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Abstract

Feature selection is the basic pre-processing task of eliminating irrelevant or re-
dundant features through investigating complicated interactions among features
in a feature set. Due to its critical role in classification and computational time,
it has attracted researchers’ attention for the last five decades. However, it still
remains a challenge. This paper proposes a binary artificial bee colony (ABC)
algorithm for the feature selection problems, which is developed by integrating
evolutionary based similarity search mechanisms into an existing binary ABC
variant. The performance analysis of the proposed algorithm is demonstrated
by comparing it with some well-known variants of the particle swarm optimiza-
tion (PSO) and ABC algorithms, including standard binary PSO, new velocity
based binary PSO, quantum inspired binary PSO, discrete ABC, modification
rate based ABC, angle modulated ABC, and genetic algorithms on ten bench-
mark datasets. The results show that the proposed algorithm can obtain higher
classification performance in both training and test sets, and can eliminate irrel-
evant and redundant features more effectively than the other approaches. Note
that all the algorithms used in this paper except for standard binary PSO and
GA are employed for the first time in feature selection.

Keywords: Feature selection, artificial bee colony, particle swarm
optimization, classification.

1. Introduction

Thanks to the rapid development in computer hardware and software, a huge
amount of information can be collected and included in datasets through a large
number of features (attributes). However, not all features are relevant to the
target concept. In other words, datasets may include irrelevant and redundant
features besides relevant ones. Unfortunately, these features may adversely af-
fect the classification performance due to the large search space, known as the
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curse of dimensionality [1, 2]. Furthermore, more features may introduce more
noise to the dataset that can be also detrimental to the classification perfor-
mance. Thus, it is important to select an appropriate feature subset from the
available features to achieve similar or even better classification performance
than using all features [3]. The task is terminologically known as feature selec-
tion. It does not only achieve better classification accuracy, but also improves
the efficiency, reduces data complexity, and simplifies the structure of the learnt
classifiers [2].

Feature selection is one of the most difficult tasks in data mining and classi-
fication due to the feature interaction and the large search space [4, 5]. Feature
interaction may be appeared as two-way, three-way or may involve even more
features. For instance, a feature by itself may not have a confident effect to the
target, but its effect can be increased when used together with other features.
Also, a feature which is individually relevant may become redundant when in-
terconnected with others. The other challenging task is the large search space,
2n, where n is the total number of features. In other words, it is not possible
to thoroughly search all possible solutions in most cases. Although a variety of
search methods such as sequential forward and backward feature selection (SFS,
SBS) [6, 7] have been proposed, they may converge to local minima or cost high
computational time.

To address these tasks, evolutionary computation (EC) techniques have been
used as a strong alternative to the classical search methods due to their global
search potentials. Particle swarm optimization (PSO) [8, 9], genetic algorithms
(GAs) [10, 11], genetic programming (GP) [12, 13], and ant colony optimization
(ACO) [14, 15] have been widely applied to feature selection. In this study, arti-
ficial bee colony (ABC) [16] based on foraging behaviour of honey bees is chosen
as the main motivation to address feature selection problems on account of the
following advantages when compared to the other well-known EC techniques
[17]: 1) It can converge more quickly to the target, 2) It is computationally less
expensive, and 3) It is one of the most recent EC techniques. The idea of apply-
ing ABC to feature selection is not a novel subject, i.e., there exist some studies
concerning the ABC based feature selection [18, 19, 20]. However, the exist-
ing studies unfortunately have not demonstrated a comprehensive experimental
study, including comparison with recent EC variants, on a variety of datasets
or thorough performance evaluation and analysis. Therefore, the potential of
ABC for feature selection has not been fully demonstrated and the need for the
studies based on ABC has not come to an end.

1.1. Goals

The overall goal of this paper is to propose an improved binary version of
the artificial bee colony (ABC) algorithm to address feature selection problems.
To achieve this goal, the discrete binary ABC (DisABC) algorithm [21] based
on the similarity of Jaccard Coefficient among individuals is further improved
by introducing the neighborhood selection mechanism of the differential evolu-
tion (DE) strategy. In other words, the similarity based search approach is re-
simulated according to the DE mutation, recombination and selection strategies.
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The other goal is to put forward a comprehensive comparative study of some
variants of the ABC, PSO and GA algorithms on wrapper feature selection in
terms of the classification performance and the feature subset size for the future
studies of researchers. To establish the second goal, seven algorithms, which are
binary PSO (BPSO) [22], new velocity based binary PSO (NBPSO) [23], quan-
tum inspired binary PSO (QBPSO) [24], discrete ABC (DisABC) [21], angle
modulated ABC (AMABC) [25], modification rate based ABC (MRABC) [26]
and genetic algorithms (GA) [27] are employed, and ten benchmark datasets,
including various classes, instances and features are chosen from the UCI ma-
chine learning repository [28]. Further, two recently published ACO studies are
considered to evaluate the performance of the proposed ABC variant. To our
knowledge, the employed algorithms except for BPSO and GA are the first time
to be used in feature selection, and a comprehensive comparative analysis on
feature selection is not very common in the literature. Specifically, the following
points are investigated:

• whether integrating a differential evolution search mechanism to the Dis-
ABC algorithm improves its global search ability in feature selection tasks,

• whether the proposed algorithm is able to perform well in both training
and test sets in terms of the classification rate when compared with the
seven existing algorithms,

• whether the proposed algorithm can more effectively remove redundant or
irrelevant features and can obtain better feature subsets than the seven
existing algorithms, and

• whether the proposed algorithm performs better than conventional deter-
ministic feature selection approaches.

