

7 MitM: Planting Malware via AirDrop

This section describes a MitM attack on the popular AirDrop

service which allows iOS and macOS devices to exchange

files directly via AWDL. First, we assess the security of Air-

Drop and find that poor UI design choices enable an attacker

to masquerade as a valid receiver. Then, we describe a com-

plete MitM attack on AirDrop which prevents any sender to

discover a valid receiver using a DoS attack and subsequently

can intercept and modify any AirDrop file transmission. Fi-

nally, we discuss possible mitigations for the attack.

7.1 Ambiguous Receiver Authentication State

We have observed that AirDrop employs two different kinds

of connections which we term authenticated and unauthenti-

cated (see Section 3). Further, the user can set its device to be

discoverable by contacts only or everyone. Counter-intuitively,

the discoverability setting only applies to the receiver side. In

particular, while a receiver in contacts-only mode will only

accept files from authenticated senders, a sender will see all

discoverable receivers irrespective of whether they are au-

thentic or not. This ambiguity has profound implications for

security because it is up to the user of the sending device to

decide whether a connection is authenticated or not which can

be non-trivial. The only visual cue to differentiate between

an authenticated and unauthenticated connection is that an

authenticated connection will show the receiver’s name and

photo from the sender’s address book. Neither provides suffi-

cient evidence to unambiguously decide whether a receiver

authentic

(a) Sender has

John’s contact

photo

authentic

(b) Sender does

not have John’s

contact photo

unauthentic

(c) Sender does

not have John

as a contact

unauthentic

(d) Attacker

spoofs John’s

identity

Figure 12: UI representation of a receiver.

is authentic. First, if no contact photo is available (users aug-

ment only 27 % of their contacts with a photo according to

our survey), the icon contains the receiver’s initials in a grey

circle which is similar to that of an unauthenticated receiver

(a grey circle with a head’s silhouette). Second, the name

that is displayed underneath unauthenticated receivers is the

receiver’s device name. Based on our results in Section 5, a

device name contains the user’s given name in the majority of

the cases (more than 70 % according to our experimental eval-

uation in Section 5), which the attacker can exploit to create

a trustworthy-looking device name. Unless users are sensi-

tive to such subtle UI changes, an attacker can easily trick

them into sending files via an unauthenticated connection.

Figure 12 compares the different receiver icons including a

spoofed identity by the attacker. We want to highlight the

similarity between an authenticated identity (Fig. 12b) and a

spoofed identity (Fig. 12d).

7.2 The Complete AirDrop MitM Attack

Our MitM attack on AirDrop is carried out in three phases.

First, we break the discovery process to put ourselves in a

privileged position. Second, we wait until the target receiver

becomes discoverable by everyone, effectively forcing the

user to downgrade the connection. Third, we relay and ma-

nipulate the actual data transfer to plant arbitrary files at the

receiver. We illustrate the attack in Fig. 13 and explain each

phase in more detail below. Also, we provide a video PoC of

the attack [77].

(1) Breaking Discovery via DoS. The most crucial part of the

attack is preventing the sender to discover the receiver such

that it appears as an icon in the sharing pane. In particular,

we need to prevent that the Discovery handshake via HTTPS

completes successfully. In principle, such a DoS attack could

be carried out via our desynchronization attack (Section 6).

However, we found that it could not reliably prevent the short

Discovery request and responses from being received. This

is due to the fact that AirDrop senders increase the channel

allocation when starting the discovery process, thus, increas-

ing the overlap with the receiver even when desynchronized.

As an alternative, we used the well-known TCP reset attack

which sends TCP segments including an RST flag to the tar-

gets which, in turn, immediately drops the connection. For

this attack, the attacker sends out an RST reply for every TCP

segment that is not addressed to itself and effectively prevents

any reconnection attempts from the sender to the receiver.

(2) Downgrading an Authenticated Connection. For a com-

plete MitM attack, we need to authenticate to the receiver.

Otherwise, it will deny any Ask or Upload requests. If the

receiver is discoverable by everyone, this is trivial, since it

accepts all authentication attempts, even those with a self-

signed certificate which the attacker can easily generate (see

Section 3.3). The receiver indicates a successful authentica-

tion attempt from a non-contact by including its device name

in the Discover response. However, we have found that in

most cases (59.4 % in our survey), users set their device to

contacts only. In such cases, we leverage the ongoing DoS

attack to force the receiver to try the everyone setting.

(3) Relaying and Modifying Data Transfer. Once the re-

ceiver becomes discoverable (we can check when a receiver is

discoverable by everyone by periodically sending Discovery

requests), we advertise our own AirDrop identity via mDNS

and wait until the sender tries to perform the authentication

handshake via HTTPS for discovery which we let succeed.

We relay the sender’s Ask request to the receiver including

the original file thumbnail to make the request appear valid.

After the receiver accepts the transmission request, we relay

the answer back to the sender which—in turn—starts to send

the actual file. We can now decide whether to relay a modi-

fied version of the file or send an entirely new one possibly

containing malware to the receiver.

7.3 Implementation

Our PoC of the MitM attack consists of two components.

