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behavior of articular cartilage. The results suggest that the main advantage of a model 
employing the strong interaction terms is to provide the capability for modeling aniso
tropic and asymmetric Poisson’s ratios, as well as axial stress–axial strain responses, in 
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ntroduction 

The extracellular solid matrix of articular cartilage contains
roteoglycans and a crosslinked collagen network. The proteogly
ans are negatively charged molecules that primarily resist com
ressive loads �1,2� while the collagen network primarily resists
ensile and shear loads �3,4�. Due in part to its complex molecular
tructure, articular cartilage typically behaves as an anisotropic
aterial with substantial tension-compression asymmetry �5–10�

nd likely experiences finite, multi-dimensional strains when sub
ect to typical loads �11,12�. In particular, both the Young’s modu
us and Poisson’s ratio1 are anisotropic and strain dependent, and
an be approximately two orders of magnitude greater in tension
han in compression �9,10,13–19�. Consequently, the development
f accurate finite deformation models of the equilibrium elastic
esponse is challenging. 

Bimodular elastic and biphasic models have been developed
hat can model the asymmetric tensile and compressive mechani
al properties for infinitesimal strains �8,10�. Those models were
ased on a general bimodular theory for infinitesimal strains �20�
n which the material constants may be discontinuous �or jump�
cross a surface of discontinuity in strain space, provided that
tress continuity conditions are satisfied at the surface. Several
xponential models for finite deformations allowing for different
echanical properties in tension and compression have been used

or the arterial wall �21� and the annulus fibrosus �22�. However,
hose models have not employed a general bimodular theory that
nsures stress continuity across the surface of discontinuity. Re
ently, a general bimodular theory employing second-order and
xponential stress–strain equations was shown to be capable of
odeling the anisotropy and asymmetry in Young’s modulus for
nite deformations �23�. Those results suggested that, when using

he bimodular feature, second-order models might provide a ma
erial description as accurate as those provided by exponential

odels. However, the models studied in Ref. �23� were not ca

1In this paper, the terms “Young’s modulus” and “Poisson’s ratio” will be used to
efer to strain-dependent functions because a finite deformation theory is used. 
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pable of modeling the anisotropy and asymmetry in Poisson’s ra
tio for finite deformations and were not appropriate for use in 
computational solutions.2 

The overall goal of this study is to develop an elastic strain 
energy function for finite deformations of the articular cartilage 
solid matrix that meets several criteria. First, it should be capable 
of modeling the nonlinearity, anisotropy, and asymmetry in 
Young’s modulus and Poisson’s ratio. Although the desired accu
racy of the stress–strain equation may not be the same for all 
applications, the level of accuracy sought here is likely to be 
crucial in continuum growth analysis.3 In order to meet this crite
rion, the bimodular feature is employed. Second, it should satisfy 
stability criteria so that numerical stability of computational solu
tions can be expected. In order to meet this criterion, a polycon
vex strain energy function is developed; polyconvexity guarantees 
the existence of local minimizers of the strain energy function 
when subject to boundary conditions �24� while not sharing the 
limitations of convexity with respect to the violation of invariance 
requirements and global uniqueness. Third, it should use a rela
tively low number of parameters needed to model the desired 
elastic response, so that the material constants are based on a 
model that is not over-parameterized4 and can be determined from 
a combination of several common experimental protocols. 

In a preliminary study, a bimodular polyconvex strain energy 
function was developed for articular cartilage based on the strain 
invariants for an orthotropic material �25�; however, that model, 
nor the earlier second-order and exponential models �23�, were 
capable of modeling the anisotropy and asymmetry of Poisson’s 
ratio. In that polyconvex model �25�, there were no strong inter
action or coupling terms for the orthotropic strain invariants. Al
though recent studies have proposed �26� or used �27� strong in
teraction terms for orthotropic strain invariants, preliminary 
studies for this work were not successful in using those terms with 
the bimodular feature.5 Also, those studies have not discussed 

2The second-order model in terms of the first Piola-Kirchhoff stress developed in 
Ref. �23� was shown to satisfy stability criteria; however, the corresponding Cauchy 
stress was not. 

3Applications are presented in the “Discussion.”
4See the “Discussion” for comments on “over-parameterization” in the context of 

the nonlinear regression analysis used here.
5In particular, strong interaction terms that satisfy the bimodular stress–strain 
continuity conditions stated in Eq. �7� were not found for an orthotropic material. 
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ossible microstructural causes. An aim of this work is to derive
imodular strong interaction terms that are “simple” enough to
llow the experimenter to investigate possible microstructural
echanisms. 
A recent development of Ref. �28� used two mechanically

quivalent secondary fiber families, in addition to primary fiber
amilies, to represent the phenomena of collagen crosslinking in
he annulus fibrosus tissue; that model was capable of producing
ensile Poisson’s ratios that are an order of magnitude greater than
hose of our earlier studies �23,25�. Since the secondary fiber
amilies introduced in Ref. �28� basically serve as strong interac
ion or coupling terms for the strain invariants related to the pri

ary fiber families, here it was hypothesized that the introduction
f strain invariants generated by secondary fiber families will al
ow a more accurate description of tensile Poisson’s ratios for
rticular cartilage. In contrast to Ref. �28�, this development is
ncorporated into a bimodular polyconvex strain energy function.