1.2. The organization of the paper

The rest of the paper is organized as follows. Section 2 gives an outline of
the basic ABC algorithm and provides a background on recent studies related
to feature selection. Section 3 presents the proposed algorithm and Section 4
describes the experimental design. Section 5 presents the experimental results
and discussions. Section 6 concludes the study and provides an insight into the
future trends.

2. Background

In this section, background on the artificial bee colony and recent trends of
the feature selection are presented.
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2.1. Artificial Bee Colony

Artificial bee colony (ABC) that mimics the foraging behaviours of honey
bee colony was proposed by Karaboga in 2005 [29]. From the perspective of
an optimization problem, the food sources and their nectar amounts represent
probable solutions and their corresponding fitness values, respectively. The
ABC for a minimization problem can be explained as follows. Employed bees
exploit their associated food sources explored before and share the information
concerning quality and position of food sources with onlooker bees via waggle
dance. Onlooker bees waiting on the hive make decision on the selection of food
source to be exploited with the help of the information gained by employed
bees. Scout bees are responsible for searching a new food source depending on
an internal rule or possible external clues [30, 31]. The basic implementation of
ABC comprises of four phases:

1) Initialization Phase. Accepting the search space as the environment
of food sources available for the exploration and exploitation processes, the
algorithm first randomly produces food sources. Each food source defined as
Xi = {xi1, xi2, xi3, ..., xij , ..., xiD} is generated by:

xij = xmin
j + U(0, 1)(xmax

j − xmin
j ) (1)

where i = {1, 2, ..., SN} and SN is the number of food sources; j = {1, 2, ..., D};
U(0, 1) is the random variable uniformly distributed between (0,1); D is the
dimensionality of the search space; xmin

j and xmax
j are predefined minimum and

maximum values of parameter j.
2) Employed Bee Phase. Between employed bees and food sources, one-

to-one and on-to relation is established, i.e., each employed bee is associated with
only one food source. An employed bee modifies the position of its concerning
food source to find a new richer food source:

υij = xij + ϕij(xij − xkj) (2)

where i represents the index of current food source (Xi); k represents the index
of neighbor food source (Xk), which is randomly chosen among all sources except
for i; j is the randomly selected parameter for modification; Vi is the generated
food source determined by modifying one parameter of Xi; and ϕij is a random
number uniformly distributed within [−1, 1]. After Vi is generated, its fitness
value is evaluated. If the fitness value of Vi is better than the fitness value of
Xi, the employed bee will memorize the new food source position and leave the
old one, and its counter holding the number of trials is reset to 0. Otherwise,
the current food source is kept in memory and its counter holding the number
of trials is increased by 1.

3) Onlooker Bee Phase. After getting the information concerning nec-
tar amount (fitness value) and positions of food sources from employed bees via
waggle dance, each onlooker bee selects a food source depending on the probabil-
ity according to the fitness values through roulette-wheel scheme, where richer
food sources have a higher probability than others. The selection scheme based
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on fitness values is given by:

pi =
fitnessi

SN∑
i=1

fitnessi

(3)

where fitnessi is the fitness value of source Xi. After calculation of probability
(pi) value, a random number in the range of 0 and 1 (rand(0, 1)) is generated
for each food source i. If pi > rand(0, 1), Xi is chosen and then the searching-
exploiting process on Xi is carried out as in the employed bee phase.

4) Scout bee phase. It is known that after being exploited repeatedly,
food sources should be left by bees to avoid waste of energy. In basic ABC, a
food source is assumed as abandoned when its counter holding the number of
trials exceeds the predefined value, known as the “limit” parameter. Then, a
new food source is generated by Eq. (1) to replace the abandoned one.

2.2. Jaccard Similarity Coefficient

The binary similarity/dissimilarity measures play a critical role in many
applications, such as classification, clustering and image retrieval [32]. Over
the century, there has been a significant effort on consistently measuring the
similarity among binary vectors resulting numerous similarity and dissimilarity
measures in various fields. One of the most well-known similarity measures is
Jaccard Coefficient [33], defined by:

Similarity (Xi, Xk) =
M11

M11 +M10 +M01
(4)

where Xi and Xk are D dimensional binary vectors and the dth bit of Xi is
represented by xid (xidϵ {0, 1}); M11 is the number of bits where xid = xkd = 1;
M10 is the number of bits where xid = 1 and xkd = 0; and M01 is the number
of bits where xid = 0 and xkd = 1.

The dissimilarity measure between Xi and Xk is defined by:

Dissimilarity (Xi, Xk) = 1−Similarity (Xi, Xk) = 1− M11

M11 +M10 +M01
(5)

2.3. Discrete Binary ABC

Kashan et al. [21] introduced a discrete ABC (DisABC) based on the concept
of dissimilarity between binary vectors as a measure. Specifically, the substitute
operator ’−’ measuring the magnitude of differences between two sources (Xi

and Xk) to generate a new neighbor source (Vi) via Eq. (2) is first rewritten
in the form of Eq. (6). Eq. (6) is then formed into Eq. (7) by the Jaccard
Coefficient based similarity/dissimilarity between vector pairs (Eq. (5)).

υij − xij = ϕij(xij − xkj) (6)

Dissimilarity (Vi, Xi) ≈ Φ×Dissimilarity (Xi, Xk) (7)
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where Xi, Xk and Vi are binary sources and Φ is a positive random scaling
factor, defined by Eq. (8).

Φ = Φmax − (
Φmax − Φmin

MCN
)iter (8)

where Φmax and Φmin are the upper and lower levels of Φ, MCN is the maximum
number of cycle, and iter is the current cycle.