First, we re-implement AWDL such that we were able to

overhear and parse data frames not addressed to us which is

required to mount a TCP reset attack. Second, we implement

an AirDrop-compatible client and server which we use to

probe the discoverability status of the receiver target and

finally implement the MitM attack as depicted in Fig. 13. We

make both projects available as open source software [76, 78].

AWDL. Our AWDL implementation [76] is written in C and

runs on Linux as well as on macOS. On macOS, the imple-

mentation can be used as a drop-in replacement for Apple’s

own AWDL interface. We use the monitor mode and frame

injection of the system’s Wi-Fi card to receive and inject raw

IEEE 802.11 frames. In addition, we provide a virtual network

interface (via tuntap) to the system such that any IPv6-capable

application can use AWDL. Internally, our implementation

takes care of frame parsing, synchronization, election, and

scheduling data frames in the correct AWs.

AirDrop. Our AirDrop implementation [78] is written in

Python and implements an unauthenticated AirDrop sender

Sender “Jane” Receiver “John”Attacker

HTTPS POST /Discover

Jane selects “John” as the receiver.

Attacker forwards request with

original thumbnail and device name

“Jane”; forwards response as is.

(2) AUTHENTICATION

(1) DISCOVERY (as in Figure 2)

TCP RSTTCP RST

DoS. Attacker disrupts all overheard

connections by mounting a TCP

reset attack, thereby preventing Jane

from discovering John.

Only while John is not

discoverable by everyone, the

attacker periodically tries to

authenticate to John.

HTTPS POST /Discover

HTTPS OK 200

without device name

When John already is or becomes

discoverable by everyone, the

attacker successfully authenticates

to John.

HTTPS POST /Discover

HTTPS OK 200

with device name “John’s iPhone”

Attacker advertises

AirDrop service as in (1)

HTTPS POST /Discover

HTTPS OK 200

with device name “John”

The attacker immediately starts

advertising a service using “John”

as its computer name.

Jane authenticates and displays

the attacker’s identity “John” in

the sharing pane.

(3) DATA TRANSFER HTTPS POST /Ask
with device name “Jane’s iPhone”

HTTPS OK 200

HTTPS POST /Ask
with device name “Jane”

HTTPS OK 200

HTTPS POST /Upload
HTTPS POST /Upload

HTTPS OK 200

HTTPS OK 200

Attacker receives original file and

forwards a modified copy to John

Figure 13: Protocol flow and user interaction of our MitM attack on AirDrop.

and receiver. The code exposes a command line interface

which allows to find discoverable receivers, send files to them,

and receive files from any sender.

7.4 Mitigation

We discuss possible mitigation strategies. We examine them

according to complexity to implement, starting with the miti-

gation requiring the least number of changes to existing Air-

Drop implementations.

Provide Stronger Visual Cues for Authenticated Re-

ceivers. One of the core problems of the current design of

AirDrop is that a user might have a hard time to differenti-

ate between authenticated and unauthenticated receivers (see

Section 7.1 and Fig. 12). Currently, the only cues to decide

whether a receiver is authenticated are the display of a contact

photo and contact name. We have shown that the former is not

commonly available (users augment 27.4 % of their contacts

with photos) and the latter can be spoofed. Therefore, we pro-

pose to provide stronger visual cues that unambiguously tell

the user if a receiver is authenticated or not. This is already

customary in web browsers where HTTPS-protected websites

are augmented with a green (lock) symbol telling the user that

the website they are visiting is authentic.

Reset Everyone to Contacts Only After a Timeout. Users

might set the discoverability setting of their device to every-

one for convenience or if they used it for one occasion and

then forgot to reset it. In either case, we believe that the ev-

eryone setting should only be used except when it is required,

i. e., if one wants to receive a file from a non-contact. To pro-

tect negligent users, we propose to use a timeout after which

the discoverability setting is reset to contacts only. Alterna-

tively, one could reset the setting the next time the device

is locked. This would also prevent past cases where people

would receive inappropriate photographs from strangers in

public places [13, 41] because, in contacts-only mode, de-

vices will transparently reject all request from unauthenticated

senders.

Introduce Secure AirDrop Mode for Non-Contacts. Our

last proposal involves deprecating unauthenticated connec-

tions and instead establish authentication with a non-contact

via an out-of-band (OOB) channel. AirDrop could transmit

one-time cookies with similar functionality as the record

data (see Section 3.3) during the initial HTTPS authentication

handshake (see Section 3.2). The one-time cookies could be

validated via an OOB channel such as NFC or via QR codes.

After one transfer (or after a specific timeout), each device

deletes its one-time cookie. By committing to the one-time

cookie in the TLS handshake, a MitM attack on the OOB

channel would be fruitless because the attacker could not es-

tablish a TLS connection with the same key. Unfortunately,

such a mode would require one more manual step by both

parties and, therefore, would impair usability.

7.5 Related Work: Attacks on AirDrop

Other attacks on AirDrop have been presented before. An im-

personation attack [10] exploits mDNS/DNS-SD to redirect

file transmissions to an attacker for unauthenticated connec-

tions. In particular, the attack uses forged SRV and AAAA

responses to redirect an AirDrop ID to the attacker. In contrast

to our work, [10] does not differentiate between authenticated

and unauthenticated connections and claims that the UUID

certificate (see Section 3.3) could not be bound to any con-

tact identifiers, which we have found to be untrue. Also, the

attack only works on unauthenticated connections, while our

attack also targets authenticated connections via a downgrade

attack and we present a complete MitM attack which allows

an attacker to send malicious files to the receiver stealthily.