The specific objectives are to: �1� adapt the bimodular theory
or finite deformations to the present application; �2� develop a
imodular polyconvex anisotropic strain energy function using
rimary fibers and strong interaction terms generated by second
ry fibers; and �3� compare the predictive capability of models
ith and without the strong interaction terms using experimental
ata gathered from the literature. The results suggest that using
oth the bimodular feature and the strong interaction terms facili
ates the accurate description of the anisotropic and asymmetric

echanical properties of articular cartilage in finite deformations.

ethods 

Background. The right Cauchy–Green deformation tensor C is
efined as 

C = FTF �1� 

here F is the deformation gradient tensor and the superscript T 
ignifies the transpose operator. The Cauchy, first Piola–Kirchhoff,
nd second Piola–Kirchhoff stress tensors �denoted as T, P, and S,
espectively� are related by 

JT = PFT = FSFT �2� 

here J is the determinant of F. The stress constitutive equations
or a Green-elastic material may be expressed as 

n 
�W �W �IiS = 2  = 2� �3� 
�C �Ci=1 �Ii 

here W= Ŵ �Ii� is a scalar strain energy function that depends on
 set of invariants Ii corresponding to the material symmetry
roup. The fourth-order elasticity tensor is defined as 

�S
C = �4� 

�C 

Bimodular Elasticity for Finite Deformations. Due to the ob
erved tension–compression asymmetry of the articular cartilage
olid matrix, a bimodular theory is used. Earlier models �8,10,23�
ere based on a bimodular theory �20� in which the material

onstants may be discontinuous �or jump� across a surface of dis
ontinuity in strain space, provided that stress continuity condi
ions are satisfied at the surface. The bimodular theory of Ref. �20�
as developed in terms of the second Piola–Kirchhoff stress and
agrange strain tensors. Here, that theory is reformulated to use C 

nstead of the Lagrange strain tensor. 
A scalar valued function of C identifying a surface of discon

inuity in the six-dimensional strain space of C is defined as 

g�C� = 0  �5� 
nd is restricted to be a function of the invariants corresponding to
he material symmetry group. Different strain energy functions
ay be specified on either side of a surface of discontinuity; i.e. 
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Fig. 1 Schematic of the coordinate system and experimental 
specimen orientations in relation to anatomical directions. The 
unit vector E1 is parallel to the local split-line direction, the unit 
vector E3 is perpendicular to the articular surface, and the unit 
vector E2 is perpendicular to the split-line direction and parallel 
to the surface. The cylinders labeled P11, P22, and P33 represent 
specimens loaded in tension or compression along the E1, E2, 
and E3 directions, respectively. 

W = W+ if g�C� � 0, W = W− if g�C� � 0 �6� 
In a similar fashion, different stress and elasticity tensors may be 
specified on either side of a surface of discontinuity; i.e., as 
�S+ ,S− , C+ ,C−� 

In Ref. �20�, a theorem was proved establishing necessary and 
sufficient conditions for stress continuity across the surface of 
discontinuity. Introducing a slight modification in Lemma 3.2 of 
Ref. �20�, one obtains the following necessary and sufficient con
ditions for stress continuity across the surface of discontinuity 

�g �g
S = S+ = S−, ��C�� = C+ − C− = s�C� � �7� 

�C �C 

for all C that satisfy g�C�=0, where ��C�� represents the jump in 
the elasticity tensor, s�C� is a scalar valued function of C, and � 

is the tensor dyadic product. 

Structural anisotropy. Spencer �29� proposed a general theory 
capable of modeling an anisotropic material as a composite mate
rial consisting of an isotropic matrix reinforced with fiber fami
lies. That theory has been used to develop strain energy functions 
for cartilaginous tissues �22,28,30–32�. For example, in Ref. �30� 
two mechanically equivalent fiber families were used to model the 
annulus fibrosus in finite deformations; in Ref. �28� that model 
was generalized to include two mechanically equivalent fiber 
families representing crosslinking phenomena. Also, in Ref. �21� 
two families of fibers were used to model arterial tissue, but these 
fiber families were not assumed to be mechanically equivalent 
because a bimodular feature was used.6 Here, secondary fibers are 
used �as in Ref. �28�� without assuming that the fiber families are 
mechanically equivalent so that the bimodular feature can be used 
�as in Ref. �21��. 

First, three fiber families are introduced that are parallel to three 
mutually orthogonal basis vectors �E1 , E2 , E3� in a stress-free ref
erence configuration; these will be referred to as “principal fi
bers.” As seen below in Eq. �13�, the principal fibers generate 
strain invariants for orthotropic materials. Structural tensors 
�M1 ,M2 ,M3� are defined as in the case of an orthotropic material 

M1 = E1 � E1, M2 = E2 � E2, M3 = E3 � E3 �8� 
The unit vectors used to form these structural tensors correspond 
to the following anatomical directions: E1 is parallel to the local 
split-line direction, E3 is perpendicular to the articular surface, 
and E2 is perpendicular to the split-line direction and parallel to 
the surface �Fig. 1�. 