Eq. (7) reveals that the dissimilarity between Vi andXi (Dissimilarity (Vi, Xi))
should be close to the result of Φ×Dissimilarity (Xi, Xk) as much as possible.
According to this information, the number of bits with value 1 in both Vi and
Xi (M11), the number of bits with value 1 in Vi and value 0 in Xi (M10), the
number of bits with value 0 in Vi and value 1 in Xi (M01) are determined using
integer model programming through the following equations;

min

{
1− M11

M11 +M10 +M01
− Φ×Dissimilarity (Xi, Xk)

}
(9a)

M11 +M01 = m1 (9b)

M10 ≤ m0 (9c)

M11,M10,M01 > 0 and they are integers (9d)

where m1 is the total number of ones and m0 is the total number of zeros in Xi.
Eq.(9b) generates the feasible set of M11,M10,M01 is equal to (m1+1)(m0+1)
number of combinations. After the determination of the M values between Vi

and Xi, the generation task of Vi source is carried out. Vi is first defined as
1 ×D zero vector and then the following selection mechanisms are carried out
in a possibilistic manner.

1. Random selection. Choose M11 number of zero bits where their corre-
sponding values are equal to 1 in Xi and change their values in Vi from
0 to 1. Then, choose M10 number of zero bits where their corresponding
values are equal to 0 in Xi and change their values in Vi from 0 to 1.

2. Greedy selection. ChooseM11 number of zero bits where their correspond-
ing values are equal to 1 in both Xi and global best source in population
(GbestParams), and change their value in Vi from 0 to 1. In some cases,
it is not possible to modify M11 number of zero bits due to the interaction
between Xi and GbestParams. If the number of changed bits (index0) is
less than M11, choose (M11− index0) bits of zero where their correspond-
ing values are equal to 1 in Xi and change their values in Vi from 0 to 1.
After that, choose M10 number of zero bits where their corresponding val-
ues are equal to 0 and 1 in Xi and GbestParams, respectively, and change
their values in Vi from 0 to 1. If the number of changed bits (index1) is
less than M10, choose (M10 − index1) number of zero bits where their
corresponding values are equal to 0 in Xi and change their values in Vi

from 0 to 1.
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2.4. Feature Selection

How to determine a feature as relevant is a difficult problem due to the
complicated (two-way, three-way or multi-way) interactions between features.
A feature may become relevant or irrelevant when used together with other fea-
tures; thus, an optimal feature subset should comprise complementary features
which provide diverse properties of the classes [34]. Meanwhile, a large number
of available features lead to increment in the search space, i.e., it is impossible to
exhaustively search the whole space in most cases. Although various algorithms
have been proposed to address feature selection problems, it still remains a chal-
lenge. The factors affecting the performance of a feature selection algorithm are
as follows [35]:

1. Initialization. The starting feature subset in the space should be first
determined, which directly influences the search direction and operators.
For instance, one may start with empty set and then iteratively adds fea-
tures to this subset (known as forward) or one may start with all features
and then removes them iteratively (known as backward). Feature set can
be also initialized according to some predefined rules [36].

2. Search strategy. An exhaustive search is not practically possible due to
the large search space in most cases. Therefore, a more realistic approach
can be applied. For instance, searching can be made by both forward and
backward strategies (known as floating search) or more heuristic global
search techniques. In this concept, evolutionary computation based algo-
rithms, including particle swarm optimization (PSO) [37], genetic algo-
rithms (GAs) [27], and ant colony optimization (ACO) [38] get attention
due to their search abilities. In recent years, researchers also have started
to work on artificial bee colony (ABC) to solve feature selection problems
[18, 19].

3. Evaluation criterion. An evaluation criterion is expected to measure the
quality of a feature subset accurately and inexpensively. Fundamentally,
all evaluation criteria are based on the either classification performance or
the characteristics of the data itself [39, 40].

4. Stopping criterion. Whereas some algorithms complete their processes
without any restriction or rules, some of them need to confirm that the
reached feature subset is a good one [34]. In addition, the size of obtained
feature subset can be also used as a stopping criterion.

Given a dataset Z comprising of N patterns/examples/instances and S feature
set. To select a feature subset Sk via a feature selection algorithm, the following
issues need to be considered [35]:

1. The size of Sk must be smaller than current S s.t. Sk ⊂ S.
2. The dataset Z within Sk feature subset should achieve the best classifica-

tion performance.
3. While providing the best classification performance, the size of Sk should

be as small as possible.
4. The most appropriate evaluation criterion for the dataset should be se-

lected.
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2.4.1. Existing feature selection methods

Feature selection methods can be categorized into two main groups: filter
methods and wrapper methods [41]. Filter methods eliminate irrelevant or noisy
features from the dataset without applying any classification algorithm. In
contrast to filter methods, a wrapper method employs a learning (classification)
algorithm to evaluate the goodness of the selected feature subset [42]. Filter
methods are argued to be more general than wrapper methods, but wrapper
methods are more successful than filter methods in terms of obtaining better
classification performance.

1) Deterministic Approaches. One of the simplest filter methods, Re-
lief [43] selects k number of highest correlated features with the target class.
However, Relief does not deal with redundant features since it tries to get all
relevant features without considering the redundancy of feature. Another ba-
sic filter method, FOCUS [44] searches for the smallest possible feature subset.
It starts with a single feature and then adds other features to the subset un-
til it finds the subset that splits the training data according to their outputs.
However, it is computationally intensive.