Finally, [10] proposes a conflict detection mechanism for Mul-

ticast DNS (mDNS) to prevent their attack, which is based on

the assumption that “disrupting two parties’ communication

through a Wi-Fi direct link or a local network is difficult for

the adversary without access to the routing infrastructure of

the network.” In this work, we show that it is indeed practical

to mount a DoS on the link layer since AWDL does not em-

ploy any security mechanisms. An earlier work [27] targeted a

vulnerability in AirDrop’s implementation which allowed the

attacker to install files in arbitrary directories on the target’s

system. Apple fixed this bug in 2015.

8 Implementation Security

During our AWDL analysis and building an AWDL prototype,

we found two implementation flaws in Apple’s OSes that

allow an attacker to crash devices in proximity.

DoS: Kernel Panic and System Crash. These flaws can be

exploited by sending corrupt AFs. In particular, we can trigger

kernel panics by setting invalid values in the synchronization

parameters (affecting macOS 10.12) and the channel sequence

(affecting macOS 10.14, iOS 12, watchOS 12, and tvOS 5),

respectively. To showcase our findings, we provide a video

of our PoC which exploits the second vulnerability on iOS

devices [75]. The video demonstrates how an attacker mounts

a targeted DoS attack that crashes a single device and a black-

out DoS attack that crashes all devices in range of the attacker

at the same time.

Outlook: Remote Code Execution. While not critical by

themselves, the mere existence of these vulnerabilities creates

a new class of threats to Wi-Fi devices as an attacker can

exploit them without any authentication towards the target,

i. e., they do not have to be on the same network. In light of

past discovered remote code execution in implementations

of standardized Wi-Fi procedures [8, 14], we think that a

determined attacker can find similar flaws for AWDL.

9 Conclusion

The deployment of open Wi-Fi interfaces enables new types

of applications for mobile devices. They allow devices in

proximity to communicate with each other without being con-

nected to the same Wi-Fi network. On the downside, this also

opens new opportunities for an attacker as they no longer have

to provide any kind of authentication (e. g., access to a secure

Wi-Fi network). In this paper, we investigate the first protocol

of this kind, i. e., Apple’s proprietary AWDL. In particular, we

find three distinct protocol-level vulnerabilities that allow for

DoS, user tracking, and MitM attacks. In addition, we dis-

covered two implementation bugs in Apple’s OSes that cause

DoS. Given the complexity of the protocol and implementa-

tions, we conjecture that more severe vulnerabilities will be

found in the future. To build PoCs for these attacks, we have

reverse-engineered AirDrop, a system service that runs on

top of AWDL, and have implemented open versions of both

AWDL and AirDrop which we make available as open source

software. Finally, our findings have implications for the non-

Apple world: NAN, commonly known as Wi-Fi Aware, is a

new standard supported by Android which draws on AWDL’s

design and, thus, might be vulnerable to the similar attacks as

presented in this work. This is pending further investigation.

Responsible Disclosure

We have contacted Apple about our findings on December 17,

2018. We have shared a draft of this paper as well as our PoC

code and support Apple in fixing the privacy leaks (Section 5)

and desynchronization issue (Section 6) in AWDL as well as

the ambiguous authentication state in AirDrop (Section 7).

We have reported the two implementation vulnerabilities (Sec-

tion 8) earlier on August 14 and 27, 2018, respectively. Apple

will not fix the first one affecting only macOS 10.12, but

has released software updates addressing the second one on

October 30, 2018, for all Apple OSes [4].

Acknowledgements

This work is funded by the LOEWE initiative (Hesse, Ger-

many) within the NICER project and by the German Federal

Ministry of Education and Research (BMBF) and the State of

Hesse within CRISP-DA. The work was partially supported

by NSF grant 1740907. We thank the Apple Product Security

team for feedback on the paper.

Availability

We release the source code of our AWDL [76] and Air-

Drop [78] implementations as part of the Open Wireless Link

project [81] (https://owlink.org).

References

[1] Miguel E. Andrés, Nicolás E. Bordenabe, Konstanti-

nos Chatzikokolakis, and Catuscia Palamidessi. Geo-

indistinguishability: Differential Privacy for Location-

based Systems. In ACM SIGSAC Conference on Com-

puter and Communications Security (CCS), November

2013. doi: 10.1145/2508859.2516735.

[2] Apple Inc. Use AirDrop on your iPhone, iPad, or

iPod touch, June 2018. URL https://support.

apple.com/en-us/HT204144. [Accessed September

20, 2018].

[3] Apple Inc. Change the name of your iPhone, iPad,

or iPod, October 2018. URL https://support.

apple.com/en-us/HT201997. [Accessed November

14, 2018].

[4] Apple Inc. About the security content of iOS 12.1,

2018. URL https://support.apple.com/en-in/

HT209192. [Accessed Feburary 14, 2019].