Second, two fiber families are introduced in each of the three 

6
See the comment below following Eq. �21�. 
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ig. 2 Schematic of the principal and secondary fiber orienta
ions in relation to anatomical directions in the 1-2 plane. The
wo principal fiber directions are parallel to the unit vectors E1
nd E2 and the two secondary fiber directions, denoted as E±12,
re oriented at angles of ±�12 to the E1 direction. The weights
f the line elements represent the relative strength of the fiber
irections as predicted by regression analysis; i.e., the princi
al fibers along the E1 direction are the strongest while the
econdary fibers are the weakest. 

lanes formed by the basis vectors �E1 ,E2 ,E3�; these will be re
erred to as “secondary fibers.” As seen below in Eq. �14�, the
econdary fibers generate strain invariants that represent strong
nteraction terms between the orthotropic strain invariants. Con
ider the 1-2 plane, which contains the �E1 ,E2� unit vectors �Fig.
�. The secondary fiber families are defined to lie at angles of
�12 to the E1 direction. These secondary fiber directions are
enoted as �E+12 ,E−12� and are expressed as 

E±12 = cos �12 E1 ± sin �12E2 �9� 

orresponding structural tensors �M+12 ,M−12� are defined as in
q. �8� 

M±12 = E±12 � E±12 = cos2 �12 E1 � E1 + sin2 �12 E1 

� E1 ± cos �12 sin �12�E1 � E2 + E2 � E1� �10� 

he secondary fiber directions introduced in the 1-3 and 2-3
lanes are denoted as �E+13,E−13� and �E+23,E−23�, respectively,
re expressed as 

E±13 = cos �13 E1 ± sin �13E3, E±23 = cos �23 E2 ± sin �23 E3 

�11� 

orresponding structural tensors �M+13 ,M−13,M+23 , M−23� are
efined as in Eq. �10� 

M±13 = cos2 �13E1 � E1 + sin2 �13E3 � E3 

± cos �13 sin �13�E1 � E3 + E3 � E1� 

M±23 = cos2 �23E2 � E2 + sin2 �23E3 � E3 

± cos �23 sin �23�E2 � E3 + E3 � E2� �12� 

Following Ref. �29�, the strain energy function W is assumed to
e an isotropic function of C and the nine structural tensors intro
uced above. In Ref. �33�, a procedure is outlined for obtaining
inimal lists of irreducible scalar invariants for an arbitrary finite

umber of symmetric structural tensors; however, that procedure
as only employed for up to six symmetric structural tensors.
ere, only the decoupled first-order scalar invariants are used in

n attempt to obtain a relatively low number of material constants
o prevent the model from becoming overparameterized. Invari

nts associated with the primary fibers include 

52 / Vol. 129, APRIL 2007 
2 2�M1 · C,M2 · C,M3 · C� = �C11,C22,C33� = ��1,�2,�2
3� �13� 

where �A 
2 represents the square of the stretch of the material line 

element initially oriented along the principal fiber direction EA. 
Invariants associated with the secondary fibers include 

�M±12 · C,M±13 · C,M±23 · C� 

= �C11 cos2 �12 + C22 sin2 �12 

± 2C12 cos �12 sin �12,C11 cos2 �13 

+ C33 sin2 �13 ± 2C13 cos �13 sin �13,C22 cos2 �23 

+ C33 sin2 �23 ± 2C23 cos �23 sin �23� 
2 2 2= ��±12 ,�±13 ,�±23 � �14� 

where �+
2 

AB and �−
2 

AB represent the squares of the stretches of the 
material line elements initially oriented along the secondary fiber 
directions E+AB and E−AB, respectively. Note that these invariants 
represent strong interaction or coupling terms for the orthotropic 
strain invariants as discussed in Refs. �26,34�; for example, the 
invariant �+12 

2 is a function of the invariants C11= �1
2 and C22 

=�2
2, thereby coupling these invariants. It is important to empha

size that this approach adopts a lesser level of material symmetry 
than orthotropy because the invariants in Eq. �14� can easily be 
shown to not be invariant under transformations due to reflections 
about three orthogonal planes.7 

Including the three principal invariants of C, the strain energy 
function for the model proposed here can be expressed as a func
tion of 12 invariants 

2 2 2 2 2 2W = Ŵ �tr C, tr�adj C�,det C,�1,�2,�3,�±12 ,�±13 ,�±23 � �15� 

where tr is the trace operator, adj C= �det C�C−1 is the adjugate of 
C, and det is the determinant operator. 

Bimodular Polyconvex Strain Energy functions. In recent 
years, polyconvex strain energy functions have been proposed for 
anisotropic materials �26,27,34,36�; discussion of the rationale for 
using polyconvex strain energy functions is in the “Introduction.” 
A sufficient condition for polyconvexity is as follows �26�: if the
strain energy function W�F� satisfies the additive decomposition 

W�F� = W1�F� + W2�adj F� + W3�det F� �16� 

and each of the functions �W1�F� ,W2�adj F� ,W3�det F�� is a con
vex function of �F , adj F ,det F�, respectively, then W�F� is poly-
convex. Furthermore, addition of two or more polyconvex func
tions results in a polyconvex function. 