Two well-known wrapper methods, sequential forward selection (SFS) [6] and
sequential backward selection (SBS) [7] use forward and backward strategies in
finding candidate feature subsets. SFS starts with an empty feature subset
and then adds features to the subset until the further addition cannot improve
the classification performance. On the other hand, SBS starts with a subset
including all features and then removes features from this subset until the further
removal cannot improve the classification performance. However, the features
added or removed cannot be handled or modified later. It can be inferred
that these methods are similar to the mechanism of agglomerative and divisive
hierarchical methods in terms of non-dynamic structures. Thus, these methods
may converge to local minima. To minimize the drawbacks of SFS and SBS,
floating forward and backward search mechanisms (SFFS and SFBS) [45] were
developed. SFFS (SFBS) performs forward (backward) step after each backward
(forward) step. They perform better than SFS and SBS, but they may also
converge to local minima.

2) EC (Non-ABC) based Approaches. To overcome the drawbacks
of deterministic feature selection methods, researchers have concentrated on
solving the feature selection problem using evolutionary and swarm intelligence
based algorithms, including GAs, GP, ACO and PSO. Yang and Honavar [10]
proposed an objective function based on the feature measurement cost and the
classification accuracy to improve the classification performance. Raymer et al.
[11] proposed a feature selection method using GA, where feature selection and
extraction were carried out simultaneously. The effectiveness of the proposed
algorithm was tested by comparing it with the SFFS [45] and linear discriminant
analysis methods. However, the obtained feature subset by GA through tuning
sets is not much a preferred way to evaluate the feature subsets. Zhu et al.
[46] introduced a wrapper-filter feature selection algorithm (WFFSA) based
on a combined version of local search and GA. In local search mechanism of
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WFFSA, two operators were defined: 1) select a feature from activated feature
set (the positions of which represent 1 in chromosome) using linear ranking
selection and move it to inactivated features (the positions of which represent
0 in chromosome), and 2) select a feature from inactivated feature set using
linear ranking selection and move it to to the activated feature set. Muni et al.
[12] introduced a multi-tree GP based feature selection method, in which each
classifier has c trees comprising of feature subset for a problem with c classes.
Ahmed et al. [47] used GP to combine top-ranked features obtained by the
two feature ranking techniques, information gain and Relief to deal with feature
selection problems on mass spectrometry. Unler and Murat [8] address feature
selection through an adaptive discrete PSO, where a feature subset is selected
by the relevance and predictive contribution of each feature. The superiority
of the method was demonstrated by comparing it with tabu search, SFS and
SBS. Liu et al. [9] proposed an improved feature selection (IFS) method, the
aim of which was to reach higher generalization capability. IFS was built on
multi swarm PSO (MSPSO), SVM and an improved fitness function based on
F-score. The performance analysis of IFS was conducted by comparing it with
PSO and GA. However, MSPSO was computationally more expensive than PSO
and GA due to its complex structure and large population size. Xue et al. [3]
investigated the feature selection problem using PSO with a two stage fitness
function, comprising of the error rate and the number of features. This approach
improved the feature subset when compared to the PSO using only the error
rate as a fitness function. Xue et al. [3] also considered feature selection as
a multi objective problem (i.e. maximizing the classification performance and
minimizing the number of features simultaneously). In another study, Xue et
al. [36] integrated three new initialisation strategies and updating mechanisms
to the PSO algorithm motivated by forward selection, backward selection and
a combination of them. The detailed survey of PSO on feature selection can be
found in [48, 49]. ACO has also been used to solve FS problems, where nodes
represent features, and the edges between nodes define the choice of the next
feature in graphs [50]. Ming [51] proposed an ACO and rough set theory based
feature selection method, which starts with the features in the core of a rough
set and uses forward selection. Ding [52] combined ACO and SVM for feature
selection problems. In this model, grid based ACO was implemented to optimize
the parameters of SVM, and feature subset selection was performed through F-
statistics. Nemati et al. [14] introduced a parallel combined version of ACO
and GA for feature selection in protein function prediction. Sarac and Ozel [53]
proposed an ACO based feature selection approach for web page classification,
in which feature extraction is applied before feature selection to group similar
HTML tags together, i.e., to reduce the feature space. More information on
ACO based feature selection can be found in [50, 54].

3)ABC based Approaches. In recent years, researchers have been trying
to develop feature selection approaches using the ABC algorithm after observing
the numerous efficient applications based on ABC in various fields [55, 56, 26,
57]. Uzer et al. [19] used the corporation of ABC and SVM in medical dataset
classification. Although the performance analysis of the ABC based feature
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selection approach was conducted by comparing it with the results obtained
from existing studies, the feature subset size and standard deviations of the
obtained accuracy values were not considered. Subanya and Rajalaxmi [58]
applied the combination of the proposed ABC and Naive Bayes to the Cleveland
Heart disease dataset. However, no comparative study was reported to show the
effectiveness of the proposed approach. Shunmugapriya et al. [59] improved the
searching mechanism of ABC with abandoned food source for feature selection.
As in [58], no comprehensive comparative study was presented to show the
effectiveness of the proposed method. Schiezaro and Pedrini [18] presented
a study on feature selection comparing the proposed ABC algorithm with the
standard PSO, ABC and GA, where simple modification rate (MR) perturbation
is used to select a feature subset. The obtained results indicated that the ABC
algorithm was superior to the others. However, the number of evaluations for
all algorithms was not chosen as the same value. In [60], an hybrid version of
rough set-based attribute reduction (RSAR) and ABC algorithms was applied
to feature selection, and the effectiveness of the proposed approach was shown
by comparing it with six well-known approaches, including RSAR, PSO and
GAs. Although the proposed and some employed algorithms reached the same
feature subset size for 3 out of 5 datasets, the obtained features were not clearly
evaluated to reflect how the proposed algorithm outperformed the others in
terms of accuracy. Consequently, the need and demand for the studies based on
ABC and other EC techniques is still expected to be covered.