[5] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and

Mark Dermot Ryan. Analysis of Privacy in Mobile Tele-

phony Systems. International Journal of Information Se-

curity, October 2017. doi: 10.1007/s10207-016-0338-9.

[6] Claudio A. Ardagna, Marco Cremonini, Sabrina De Cap-

itani di Vimercati, and Pierangela Samarati. An

Obfuscation-Based Approach for Protecting Location

Privacy. IEEE Transactions on Dependable and Secure

Computing, 8, January 2011. doi: 10.1109/TDSC.2009.

25.

[7] Armis Inc. BlueBorne, 2018. URL https://armis.

com/blueborne/. [Accessed November 14, 2018].

[8] Nitay Artenstein. Broadpwn: Remotely Compro-

mising Android and iOS via a Bug in Broadcom’s

Wi-Fi Chipsets, July 2017. URL https://blog.

exodusintel.com/2017/07/26/broadpwn/. [Ac-

cessed June 28, 2018].

[9] Michael Backes, Sven Bugiel, Christian Hammer, Oliver

Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-

fledged App Sandboxing for Stock Android. In USENIX

Security Symposium, August 2015.

[10] Xiaolong Bai, Luyi Xing, Nan Zhang, Xiaofeng Wang,

Xiaojing Liao, Tongxin Li, and Shi-Min Hu. Staying

Secure and Unprepared: Understanding and Mitigating

the Security Risks of Apple ZeroConf. In IEEE Sympo-

sium on Security and Privacy (S&P), May 2016. doi:

10.1109/SP.2016.45.

[11] Marco V. Barbera, Alessandro Epasto, Alessandro Mei,

Vasile C. Perta, and Julinda Stefa. Signals from the

Crowd: Uncovering Social Relationships through Smart-

phone Probes. In ACM Internet Measurement Con-

ference (IMC), October 2013. doi: 10.1145/2504730.

2504742.

[12] Elad Barkan, Eli Biham, and Nathan Keller. Instant

Ciphertext-Only Cryptanalysis of GSM Encrypted Com-

munication. In Advances in Cryptology (CRYPTO),

August 2003. doi: 10.1007/978-3-540-45146-4_35.

[13] Sarah Bell. Police investigate ’first cyber-flashing’

case, 2015. URL https://www.bbc.com/news/

technology-33889225. [Accessed September 25,

2018].

[14] Gal Beniamini. Over The Air: Exploiting Broad-

com’s Wi-Fi Stack (Part 2), April 2017. URL

https://googleprojectzero.blogspot.com/

2017/04/over-air-exploiting-broadcoms-wi-

fi_11.html. [Accessed June 28, 2018].

[15] Laurent Bindschaedler, Murtuza Jadliwala, Igor Bilogre-

vic, Imad Aad, Philip Ginzboorg, Valtteri Niemi, and

Jean-Pierre Hubaux. Track Me If You Can: On the

Effectiveness of Context-based Identifier Changes in

Deployed Mobile Networks. In Network & Distributed

System Security Symposium (NDSS), 2012.

[16] Vincent Bindschaedler and Reza Shokri. Synthesizing

Plausible Privacy-Preserving Location Traces. In IEEE

Symposium on Security and Privacy (S&P), May 2016.

doi: 10.1109/SP.2016.39.

[17] Bluetooth Special Interest Group (SIG). Bluetooth Spec-

ification Version 4.1. Technical report, December 2013.

[18] Nicolás E. Bordenabe, Konstantinos Chatzikoko-

lakis, and Catuscia Palamidessi. Optimal Geo-

Indistinguishable Mechanisms for Location Privacy.

In ACM SIGSAC Conference on Computer and Com-

munications Security (CCS), November 2014. doi:

10.1145/2660267.2660345.

https://owlink.org
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-in/HT209192
https://support.apple.com/en-in/HT209192
https://armis.com/blueborne/
https://armis.com/blueborne/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://www.bbc.com/news/technology-33889225
https://www.bbc.com/news/technology-33889225
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

[19] Stuart D. Cheshire. Proximity Wi-Fi. U.S.

Patent Application, (US 2018/0083858 A1), March

2018. URL https://patents.google.com/patent/

US20180083858A1.

[20] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer,

and contributors. mitmproxy: A free and open source

interactive HTTPS proxy, 2010–. URL https://

mitmproxy.org. [Version 3].

[21] Mathieu Cunche. I Know Your MAC Address: Targeted

Tracking of Individual Using Wi-Fi. Journal of Com-

puter Virology and Hacking Techniques, 10, November

2013.

[22] Anupam Das, Nikita Borisov, and Matthew Caesar.

Tracking Mobile Web Users Through Motion Sensors:

Attacks and Defenses. In Network and Distributed Sys-

tem Security Symposium (NDSS), February 2016.

[23] Anupam Das, Nikita Borisov, and Edward Chou. Every

Move You Make: Exploring Practical Issues in Smart-

phone Motion Sensor Fingerprinting and Countermea-

sures. Proceedings on Privacy Enhancing Technologies

(PoPETs), 2018, January 2018. doi: 10.1515/popets-

2018-0005.