Here, W is additively decomposed into two terms WO and WBIM 
representing nonbimodular and bimodular contributions, respec
tively. In general, WO can be anisotropic; a general polynomial 
form is proposed in Ref. �36�. Here, a simple isotropic function is 
adopted from Ref. �36� for WO 

1 ���tr C − 3� + �tr�adj C� − 3� − 3  ln�det C�� �17�WO = 2 

This term is polyconvex if � is positive and contributes a stress 
term as follows �36� 

SO = ��I − �det C�C−2 + ��det C�tr C−1 − 3�C−1� �18� 

Then, it is assumed that WBIM represents the collagen network 
molecules that account for all of the tissue anisotropy. To model 
tension–compression asymmetry, it is assumed that all fiber fami
lies can only support tensile stresses; consequently, a total of nine 
surfaces of discontinuity are used 

7If the secondary fibers are not bimodular and assumed mechanically equivalent, 

then the symmetry reduces to orthotropy as in �30,35�. 
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g1 = M1 · C − 1 = 0,  g2 = M2 · C − 1 = 0,  g3 = M3 · C − 1 = 0  

g±12 = M±12 · C − 1 = 0,  g±13 = M±13 · C − 1 = 0  

g±23 = M±23 · C − 1 = 0  �19� 

or example, the surface g1=M1 ·C −1=�1
2−1=0 defines a five-

imensional hyperplane that divides the C space into two half-
paces corresponding to tensile and compressive strains in the
rincipal fiber direction E1. The following bimodular form is used

1 1 1�1��1���1
2 − 1�3 + �2��2���2

2 − 1�3 + �3��3���3
2 − 1�3WBIM = 6 6 6
 

1 2 1 2
+ − 1�3 + − 1�3 
6 �±12��±12���±12 6 �±13��±13���±13 

+ 1 2 − 1�3 �20�6 �±23��±23���±23 

here ��1 ,�2 ,�3 ,�±12 ,�±13 ,�±23� are six material constants that
epresent bimodular terms via the definitions 

��1 � 0 if  �1 � 1 
�1��1� = 

0 if �1 � 1 

��+12 � 0 if  �+12 � 1 
�+12��+12� = , etc �21� 

0 if �+12 � 1 

nd the angles ��12,�13,�23� that appear in Eq. �14� can be re
arded as three additional material constants. In this general for
ulation, the two secondary fiber families in any of the three

lanes will have the same stiffness if both are active �i.e., �+12
�−12�, but are not assumed to be mechanically equivalent as
efined in Ref. �29� because in some shearing deformations one
ber family may be in tension while the other may be in compres
ion. Considering Eq. �21�, it is evident that each of the material
onstants are related to one of the surfaces of discontinuity de
ned in Eq. �19�. For example, the material constant �1 defines a
train energy term that can jump across the surface g1=M1 ·C 
1=�1−1=0.  
In the Appendix, the proposed strain-energy function WBIM is

hown to satisfy both the bimodular stress continuity and polycon
exity conditions when the material constants are defined as in
q. �21�. Since preliminary statistical results suggested that the
odel defined by Eq. �20� was overparameterized given the ex

erimental dataset,8 it is further assumed that the material con
tants associated with the secondary fibers are equal �when ac
ive�; i.e., �±AB =�. This reduced strain energy function contributes
 stress term as 

2SBIM = �1��1���1
2 − 1�2M1 + �2��2���2

2 − 1�2M2 + �3��3���3 

2 2− 1�2M3 + ���±12���±12 − 1�2M±12 + ���±13���±13 

2− 1�2M±13 + ���±23���±23 − 1�2M±23 �22� 

o that the stress constitutive equation is defined by Eqs. �18� and
22� as 

S = SO + SBIM �23� 

ith a total of eight material constants �� ,�1 ,�2 ,�3 ,� ,�12,
�13,�23�. 

Experimental Data. A hypothetical experimental dataset was
eveloped that approximates the equilibrium elastic response of
he solid matrix of adult human cartilage in the surface region
Tables 1 and 2�, assuming homogeneous tissue composition and
lastic properties of test specimens that are free of residual stress.
n order to construct enough data to prevent the models presented
ere from being overparameterized, it was necessary to use data

8
These results are summarized in the “Discussion.” 
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Table 1 Values of tangent Young’s modulus „MPa… in tension 
at 0% strain „E+0… and 16% strain „E+0.16… and in compression at 
0% strain „E−0… and 16% strain „E−0.16… in  the 1, 2, and 3 direc
tions for the experimental dataset used. 

Direction 

Parameter 1 2 3 

E+0 

E+0.16 

E−0 

E−0.16 

7.8 
42.8 

0.18 
0.26 

5.9 
26.3 

0.18 
0.26 

1.2 
9.0 
0.18 
0.26 

from several studies representing different anatomic locations, 
species, etc. 

Based on how mechanical properties were calculated in the 
studies used here, the first Piola–Kirchhoff stress and Biot strain 
tensors are used. In particular, the first Piola–Kirchhoff stress nor
malizes load by original cross-sectional area. Also, the Biot strain 

B Btensor has principal strain components �e.g., E11 
B � that,E22,E33 

correspond to the definition of the infinitesimal strain tensor � 
B�e.g., E11=�11=�1−1, etc.�. Consequently, Poisson’s ratios de

fined in terms of the Biot strain tensor correspond to the Poisson’s 
ratios defined in terms of � used in the studies mentioned below. 
For example, the Poisson’s ratio �12 is defined here as 

�12 = −  E22 
B /E11 

B = −  ��2 − 1�/��1 − 1� = −  �22/�11 �24� 
The data used corresponds to uniaxial tension �UT� and uncon

fined compression �UCC� experiments along three directions: 1 
=parallel to the split-line; 2=perpendicular to the split line and 
parallel to the surface; and 3=perpendicular to the surface �Fig. 
1�. Exponential functions were used to generate axial �i.e., along 
the direction of applied loading� stress–axial strain data and linear 
functions were used to generate transverse strain-axial strain data 
from 0% to 20% strain in 2% increments. UT axial stress–axial 
strain data were adopted from Refs. �17,18�. UT Poisson’s ratios 
were assumed based on the results of several studies 
�13,15,16,18,37�. UCC axial stress–axial strain data were adopted 
from Refs. �9,14,18� and assumed to be the same in all three 
directions.9 UCC Poisson’s ratios were assumed based on the re
sults of Refs. �10,19,38,39�. 