3. The Proposed Approach

Discrete binary ABC (DisABC) [21] is one of the first binary variants of
the ABC algorithm based on the similarity between binary vectors measured
by the Jaccard coefficient. It has gained popularity among the researchers, and
has been used in the comparative studies of binary problems [61] on account
of its simplicity, novelty, and performance. This leads us to choose DisABC
as a main motivation for the feature selection problems in this study. Further-
more, the drawbacks including the complicated structure (NP hard) of feature
selection and the weakness of DisABC in high-dimensional problems motivate
us to improve the search ability of the DisABC algorithm for feature selection
problems.

How can we improve the search ability of the DisABC algorithm? For two
decades, population-based metaheuristics composed of an evolutionary frame-
work and a set of local algorithms activated within the generation cycle of
the external work [62] have attracted attention since they are inspired by the
transmission of ideas and combination of multiple operators. By this way, it is
expected to achieve good performance in problem solving. Nowadays, it is not
difficult to see numerous successful metaheuristic and evolutionary algorithms
comprising some forms of lifetime learning [63]. The most common way to use
a learning scheme in an EC based algorithm is the hybridization (or modifica-
tion), which refers to the combination of two or more different methods in an
efficient way. In other words, one of the simplest ways to increase the search
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ability of an algorithm is to modify some parts of the mechanism via internal
or external forces or mix of at least two heterogeneous individuals by conscious
manipulation or as a natural progressive manipulation [63].

Keeping the above mentioned remarks in mind, we propose a modified Dis-
ABC algorithm (MDisABC) using the ideas of mutation, recombination and
selection in evolutionary computation, such as DE [45, 64]. The major compo-
nents/factors of MDisABC are given as follows. Firstly, instead of using one
neighbor solution, three neighbors are used to create mutant solution in the
search space. In this way, bees can share information obtained from neighbors
more effectively in order to improve the search ability of the whole algorithm.
In standard DE, a mutant solution (Ωi = {ωi1, ωi2, ..., ωid, ..., ωiD} ) of a current
solution Xi is generated by Eq. (10). However, it cannot be directly used in
binary problem solving. To form Eq. (10) in the concept of dissimilarity that
is suitable to the binary space, Eq. (10) first needs to be rewritten in the form
of Eq. (11). Then, the substitute equation ’-’ in Eq. (11) measuring the magni-
tude of differences between binary vectors is reformulated into Eq. (12) by the
Jaccard Coefficient dissimilarity between vector pairs (Eq. (5)).

Ωi = Xr1 +Φ(Xr2 −Xr3) (10)

Ωi −Xr1 = Φ(Xr2 −Xr3) (11)

Dissimilarity (Ωi, Xr1) ≈ Φ×Dissimilarity (Xr2 , Xr3) (12)

where r1, r2 and r3 are randomly selected neighborhoods and Φ (or known as
F ) is the positive scaling factor.

According to Eq. (12), Dissimilarity (Ωi, Xr1) should be close to Φ ×
Dissimilarity (Xr2 , Xr3) as soon as possible (see Eq. (13)). Eq. (13) is then
reformulated into Eq.(14) using mathematical programming as mentioned in
Section 2.2, and M values between Ωi and Xi that are required to generate Ωi

are found by solving Eq. (14).

min {Dissimilarity (Ωi, Xr1)− Φ×Dissimilarity (Xr2 , Xr3)} (13)

min

{
1− M11

M11 +M10 +M01
− Φ×Dissimilarity (Xr2, Xr3)

}
(14a)

M11 +M01 = m1 (14b)

M10 ≤ m0 (14c)

M11,M10,M01 > 0 and they are integers (14d)

where m1 is the number of ones in Xr1 and m0 is the number of zeros in Xr1.
The second important component/factor is the recombination between the

current Xi and mutant solution Ωi, shown by Eq. (15). By this way, the ex-
change of information is fully provided between the mutant and current solutions
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to find better solutions, which is known as multiple interaction [29].

uid =

{
ωid, if rand(d) ≤ CR,

xid, otherwise,
(15)

where CR is the crossover rate and ωid represents the dth dimension of Ωi. A
new solution is then formed as Ui = {ui1, ui2, ..., uid, ..., uiD} and uid represents
the dth dimension of Ui.

3.1. Major steps to generating a new solution

To further explain the process of generating a new solution in MDisABC,
we summarised the major steps as follows:

• Step 1: randomly select three neighbors (i.e. food sources), Xr1, Xr2 and
Xr3 for the current food source Xi;

• Step 2: calculate Φ×Dissimilarity (Xr2, Xr3) by Eq. (5);

• Step 3: solve Eq. (14) to get M values between Ωi and Xi;

• Step 4: using the obtained M values, apply random selection or greedy
selection in a probabilistic manner to generate Ωi;

• Step 5: apply recombination between Xi and Ωi by Eq. (15) to generate
a new solution Ui;

• Step 6: choose a better solution between Xi and Ui;

An Example: We also include the following example to illustrate the first
four steps in detail to show how to generate a mutant solution Ωi. The fifth and
sixth steps are not included in this example since they are easy to understand.

• Step 1: randomly pick up three neighbors, sayXr1 = {1, 0, 0, 0, 0, 1, 1, 0, 1, 0},
Xr2 = {0, 0, 1, 1, 0, 0, 0, 1, 1, 1} and Xr3 = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}, and as-
sume that Φ is assigned as 0.8.