[24] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah,

and Prasant Mohapatra. Uncovering Privacy Leakage

in BLE Network Traffic of Wearable Fitness Track-

ers. In ACM Workshop on Mobile Computing Sys-

tems and Applications (HotMobile), February 2016. doi:

10.1145/2873587.2873594.

[25] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy

Choudhury, and Srihari Nelakuditi. AccelPrint: Imper-

fections of Accelerometers Make Smartphones Track-

able. In Network and Distributed System Security Sym-

posium (NDSS), February 2014.

[26] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.

Mind Your Probes: De-Anonymization of Large Crowds

Through Smartphone WiFi Probe Requests. In IEEE In-

ternational Conference on Computer Communications

(INFOCOM), April 2016. doi: 10.1109/INFOCOM.

2016.7524459.

[27] Mark Dowd. MalwAirDrop: Compromising iDevices

via AirDrop. In Ruxcon, October 2015. URL http:

//2015.ruxcon.org.au/slides/.

[28] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-

don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-

mol N. Sheth. TaintDroid: An Information-flow Track-

ing System for Realtime Privacy Monitoring on Smart-

phones. In USENIX Conference on Operating Systems

Design and Implementation (OSDI), October 2010.

[29] Kassem Fawaz and Kang G. Shin. Location Privacy Pro-

tection for Smartphone Users. In ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS),

November 2014. doi: 10.1145/2660267.2660270.

[30] Kassem Fawaz, Huan Feng, and Kang G. Shin. Anato-

mization and Protection of Mobile Apps’ Location Pri-

vacy Threats. In USENIX Security Symposium, August

2015.

[31] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-

tecting Privacy of BLE Device Users. In USENIX Secu-

rity Symposium, August 2016.

[32] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn

Song, and David Wagner. Android Permissions De-

mystified. In ACM Conference on Computer and

Communications Security (CCS), October 2011. doi:

10.1145/2046707.2046779.

[33] Julien Freudiger. How Talkative is Your Mobile Device?:

An Experimental Study of Wi-Fi Probe Requests. In

ACM Conference on Security & Privacy in Wireless and

Mobile Networks (WiSec), June 2015. doi: 10.1145/

2766498.2766517.

[34] Sébastien Gambs, Marc-Olivier Killijian, and Miguel

Núñez del Prado Cortez. Show Me How You Move and I

Will Tell You Who You Are. In ACM SIGSPATIAL Inter-

national Workshop on Security and Privacy in GIS and

LBS (SPRINGL), 2010. doi: 10.1145/1868470.1868479.

[35] Sébastien Gambs, Marc-Olivier Killijian, and Miguel

Núñez Del Prado Cortez. De-anonymization Attack

on Geolocated Data. Journal of Computer and System

Sciences, 80, December 2014. doi: 10.1016/j.jcss.2014.

04.024.

[36] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and

Hao Chen. AndroidLeaks: Automatically Detecting

Potential Privacy Leaks in Android Applications on a

Large Scale. In International Conference on Trust and

Trustworthy Computing (TRUST). Springer, June 2012.

doi: 10.1007/978-3-642-30921-2_17.

[37] Shyamnath Gollakota, Haitham Hassanieh, Benjamin

Ransford, Dina Katabi, and Kevin Fu. They Can

Hear Your Heartbeats: Non-Invasive Security for Im-

plantable Medical Devices. In ACM SIGCOMM Com-

puter Communication Review, October 2011. doi:

10.1145/2043164.2018438.

[38] Google. Wi-Fi Aware, 2017. URL https:

//developer.android.com/guide/topics/

connectivity/wifi-aware. [Accessed June

28, 2018].

https://patents.google.com/patent/US20180083858A1
https://patents.google.com/patent/US20180083858A1
https://mitmproxy.org
https://mitmproxy.org
http://2015.ruxcon.org.au/slides/
http://2015.ruxcon.org.au/slides/
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware

[39] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian

Perrig, and Joy Zhang. ACComplice: Location In-

ference Using Accelerometers on Smartphones. In

IEEE International Conference on Communication Sys-

tems and Networks (COMSNETS), January 2012. doi:

10.1109/COMSNETS.2012.6151305.

[40] Xiuping Han, Zhi Wang, and Dan Pei. Preventing Wi-

Fi Privacy Leakage: A User Behavioral Similarity Ap-

proach. In IEEE International Conference on Commu-

nications (ICC), May 2018. doi: 10.1109/ICC.2018.

8422764.

[41] Harry Harris. Oakland-Maui flight: Pepper spray

emergency follows disturbing photo, 2018. URL https:

//www.eastbaytimes.com/2018/09/01/oakland-

maui-pepper-spray-disturbing-photo-delay/.

[Accessed September 25, 2018].

[42] Benjamin Henne, Christian Kater, Matthew Smith, and

Michael Brenner. Selective Cloaking: Need-to-Know

for Location-based Apps. In IEEE Conference on Pri-

vacy, Security and Trust, July 2013. doi: 10.1109/PST.

2013.6596032.

[43] Baik Hoh and Marco Gruteser. Preserving Privacy in

GPS Traces via Uncertainty-aware Path Cloaking. In

ACM Conference on Computer and Communications

Security (CCS), October 2007. doi: 10.1145/1315245.

1315266.