It is important to note that this hypothetical dataset includes not 
only substantial anisotropy and asymmetry in the axial stress-
strain response �Table 1�, but also substantial anisotropy and 
asymmetry in the Poisson’s ratios �Table 2�. In particular, the 
Poisson’s ratios in UT can be approximately two orders of mag
nitude greater than those in UCC, and in both UT and UCC the 
Poisson’s ratios �13 and �23 have been measured to be greater than 
those in other directions; see Refs. �13,37� for UT and Refs. 
�10,19� for UCC. 

Regression Analysis. A simultaneous nonlinear regression al
gorithm was performed in Mathematica �Wolfram, V5.0� based on 
an approach developed in Refs. �23,30�. The Levenberg– 
Marquardt method is used to minimize an error term representing 
the sum of squared differences between theoretical and experi
mental stress values. Although additional models were studied,10 

only results of three regression analyses are presented �Table 3�. 
An eight-parameter model �8-PAR� defined by Eqs. �18� and �22� 
was studied. To provide a comparison with a model that does not 
use the strong interaction terms, a four-parameter model �4-PAR� 
was studied, for which the material constant � was set equal to 
zero. For the 8- and 4-PAR models, the assumed Poisson’s ratios 
were used to prescribe the transverse strains for UT and UCC. 

9This limitation is addressed in the “Discussion.” 
10
The results of other models are summarized in the Discussion. 
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Table 2 Numerical values of Poisson’s ratios
from regression analysis; i=loading direction,
range given corresponds to values at 0% and
comparison in the column labeled Range; ten
of strain and the compressive values were as

Parameter Range 8-PAR

�+12 0.5–�1.0 0.44–�0
�+13 1.0–�2.0 0.75–�1
�+21 0.5–�1.0 0.46–�0
�+23 1.0–�2.0 0.75–�1
�+31 0.5–�1.0 0.32–�0
�+32 0.5–�1.0 0.32–�0
�−12 

0.1 0.10–�0
�−13 

0.2 0.19–�0
�−21 

0.1 0.09–�0
�−23 

0.2 0.20–�0
�−31 

0.1 0.11–�0
�−32 

0.1 0.13–�0

hen, a composite function representing a total of 18 equations
as derived: six axial stress–axial strain equations �three each in
T and UCC�, and 12 transverse stress–axial strain equations cor

esponding to the traction-free boundary conditions �six each in
T and UCC�. To provide a comparison with a model that does
ot explicitly include the 12 traction-free boundary condition
quations, an additional regression with the eight-parameter
odel was performed that included only the six axial stress–axial

train equations obtained after prescribing the transverse strains
8-PAR-B�. In all cases, the UCC stress values were weighted by
ultiplying each stress value by 100, since the UT stress response

s two orders of magnitude greater than the UCC stress response.
After the nonlinear regression analysis was performed, the de

ermined model parameters were used to derive numerical solu
ions to the UT and UCC boundary-value problems, including
heoretical predictions of Poisson’s ratios. 

esults 

The numerical values for the material constants are presented in
able 3. The nonlinear regression analyses always converged to
esults consistent with the stability criteria; i.e., �� , �1 ,�2 ,�3 ,�� 
ere all positive. The calculated error terms were 0.773 and 0.876

or the 8-PAR and 4-PAR models, respectively, and 0.206 for the
-PAR-B model. It is important to note that this latter error term
annot be directly compared to the others because fewer equations
ere used in the nonlinear regression. 

able 3 Numerical values for the material parameters ob
ained from regression analysis. The constants „� ,�1 ,�2 , �3 , �… 
re in MPa and the constants „�12,�13,�23… are in degrees. 

Model 

arameter 8-PAR 4-PAR 8-PAR-B 

0.035 0.035 0.035 
23.13 23.88 21.92

1 
14.83 15.61 1.78

2 
3.86 4.51 3.26

3 
12.07 — 436.8 
45 — 46 

12 
35 — 40 

13 
35 — 42 

23 
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tension „�+ij… and compression „�−ij… obtained 
irection of transverse strain component. The 
% strain. The assumed values are given for 
 values were assumed to be linear functions 
ed to be constant. 

Model 

4-PAR 8-PAR-B 

 0.25–� 0.26 0.79–�1.21 
 0.25–� 0.26 1.22–�1.73 
 0.25–� 0.26 0.96–�1.54 
 0.25–� 0.26 1.08–�1.82 
 0.25–� 0.26 0.63–�0.81 
 0.25–� 0.26 0.71–�0.92 
 0.11–� 0.06 0.01–�−0.06 
 0.60–� 0.10 0.08–�0.04 
 0.12–�−0.06 0.01–�−0.06 
 0.21–� 0.11 0.12–�0.12 
 0.13–� 0.05 0.05–�0.02 
 0.15–� 0.06 0.03–�0.01 

The predictions of the 8-PAR and 4-PAR models �Figs. 3 and 
4�, as well as the 8-PAR-B model for axial stresses were qualita
tively similar, with one exception. For the 8-PAR-B model that 
did not explicitly include the traction-free boundary conditions, 

Fig. 3 Predictions of the eight-parameter model „8-PAR… for 
the uniaxial tension „UT… response in the 1, 2, and 3 directions 
and the unconfined compression „UCC… response in the 1 di
rection. The theoretical UCC curves in the 2 and 3 directions 
are within 1% of the curve shown. UCC stress and strain val
ues, although negative by definition, are plotted as positive 
numbers. 