• Step 2: calculate Φ × Dissimilarity (Xr2, Xr3) based on the M values
between Xr2 and Xr3, which are M11 = 2, M10 = 3 and M01 = 2 using
Eq. (5):

Φ×Dissimilarity(Xr2, Xr3) = 0.8× (1− 2

2 + 3 + 2
) = 0.5714 (16)

• Step 3: get the optimal M values between Ωi and Xi as M11 = 3, M10 = 3
and M01 = 1 by solving Eq. (14):

min

{
1− M11

M11 +M10 +M01
− 0.5714

}
(17a)

M11 +M01 = 4 (17b)

M10 ≤ 6 (17c)

M11,M10,M01 > 0 (17d)
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where m1 = 4 (number of ones in Xr1) and m0 = 6 (number of zeros in
Xr1).

• Step 4: set Ωi = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. Select M11 = 3 bits from
S1xr1 = {1, 6, 7, 9}, where S1xr1 is the set representing the elements of
value 1 in Xr1. Assume that sixth, seventh and ninth elements are ran-
domly selected; therefore, Ωi = {0, 0, 0, 0, 0, 1, 1, 0, 1, 0}. After that, select
M10 = 3 number of bits from S0xr1 = {2, 3, 4, 5, 8, 10}, where S0xr1 is the
set representing the elements of value 0 in Xr1. Assume that third, fifth
and last elements are selected; therefore, Ωi = {0, 0, 1, 0, 1, 1, 1, 0, 1, 1}.

3.2. Pseudo code of MDisABC

In MDisABC, the initial binary food sources are generated by Eq. (18)
instead of Eq. (1) [21].

xid =

{
1, if randid ≥ 0.75,

0, otherwise,
(18)

where randid is the uniformly generated number within the range of [0, 1]
for the dth dimension of source i.

MDisABC follows the basic steps of ABC except for the initialisation and
new solution generation mechanisms. The detailed pseudo code of the
MDisABC algorithm can be seen in Algorithm 1.

4. Experiment Design

4.1. Datasets

Ten benchmark datasets from the UCI machine learning repository [28] are
used in experiments, as shown in Table 1. The datasets comprise of a various
number of features, classes and samples, providing a comprehensive analysis of
the proposed and employed algorithms. For each dataset, samples are randomly
divided into two sets: 70% as the training set and 30% as the test set. As a
classifier, k nearest neighbours (KNN) is used to evaluate the classification
performance, where k is chosen 5 (5NN) as in [3].

4.2. Employed Algorithms in Comparative Study

To show the effectiveness of the proposed algorithm, the following EC based
algorithms are employed:

1. Genetic Algorithms (GA). GA [27] is one of the most popular EC tech-
niques for feature selection, where each chromosome represents a feature
subset. Selection, crossover and mutation are the main operators in GA.
A sub-population is first selected from initial population for crossover.
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begin
Initialize food sources by Eq.(18);
Find the global best (GbestParams) food source;
for cycle← 1 to MCN do

foreach employed bee i do
Choose randomly three food sources Xr1,Xr2 and Xr3 in the
neighbourhood of Xi;
Calculate Dissimilarity(Xr2, Xr3) by Eq. (12);
Find M ′val combination through Dissimilarity(Ωi, Xr1) by Eqs. (14);
if rand() < 0.5 then

Ωi = randomselection(Mvals,Xr1);
else

Ωi = greedyselection(Mvals,Xr1,gbest);
end
for d = 1 to D do

if rand(d) < CR then
uid = ωid

else
uid = xid

end

end
Apply greedy selection between Ui and Xi;

end
foreach onlooker bee i do

Select a food source Xi depending on probability pi by using Eq.(3);
Choose randomly three food sources Xr1,Xr2 and Xr3 in the
neighbourhood of Xi;
Calculate Dissimilarity(Xr2, Xr3) by Eq. (12);
Find M ′val combination through Dissimilarity(Ωi, Xr1) by Eq.(14);
if rand() < 0.5 then

Ωi = randomselection(Mvals,Xr1);
else

Ωi = greedyselection(Mvals,Xr1,GbestParams);
end
for d = 1 to D do

if rand(d) < CR then
uid = ωid

else
uid = xid

end

end
Apply greedy selection between Ui and Xi;

end
if there exits an abondoned food source then

Scout bee determines a new food source;
end
Update GbestParams food source;

end

end

Algorithm 1: The pseudocode of the MDisABC
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Table 1: Datasets

Dateset
Number Number Number of

of Features of Classes Examples

Wine 13 3 178

Vehicle 18 4 846

German 24 2 1000

WBCD 30 2 569

Ionosphere 34 2 351

Lung 56 3 32

Hill-Valley 100 2 606

Musk 1 166 2 476

Madelon 500 2 2600

Isolet5 617 26 1559

After crossover is performed, mutation is applied in a probabilistic man-
ner. Then, generated offsprings and current population is sorted and a
selection scheme (e.g. elitist or roulette-wheel) is applied among them to
generate new population for the next iterations.

2. Binary Particle Swarm Optimization (BPSO). BPSO was proposed by
Kennedy and Eberhart for discrete problems in 1997 [22]. In BPSO, ve-
locities are continuous values and are updated as in continuous PSO, but
the velocity values represent the probability of the corresponding positions
in a particle taking value 1 or 0 in contrast to basic PSO.

3. New Velocity Based Binary Particle Swarm Optimization (NBPSO). Khane-
sar et al. [23] determined that inertia weight may have negative effects
on velocity and particle update mechanism. Thus, they introduced an
effective velocity mechanism to update particles, named as new velocity
based binary PSO (NBPSO).