[44] Byeongdo Hong, Sangwook Bae, and Yongdae Kim.

GUTI Reallocation Demystified: Cellular Location

Tracking with Changing Temporary Identifier. In

Network and Distributed System Security Symposium

(NDSS), February 2018. doi: 10.14722/ndss.2018.

23349.

[45] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.

Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Fos-

ter, and Todd Millstein. Dr. Android and Mr. Hide:

Fine-grained Permissions in Android Applications. In

ACM Workshop on Security and Privacy in Smart-

phones and Mobile Devices (SPSM), October 2012. doi:

10.1145/2381934.2381938.

[46] Ryo Kato, Mayu Iwata, Takahiro Hara, Akiyoshi Suzuki,

Xing Xie, Yuki Arase, and Shojiro Nishio. A Dummy-

based Anonymization Method Based on User Trajectory

with Pauses. In ACM Conference on Advances in Geo-

graphic Information Systems (SIGSPATIAL), November

2012. doi: 10.1145/2424321.2424354.

[47] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and

Angelos Stavrou. Breaking BLE Beacons For Fun But

Mostly Profit. In ACM European Workshop on Systems

Security (EuroSec), April 2017. doi: 10.1145/3065913.

3065923.

[48] John Krumm. Inference Attacks on Location Tracks.

In International Conference on Pervasive Computing

(PERVASIVE). Springer, 2007.

[49] B. Krupp, N. Sridhar, and W. Zhao. SPE: Security and

Privacy Enhancement Framework for Mobile Devices.

IEEE Transactions on Dependable and Secure Comput-

ing, 14, July 2015. doi: 10.1109/TDSC.2015.2465965.

[50] Denis F. Kune, John Koelndorfer, Nicholas Hopper, and

Yongdae Kim. Location Leaks Over the GSM Air Inter-

face. In Network & Distributed System Security Sympo-

sium (NDSS), February 2012.

[51] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan,

Yuanjie Li, Songwu Lu, and Xinbing Wang. Insecurity

of Voice Solution VoLTE in LTE Mobile Networks. In

ACM Conference on Computer and Communications

Security (CCS), October 2015. doi: 10.1145/2810103.

2813618.

[52] Guolong Lin and Guevara Noubir. On Link Layer Denial

of Service in Data Wireless LANs. Wiley Journal on

Wireless Communications and Mobile Computing, 5,

May 2005.

[53] Hua Lu, Christian S. Jensen, and Man Lung Yiu. PAD:

Privacy-area Aware, Dummy-based Location Privacy

in Mobile Services. In ACM International Workshop

on Data Engineering for Wireless and Mobile Access

(MobiDE), June 2008. doi: 10.1145/1626536.1626540.

[54] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.

Mind Your Probes: De-anonymization of Large Crowds

Through Smartphone WiFi Probe Requests. In IEEE

INFOCOM, April 2016. doi: 10.1109/INFOCOM.2016.

7524459.

[55] Sathiamoorthy Manoharan. On GPS Tracking of Mo-

bile Devices. In IEEE International Conference on

Networking and Services (ICNS), April 2009. doi:

10.1109/ICNS.2009.103.

[56] Célestin Matte, Mathieu Cunche, Franck Rousseau, and

Mathy Vanhoef. Defeating MAC Address Randomiza-

tion Through Timing Attacks. In ACM Conference on

Security & Privacy in Wireless and Mobile Networks

(WiSec), July 2016. doi: 10.1145/2939918.2939930.

[57] Ulrike Meyer and Susanne Wetzel. A Man-in-the-

Middle Attack on UMTS. In ACM Workshop on Wire-

less Security (WiSe), October 2004. doi: 10.1145/

1023646.1023662.

[58] Micro:bit Educational Foundation. Micro:bit website,

2018. URL https://microbit.org. [Accessed

September 20, 2018].

https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://microbit.org

[59] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and

Niraj K. Jha. PinMe: Tracking a Smartphone User

Around the World. IEEE Transactions on Multi-Scale

Computing Systems, 3, 2017. doi: 10.1109/TMSCS.

2017.2751462.

[60] A. B. M. Musa and Jakob Eriksson. Tracking Unmodi-

fied Smartphones Using Wi-fi Monitors. In ACM Con-

ference on Embedded Network Sensor Systems (SenSys),

November 2012. doi: 10.1145/2426656.2426685.

[61] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and

Guevara Noubir. Inferring User Routes and Locations

Using Zero-Permission Mobile Sensors. In IEEE Sym-

posium on Security and Privacy (S&P), May 2016. doi:

10.1109/SP.2016.31.

[62] Sarfraz Nawaz and Cecilia Mascolo. Mining Users’ Sig-

nificant Driving Routes with Low-power Sensors. In

ACM Conference on Embedded Network Sensor Sys-

tems (SenSys), November 2014. doi: 10.1145/2668332.

2668348.

[63] Nordic Semiconductor. nRF51822, 2018. URL

https://www.nordicsemi.com/eng/Products/

Bluetooth-low-energy/nRF51822. [Accessed

September 20, 2018].