Fig. 4 Predictions of the four-parameter model „4-PAR… for the 
uniaxial tension „UT… response in the 1, 2, and 3 directions and 
the unconfined compression „UCC… response in the 1 direction. 
The theoretical UCC curves in the 2 and 3 directions are within 
3% of the curve shown. UCC stress and strain values, although 
 in 
 j=d
 20

sile
sum

 

.83

.59

.86

.59

.45

.45

.03

.09

.03

.09

.04

.05
negative by definition, are plotted as positive numbers. 
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he discrepancy between the assumed and theoretical values for
T in the 2 direction was relatively large. Comparing the 8-PAR

nd 8-PAR-B model results, it is evident that excluding the
raction-free boundary condition equations in the regression
nalysis results in different predicted material constants �Table 3�.
n particular, the predicted strength � of the strong interaction
erms was different by an order of magnitude �i.e., 12.07 for the
-PAR model, 436.8 for the 8-PAR-B model�. 

In contrast, predictions for Poisson’s ratios varied substantially
mong the models �Table 2�. Comparing the 8-PAR and 4-PAR
odel results, it is evident that including the strong interaction

erms facilitates modeling the anisotropic and asymmetric Pois
on’s ratios, allowing the Poisson’s ratios in UT to be 1–2 orders
f magnitude greater than those in UCC. Also, the 8-PAR-B
odel, as compared to the 8-PAR model, provided predicted Pois

on’s ratios in better and worse agreement with the assumed val
es in UT and UCC, respectively. 

iscussion 

In this paper, a bimodular polyconvex anisotropic strain energy
unction was developed with the aim of accurately modeling the
nisotropic and asymmetric mechanical properties of articular car
ilage. The 4-PAR model, based on a bimodular orthotropic mate
ial without strong interaction terms, is capable of providing rea
onable predictions of the assumed axial stress–axial strain
roperties in three anatomically relevant directions. However, that
odel provides a poor description of anisotropic and asymmetric
oisson’s ratios. In contrast, the 8-PAR model, which included
trong interactions terms for the orthotropic strain invariants, pro
ides a reasonable prediction of anisotropic and asymmetric Pois
on’s ratios as well as axial stress-axial strain properties. Also, the
-PAR model was the only one studied that consistently provided
heoretical Poisson’s ratios in UCC that were positive, in agree

ent with several studies �10,17,19,38,39�. Furthermore, the an
sotropic and asymmetric predictions of Poisson’s ratios were
imilar to those measured in several studies; for example, the
CC Poisson’s ratio �−13 was �3� greater than �−12 as compared

o experimental values of 5–6� �10� and 2� �19�, and the UT
oisson’s ratio �+13 was �2� greater than �+12 as compared to an
xperimental value of 2� �13�. Although the UCC Poisson’s ra
ios predicted by the 8-PAR model were substantially lower than
he assumed values at 20% strain �Table 2�, they were the same
rder of magnitude as those on the lower end of the reported
alues �10,19,38,39�. Thus, a limitation of the present study is the
ncertainty in these predicted UCC Poisson’s ratios, as the values
ssumed were based on experiments using a different tissues
ource than that assumed for the tensile properties. 

The 8-PAR-B model, which did not explicitly include the
raction-free boundary conditions in the nonlinear regression
nalysis, yielded different material constants which resulted in a
oor theoretical prediction of UT in the 2 direction. Interestingly,
he 8-PAR-B model’s theoretical solution for UT stress in the 2
irection based on the assumed Poisson’s ratios, as used in the
onlinear regression analysis, was nearly indistinguishable from
he experimental curve �result not shown�. It appears that the rela
ively large predicted value of � for the 8-PAR-B model, being an
rder of magnitude greater than the value for the 8-PAR model,
ppears to magnify the difference between the UT stress calcu
ated using the assumed Poisson’s ratios �as used in the nonlinear
egression� and using the theoretical Poisson’s ratios �as shown in
ig. 5�. These results highlight both the importance of including

he traction-free boundary condition equations in the regression
nalysis and checking the complete theoretical solution after the
egression analysis is performed. 

The approach adopted here is based upon a phenomenological
odel; a greater understanding of the structure-function relation

hip for articular cartilage could provide additional insight into
egenerative processes and repair strategies. Towards this broader

im, there is insufficient experimental data to completely charac-

ournal of Biomechanical Engineering 
Fig. 5 Prediction of the eight-parameter model that does not 
include the traction-free boundary condition equations „8
PAR-B… for the uniaxial tension „UT… response in the 2 direc
tion. The predictions for the UT response in the 1 and 3 direc
tions and the UCC response in the 1 direction are similar to 
those of the 8-PAR model shown in Fig. 3. 

terize the relationship between the material constants proposed in 
this study and features of the tissue’s microstructure. However, 
since the present phenomenological model has been derived in 
accordance with Spencer’s theory of fiber-reinforced anisotropy, it 
does allow us to rationally discuss the possible microstructural 
interpretations of the material constants. Here, several possible 
links between the 8-PAR model and microstructural features are 
presented. 