4. Quantum Inspired Binary Particle Swarm Optimization (QBPSO). Yun-
Won et al. [24] integrated the concept and principles of quantum comput-
ing, including quantum bit and superposition of states into basic BPSO,
namely quantum inspired BPSO (QBPSO). In QBPSO, a Q-bit individual
is integrated as the probability of particles taking value 1 and 0 instead
of velocities. Accordingly, some parameters such as inertia weight and
balance coefficients are not required to be determined.

5. Angle Modulated Artificial Bee Colony(AMABC). Pampara and Engle-
brecht [25] proposed a binary artificial bee algorithm inspired by angle
modulation (AMABC). In AMABC, each candidate is represented via a
four dimensional continuous vector (a,b,c,d) within [-1,1] and each can-
didate is transformed into a D-dimensional binary space by the sinusoid
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function.

6. Modification Rate Based Artificial Bee Colony (MRABC). Akay and Karaboga
[26] introduced a modification rate (MR) perturbation into basic search
equation (Eq. 2) to decrease the convergence problems of the standard
ABC in high dimensional problems. For each parameter of an individual,
a random number (rand(0,1)) is generated. If rand(0, 1) < MR, that pa-
rameter is evolved by Eq. (2); otherwise, it is not changed. Note that [18]
used similar mechanism to MRABC in feature selection problems.

7. Discrete Binary Artificial Bee Colony (DisABC). DisABC [21] is based
on measuring dissimilarity via Jaccards coefficient between the current
and neighborhood candidates. The detailed information concerning the
DisABC can be found in Section 2.3.

Among the employed algorithms, BPSO and GA are the most widely used al-
gorithms in feature selection resulting many publications [54, 65]. The other
algorithms have been recently proposed and are strongly considered as funda-
mental approaches for the different variants of ABC and PSO by the researchers.
However, they have not been applied to feature selection problems yet. Accord-
ing to the determined points, they are chosen for the comparative studies to
show the effectiveness of the proposed approach.

As for the comparison of the proposed algorithm with the deterministic
approaches, the linear forward selection (LFS) [66], floating forward selection
(LFFS) [66] and greedy stepwise based selection (GSBS) [67] approaches de-
rived from the sequential forward (SFS), sequential floating forward (SFFS) and
sequential backward (SBS) feature selection approaches are chosen. While LFS
(GSBS) performs forward (backward) search by adding (removing) features,
LFFS applies both forward and backward searches in a sequential order. The
experiments of LFS, LFFS and GSBS are processed using Waikato Environment
for Knowledge Analysis (WEKA) [68], and the results of the deterministic and
proposed approaches are presented together in Table 4.

4.3. Parameter Settings

In the experiments, the following parameters are used: the number of indi-
viduals in the population is set to 30 as in [4]; the maximum number of iterations
is empirically set to 50; the parameters of BPSO are selected as in [69] such that
c1 = 2, c2 = 2, initial weight= 0.9 and V max = 6; the crossover and mutation
rates of GA are selected as 0.8 and 0.2 as in [70]; the parameters of NBPSO are
selected as in [23] such that w1 = 0.5 and V max = 6; the parameters of QBPSO
are selected as in [24] such that Qmax = 0.05π and Qmin = 0.01π; the limit
parameter of the AMABC, MRABC, DisABC and MDisABC is experimentally
chosen as 50; Φmax and Φmin are set to 0.9 and 0.5 in MDisABC and DisABC
as in [21]; the MR parameter of MRABC is set to 0.5; and the CR parameter
of MDisABC is experimentally chosen as 0.25.

An individual of an EC based algorithm represents a probable feature subset
of S in a feature selection problem. If any dimension of an individual is 1 (or
> 0.5), its corresponding feature is selected, which can be illustrated in Fig. 1.

16



Figure 1: An illustrative representation on how the features are selected

The fitness value (error rate) of the corresponding individual (feature subset) is
calculated through 10-fold cross-validation on the training set [71]. The training
set is divided into 10 folds. A single fold is used as the sub-test data, and the
remaining 9 folds are used as the sub-training data. This process is repeated 10
times with each of the 10 folds as the sub-test data. Then the averaged error
rates from the 10 times are used as the fitness value of the corresponding feature
subset (individual) during the evolutionary feature selection process. How and
why 10-fold cross validation is used in this way is explained in [71] in detail.
After the evolutionary process, the best feature subset is evaluated on the test
set using with the training set and 5-NN to obtain the classification error rate
by Eq. (19).

ErrorRate =
FP + FN

FP + FN + TP + TN
(19)

where TP and TN are true positives and negatives, and FP and FN are false
positives and negatives.

5. Experimental Study

The experimental results of the classification error percentage over the 30
independent runs are presented in Tables 2, 3 and 4 in terms of mean values,
standard deviations and symbols where ‘CER’ represents the classification er-
ror rate, ‘#NOF’ represents the number of selected features and ‘T-Sig’ shows
whether there exists any statistically significant difference obtained by Wilcoxon
Rank Sum Test between the proposed and other algorithms.

The symbols used to demonstrate the significant difference between the pro-
posed and the other algorithms on the classification error rate through Wilcoxon
Rank Sum Test have the following meanings:

• ‘+’ & ‘−’: The results of the MDisABC algorithm are significantly better
or worse than the corresponding algorithm.

• ‘≈’: The results of the MDisABC algorithm are similar to the correspond-
ing algorithm.