[64] Simon Oya, Carmela Troncoso, and Fernando Pérez-

González. Back to the Drawing Board: Revisiting the

Design of Optimal Location Privacy-preserving Mecha-

nisms. In ACM SIGSAC Conference on Computer and

Communications Security (CCS), October 2017. doi:

10.1145/3133956.3134004.

[65] Paulo Borges. BLESSED, 2014. URL https:

//github.com/pauloborges/blessed. [Accessed

September 20, 2018].

[66] PC Engines. APU2 platform, 2018. URL https://

www.pcengines.ch/apu2.htm. [Accessed November

14, 2018].

[67] Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Z. Morley

Mao, Ming Zhang, and Yi-Min Wang. You Can Run, but

You Can’t Hide: Exposing Network Location for Tar-

geted DoS Attacks in Cellular Networks. In Network &

Distributed System Security Symposium (NDSS), Febru-

ary 2012.

[68] Franziska Roesner. Designing Application Permission

Models that Meet User Expectations. IEEE Security &

Privacy, 15, February 2017. doi: 10.1109/MSP.2017.3.

[69] Piotr Sapiezynski, Arkadiusz Stopczynski, David Ko-

foed Wind, Jure Leskovec, and Sune Lehmann. Inferring

Person-to-Person Proximity Using WiFi Signals. ACM

Interactive, Mobile, Wearable and Ubiquitous Technolo-

gies, 1, June 2017. doi: 10.1145/3090089.

[70] Matthias Schulz, Francesco Gringoli, Daniel Steinmet-

zer, Michael Koch, and Matthias Hollick. Massive Reac-

tive Smartphone-based Jamming Using Arbitrary Wave-

forms and Adaptive Power Control. In ACM Confer-

ence on Security and Privacy in Wireless and Mobile

Networks (WiSec), July 2017. doi: 10.1145/3098243.

3098253.

[71] Matthias Schulz, Daniel Wegemer, and Matthias Hol-

lick. The Nexmon Firmware Analysis and Modification

Framework: Empowering Researchers to Enhance Wi-

Fi Devices. Computer Communications, 2018. doi:

10.1016/j.comcom.2018.05.015.

[72] Reza Shokri, George Theodorakopoulos, Carmela Tron-

coso, Jean-Pierre Hubaux, and Jean-Yves Le Boudec.

Protecting Location Privacy: Optimal Strategy Against

Localization Attacks. In ACM Conference on Computer

and Communications Security (CCS), October 2012. doi:

10.1145/2382196.2382261.

[73] IEEE Computer Society. Wireless LAN medium access

control (MAC) and physical layer (PHY) specification,

December 2016.

[74] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.

Using the Fluhrer, Mantin, and Shamir Attack to Break

WEP. In Network and Distributed System Security Sym-

posium (NDSS), February 2002.

[75] Milan Stute. Video of Proof-of-Concept Denial-of-

Service Attack Crashing iOS Devices, 2018. URL

https://youtu.be/M5D9NeKapUo.

[76] Milan Stute. Open Apple Wireless Direct Link Imple-

mentation in C, 2019. URL https://seemoo.de/owl.

[77] Milan Stute. Video of Proof-of-Concept Man-in-the-

Middle Attack on AirDrop, 2019. URL https://

youtu.be/5T7Qatoh0Vo.

[78] Milan Stute and Alexander Heinrich. Open AirDrop Im-

plementation in Python, 2019. URL https://seemoo.

de/opendrop.

[79] Milan Stute, David Kreitschmann, and Matthias Hollick.

One Billion Apples’ Secret Sauce: Recipe for the Apple

Wireless Direct Link Ad hoc Protocol. In ACM Confer-

ence on Mobile Computing and Networking (MobiCom),

October 2018. doi: 10.1145/3241539.3241566.

[80] Milan Stute, David Kreitschmann, and Matthias Hollick.

Demo: Linux Goes Apple Picking: Cross-Platform Ad

hoc Communication with Apple Wireless Direct Link.

In ACM Conference on Mobile Computing and Network-

ing (MobiCom), October 2018. doi: 10.1145/3241539.

3267716.

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://github.com/pauloborges/blessed
https://github.com/pauloborges/blessed
https://www.pcengines.ch/apu2.htm
https://www.pcengines.ch/apu2.htm
https://youtu.be/M5D9NeKapUo
https://seemoo.de/owl
https://youtu.be/5T7Qatoh0Vo
https://youtu.be/5T7Qatoh0Vo
https://seemoo.de/opendrop
https://seemoo.de/opendrop

[81] Milan Stute, David Kreitschmann, and Matthias Hollick.

The Open Wireless Link Project, 2018. URL https:

//owlink.org.

[82] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro

Hara, Xing Xie, and Shojiro Nishio. A User Location

Anonymization Method for Location Based Services in a

Real Environment. In ACM SIGSPATIAL International

Conference on Advances in Geographic Information

Systems (GIS), November 2010. doi: 10.1145/1869790.

1869846.

[83] Galini Tsoukaneri, George Theodorakopoulos, Hugh

Leather, and Mahesh K. Marina. On the Inference

of User Paths from Anonymized Mobility Data. In

IEEE European Symposium on Security and Privacy

(EuroS&P), March 2016. doi: 10.1109/EuroSP.2016.25.