First, the material constant � representing the isotropic matrix 
may be related to the proteoglycan component of the articular 
cartilage solid matrix; this material constant is a primary determi
nant of the tissue’s compressive stiffness. 

Second, the material constants ��1 ,�2 ,�3� associated with the 
primary fibers may be related to the strength and three-
dimensional �3D� distribution of collagen fibers. Interestingly, 
even though the assumed experimental data was proposed to be 
valid for the superficial region where it is thought that the col
lagen fibers lie primarily in the split-line direction, the preliminary 
analysis that neglected the fiber strength in the direction perpen
dicular to the articular surface �i.e., �3� did not produce reasonable 
predictions. This result may suggest a limitation of the present 
study, as the tensile properties in this direction are not well docu
mented �14�. 

Third, the material constants �� , �12 ,�13 ,�23� associated with 
the secondary fibers may be related to more than one mechanism. 
As with the primary fiber strengths ��2 ,�3�, they may represent 
fibers that do not lie in the direction of the split-line direction 
reflecting a 3D distribution of fibers. Also, they may represent 
crosslinking mechanisms that affect tensile properties, such as 
collagen-specific crosslinks �40�, small proteoglycans �41–43�, or
bridging fibrils �44�. For example, the latter study �44� proposed 
an architectural model consisting of cartilage leaves, composed of 
a fine structure of fibers, that bend towards and become parallel 
with the surface layer �similar to the classical Benninghoff model 
�45��. Interestingly, in the surface region those authors state “link
ing fibrils appeared to bind adjacent collagen leaves to one 
another”11; that observation may provide one microstructural in
terpretation of fibers �both primary and secondary� other than 
those aligned with the split-line direction. 

Despite the lack of a definitive microstructural interpretation of 
the material constants used here, the results do suggest that bimo
dular strong interaction terms for the orthotropic scalar invariants 
facilitate modeling the asymmetry in Poisson’s ratios that have 
been experimentally measured. From a phenomenological per
spective, the secondary fibers in the present model are responsible 

11
Quote taken from p. 798 of Ref. �44�. 
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2

or causing the large lateral contractions in UT that produce Pois
on’s ratios on the order of 1.0–2.0. In particular, in the UT solu
ion in the 1 direction, the primary fibers in the 2 and 3 directions
o into compression; however, the secondary fibers in the 1-2 and
-3 planes go into tension. Thus, these secondary fibers in the 1-2
nd 1-3 planes become mechanically active in a manner that al
ows them to aid in “contracting” the specimen in the 2 and 3
irections, respectively. 

It is possible that other continuum and/or microstructural ap
roaches may yield similar predictions of the anisotropic and
symmetric mechanical response of articular cartilage as adopted
ere. These approaches may include polyconvex models employ
ng the strong interactions terms proposed in Ref. �34� or used in
ef. �27,36� for orthotropic materials, or anisotropic models based
n a 3D distribution of fibers that extend the 2D approach of Ref.
46� such as the recent study of Ref. �47�. However, this study
oes appear to be the first to develop a polyconvex model that can
rovide a reasonable prediction for the stresses and Poisson’s ra
ios measured for articular cartilage in UT and UCC in multiple
irections. 

A secondary aim of this paper was to obtain a relatively simple
odel using a minimum number of parameters needed to model

he desired response. Using a minimum number of parameters
acilitates parameter estimation from experimental datasets. In the
odels presented here, parameter estimates were insensitive to

nitial values used, as required by the nonlinear regression analy
is. As mentioned earlier, many models were studied in addition to
hose presented in the “Results” section. For example, a ten-
arameter model was based on the bimodular strain energy func
ion Eq. �20� with different strengths �i.e., �±12 � �±13 ��±23� for
he strong interaction terms. Although that model resulted in a
ower error �0.721� than the 8-PAR model, the asymptotic corre
ation matrix and confidence interval statistics suggested that the
en-parameter model was over-parameterized. That conclusion is
onsistent with the observation that the parameters estimated for
hat ten-parameter model did depend on initial values, due to over-
arameterization. Additional models derived as reduced forms of
he 8-PAR model were studied; however, none of these models
ere able to model the anisotropic and asymmetric Poisson’s ra

ios. For example, when the primary fiber strength �3 was ne
lected, the secondary fiber angles �12 and �13 converged to val
es close to 0 deg in the regression, producing predictions very
imilar to those of the 4-PAR model. 

There are limitations related to the assumed experimental
ataset. First, the data used did not correspond to a complete set of
T and UCC experiments for a specific source of articular carti

age �i.e., anatomic site, species, age, etc.�. However, it did de
cribe a highly anisotropic and asymmetric mechanical response
ypical of cartilage. Second, the experimental dataset used as
umed an isotropic UCC response. In preliminary studies that as
umed an anisotropic UCC response, many anisotropic polycon
ex strain energy functions generalizing Wo were used based on
ef. �36�. Although that formulation can model substantial UCC
nisotropy, it introduced additional material constants that ren
ered the model over-parameterized given the assumed experi
ental data. Furthermore, there is little data with respect to the

nisotropic UCC properties at large deformations. In a recent
tudy �25�, we have proposed that a model employing a bimodular
nisotropic collagen network �using methods developed here� that
estrains an isotropic proteoglycan matrix can explain several an
sotropic UCC features observed in young bovine cartilage
10,17,19�. In order to address these limitations, we have recently
eveloped experimental protocols to measure confined compres
ion, unconfined compression, and torsion properties in an aniso
ropic manner at large deformations �19�. 