[84] Jayakrishnan Unnikrishnan and Farid Movahedi Naini.

De-anonymizing Private Data by Matching Statistics. In

IEEE Allerton Conference on Communication, Control,

and Computing (Allerton), October 2013. doi: 10.1109/

Allerton.2013.6736722.

[85] US Census Bureau. Frequently Occurring

Surnames from the 2010 Census. URL

https://www.census.gov/topics/population/

genealogy/data/2010_surnames.html. [Accessed

September 25, 2018].

[86] US Department of Commerce. US Census Bureau. URL

https://www.census.gov. [Accessed September 25,

2018].

[87] US Social Security Administration. Popular Baby

Names: Beyond the Top 1000 Names. URL https://

www.ssa.gov/oact/babynames/index.html. [Ac-

cessed September 25, 2018].

[88] Mathy Vanhoef and Frank Piessens. Key Reinstalla-

tion Attacks: Forcing Nonce Reuse in WPA2. In ACM

Conference on Computer and Communications Security

(CCS), October 2017. doi: 10.1145/3133956.3134027.

[89] Mathy Vanhoef, Célestin Matte, Mathieu Cunche,

Leonardo S. Cardoso, and Frank Piessens. Why MAC

Address Randomization is not Enough: An Analysis

of Wi-Fi Network Discovery Mechanisms. In ACM

Asia Conference on Computer and Communications Se-

curity (ASIA CCS), May 2016. doi: 10.1145/2897845.

2897883.

[90] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara

Noubir. Fingerprinting Wi-Fi Devices Using Software

Defined Radios. In ACM Conference on Security and

Privacy in Wireless and Mobile Networks (WiSec), July

2016. doi: 10.1145/2939918.2939936.
[91] Triet Dang Vo-Huu, Tien Dang Vo-Huu, and Guevara

Noubir. Interleaving Jamming in Wi-Fi Networks. In

ACM Conference on Security and Privacy in Wireless

and Mobile Networks (WiSec), July 2016. doi: 10.1145/

2939918.2939935.

[92] Yu Wang, Dingbang Xu, Xiao He, Chao Zhang, Fan

Li, and Bin Xu. L2P2: Location-aware Location Pri-

vacy Protection for Location-based Services. In IEEE

INFOCOM, March 2012. doi: 10.1109/INFCOM.2012.

6195577.

[93] Te-En Wei, Albert B. Jeng, Hahn-Ming Lee, Chih-How

Chen, and Chin-Wei Tien. Android Privacy. In IEEE

Conference on Machine Learning and Cybernetics, July

2012. doi: 10.1109/ICMLC.2012.6359654.

[94] Wi-Fi Alliance. Neighbor Awareness Networking Tech-

nical Specification Version 2.0. Technical report, 2017.

[95] Hao Wu, Weiwei Sun, and Baihua Zheng. Is Only One

Gps Position Sufficient to Locate You to the Road Net-

work Accurately? In ACM International Joint Con-

ference on Pervasive and Ubiquitous Computing (Ubi-

Comp), 2016. doi: 10.1145/2971648.2971702.

[96] Yunze Zeng, Parth H. Pathak, and Prasant Mohapa-

tra. WiWho: Wifi-based Person Identification in Smart

Spaces. In ACM/IEEE International Conference on In-

formation Processing in Sensor Networks (IPSN), April

2016. doi: 10.1109/IPSN.2016.7460727.

[97] Jin Zhang, Bo Wei, Wen Hu, and Salil S. Kanhere. WiFi-

ID: Human Identification Using WiFi Signal. In IEEE

International Conference on Distributed Computing in

Sensor Systems (DCOSS), May 2016. doi: 10.1109/

DCOSS.2016.30.

[98] Lichen Zhang, Zhipeng Cai, and Xiaoming Wang. Fake-

Mask: A Novel Privacy Preserving Approach for Smart-

phones. IEEE Transactions on Network and Service

Management, 13, June 2016. doi: 10.1109/TNSM.2016.

2559448.

https://owlink.org
https://owlink.org
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov
https://www.ssa.gov/oact/babynames/index.html
https://www.ssa.gov/oact/babynames/index.html

	Introduction
	Background on Apple Wireless Direct Link
	Reverse Engineering AirDrop
	Discoverability User Setting
	Protocol and User Interaction
	(Un)authenticated Connections

	Activating AWDL on Devices in Proximity
	AirDrop BLE Advertisements
	Brute Force Analysis
	Jailbreaking BLE Advertisements
	Target Response Times Micro Benchmark

	Privacy: Tracking Apple Device Users
	Identifying Devices and Users via AWDL Protocol Fields
	A Survey on the Potential of Apple Device User Tracking
	Experimental Vulnerability Analysis
	Mitigation
	Related Work: User Tracking

	DoS: Impairing Communication with Desynchronization
	Desynchronizing Two Targets
	Evaluating Packet Loss
	Mitigating Desynchronization
	Related Work: Reactive Jamming

	MitM: Planting Malware via AirDrop
	Ambiguous Receiver Authentication State
	The Complete AirDrop MitM Attack
	Implementation
	Mitigation
	Related Work: Attacks on AirDrop

	Implementation Security
	Conclusion