It is important to note that the desired accuracy of the stress
onstitutive equation depends on the application that it is being
sed for. For example, there is uncertainty regarding the accuracy

eeded to predict areas of peak stresses and, consequently, regions 
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of failure for articular cartilage of in vivo joints. One study that 
modeled joint contact using an idealized geometry found that a 
transversely isotropic model, as compared to an isotropic one, 
better predicts locations of peak stress that agree with injury lo
cation following impact �11�. In contrast, another study using ex
perimental contact pressure measurements and finite-element 
analysis simulation using computed tomography-generated mesh 
geometry �48� found that predicted areas of maximum contact 
pressure may be more sensitive to surface mesh topology. 

The primary motivation for the present work was to obtain 
accurate stress constitutive equations that are needed to conduct 
robust validation tests of the cartilage growth mixture models that 
model proteoglycan and collagen growth at different rates 
�49–54�. If these growth models can be validated for specific in 
vitro protocols, then it may be possible to accurately predict 3D 
geometry changes of graft tissue or tissue engineered constructs 
that are needed to repair a specific site. Indeed, difficulties asso
ciated with one current clinical repair strategy, osteochondral graft 
implantation, include the construction of a smooth convex joint 
surface and mismatch between donor and repair site thickness 
�55�. Current efforts are aimed at describing 3D geometry changes 
for explants grown in vitro. In order to accurately model, or pre
dict, how thickness and diameter of a cylindrical implant would 
change during growth, one needs accurate anisotropic stress con
stitutive equations for tension and compression states. Indeed, cur
rent �unpublished� studies are finding substantially different pre
dictions of 3D geometry of constructs grown in vitro using 
cartilage growth models employing different stress constitutive 
equations; the results depend on the degree of anisotropy assumed 
in the constitutive model. 
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Appendix: Proof of Continuity and Stability Conditions 

Here, it is shown that the strain energy function WBIM defined 
in Eq. �20� satisfies the bimodular stress continuity and polycon
vexity conditions provided that the restrictions in Eq. �21� are met. 
It suffices to prove these conditions in a general case; any term in 
Eq. �20� and its associated surface of discontinuity can be stated in 
general form as 

Wa =
1 �a��2 

a − 1�3 = 1 �a�C · A − 1�3, ga = �2 
a − 1 =  C · A − 16 6 

�A1� 

where A=a � a is a structural tensor defined by a fiber direction a. 
It is convenient to express Eq. �A1� using indicial notation 

1Wa = �a�CMNAMN − 1�3, ga = CMNAMN − 1  �A2�6 

Bimodular Stress Continuity Condition. The terms in the 
stress and elasticity tensors derived from Eq. �A2� are calculated 
as SAB=2�W /�CAB and CABCD =�SAB /�CCD, respectively, and are 
highlighted as follows 

SAB = . . .  +  �a�CMNAMN − 1�2AAB + . . .  

CABCD = . . .  + 2�a�CMNAMN − 1�AABACD + . . .  �A3� 

Considering the surface of discontinuity defined by CMNAMN −1
=0, it is seen that SAB =0 and CABCD =0 on this surface. Thus, both 
the stress and elasticity tensors are continuous at the surface; i.e., 
S =S+= S− and ��C��= C+−C−=0. Consequently, the bimodular 
stress continuity conditions Eq. �7� are satisfied with the choice of 
s�C�=0.  

Polyconvexity Condition. Considering the sufficient condi

tions for polyconvexity stated in Eq. �16�, it suffices to show that 
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he strain energy term Wa defined in Eqs. �A1� and �A2� is a
onvex function of F. In indicial notation, the convexity condition
equires 

�2Wa HiAHjB � 0 for all HkC � FkC, HkC � 0 �A4� 
�FiA�FjB 

here Wa can be written in terms of F as 
1Wa = �a�FkMFkNAMN − 1�3 �A5�6 

 straightforward differentiation in indicial notation leads to 

�2Wa
 = �a�FkMFkNAMN − 1�2�ijAAB
�FiA�FjB
 

+ 4�a�FkMFkNAMN − 1�FiPAAPFjQAQB �A6� 
onsequently, one obtains 

�2Wa HiAHjB = �a�FkMFkNAMN − 1�2HiAAABHiB
�FiA�FjB
 

+ 4�a�FkMFkNAMN − 1�FiPAAPFjQAQBHiAHjB 

�A7� 
his result can be expressed in direct notation in terms of the fiber
irection a defined by A= a � a and the fiber stretch �a as 

�2Wa
 H · H = �a��2 − 1�2�Ha� · �Ha�
a�F�F 

+ 4�a��2 − 1���Fa� · H� · ��Fa� · H� �A8�a 

ince the scalar products �Ha� · �Ha� and ��Fa� ·H� · ��Fa� ·H� are
lways positive, a necessary and sufficient condition for Eq. �A8�
o be positive is that �a be positive when �a �1 and equal to zero
hen �a �1, as defined in Eq. �21�. 
In conclusion, the bimodular stress continuity condition allows

he material constant �a to jump across the surface of discontinu
ty, while the polyconvexity condition further requires that �a be a
ositive constant on the tensile side and equal to zero on the
ompressive side. 
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