In addition, the number of times that each feature is selected over 30 indepen-
dent runs for the Wine, Vehicle, German, WBCD and Ionosphere datasets are
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reported in Tables 5 to 9. Due to the large dimensionality, the other datasets
could not be used for the analysis.

5.1. Results on the Training Sets

The results of the error rate values on the training sets through EC based
algorithms are presented in Table 2. It is shown in Table 2 that the proposed
algorithm gets the best performances for five datasets in terms of the mean
error rates. Table 2 also shows that MDisABC produces better mean values
than DisABC in almost all cases, which shows the improvement on DisABC is
well-designed and well-established. Further, between the results of MDisABC
and the other ones, there exist mostly significant differences. For instance,
MDisABC mostly gets significantly better results than BPSO, which is one
of the most widely-used algorithms in feature selection. Only in three cases
of Isolet5, the results of MDisABC are statistically worse than the results of
the GA, NBPSO and QBPSO algorithms; in two cases of Musk1, NBPSO and
GA statistically performs better than MDisABC, and in one case of Wine, GA
statistically achieves better results than MDisABC. Except for these six cases,
in 64 out of 70 (7 algorithms × 10 datasets) cases, the existing algorithms
cannot obtain significantly better performance than the MDisABC algorithm.
Therefore, it can be suggested that the proposed algorithm outperforms the
others in terms of minimizing the training error rate.

5.2. Results on the Test Sets

On the test sets, the classification error rate and the feature subset size
should be considered together to make fair comparisons of the algorithms. For
instance, two algorithms may achieve similar classification performance, but the
one selecting a smaller number of features is a better algorithm. Summarizing
the average error rate values on the test sets, Table 3 shows that in almost all
cases, the EC based algorithms obtain lower classification errors using smaller
feature subsets than when all features are used with the 5NN classifier. For
instance, while 5NN is able to obtain 22.17% error using all features in Wine,
nearly all EC based algorithms except for GA obtain no classification error (0%)
just using around half of the available features. Thus, it can be inferred that
feature selection plays a vital role in classification performance.

Table 3 also indicates that MDisABC achieves the best performances in
terms of the mean error rate values except for four cases and it generally gets
the smallest feature subset. Especially in Musk and Madelon, the reduction of
the subset size is nearly at least 10% when compared to the others. In Hill-
Valley, Vehicle and German, DisABC, MRABC, and AMABC achieve the best
mean values, respectively. In terms of the significance test, the proposed MDis-
ABC algorithm only gets significantly worse performance than the other ones
in 1 out of 70 cases (10 datasets × 7 algorithms). Especially in Ionosphere,
Madelon, Isolet 5, and WBCD, the statistical performance of the MDisABC
algorithm is successful. Although the error rate results of the algorithms are
mostly similar to each other especially in Wine, Vehicle and German, MDis-
ABC reduces the feature subset size more effectively than the other algorithms.
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Table 2: The obtained error percentages of the algorithms on the training sets

Dataset GA BPSO NBPSO QBPSO AMABC MRABC DisABC MDisABC

Wine CER 3.95±0.50 4.38±0.09 4.38±0.09 4.41±0.18 4.82±0.19 4.45±0.12 4.51±0.16 4.36±0.08

T-Sig - ≈ ≈ ≈ + + +

Vehicle CER 29.71±0.70 29.12±0.32 29.15±0.56 29.99±1.14 30.39±0.55 29.24±0.50 29.29±0.53 28.94±0.15

T-Sig + + + + + + +

German CER 24.93±0.96 24.80±0.49 24.43±0.78 24.34±0.55 25.49±0.55 24.45±0.61 24.27±0.75 23.91±0.39

T-Sig + + + + + + ≈

WBCD CER 4.71±0.41 3.99±0.43 4.58±0.57 4.44±.44 4.12±0.37 4.53±0.39 4.19±0.51 3.79±0.33

T-Sig + ≈ + + + + +

Ionosphere CER 8.72±1.18 8.89±0.80 7.19±1.12 6.61±.91 7.44±0.68 8.76±1.05 6.04±0.41 5.74±0.41

T-Sig + + + + + + +

Lung CER 25.10±5.58 23.82±3.95 19.63±5.50 18.66±4.55 26.32±3.88 23.35±4.36 19.84±3.98 18.83±3.05

T-Sig + + ≈ ≈ + + ≈

Hill-Valley CER 40.83±1.48 43.01±0.96 40.18±1.15 40.48±0.84 43.11±0.84 41.79±1.31 40.15±0.80 40.14±0.77

T-Sig + + ≈ + + + ≈

Musk 1 CER 7.42±1.02 9.68±0.55 7.35±0.94 7.94±0.60 10.67±0.69 8.98±0.85 8.14±1.10 7.85±0.63

T-Sig - + - ≈ + + ≈

Madelon CER 18.53±0.93 21.87±0.49 18.82±1.01 19.42±0.54 22.99±0.85 20.59±0.73 19.63±2.11 18.71±1.03

T-Sig ≈ + ≈ + + + +

Isolet5 CER 11.65±0.75 14.33±0.53 11.90±0.66 12.25±0.49 15.51±0.49 13.19±0.58 13.63±1.12 12.73±0.61

T-Sig - + - - + + +

Therefore, the MDisABC algorithm can be also regarded as successful in those
datasets. Consequently, the proposed MDisABC also outperforms the others in
terms of minimizing the error rate and feature subset size on the test sets.

5.3. CPU Time Analysis

The computational time results are presented in Fig. 2. The experiments are
implemented in MATLAB 2013a and are executed on a computer with an Intel
Core i7-4700HQ 2.40 GHz CPU and 8 GB RAM. The implementation codes of
the employed algorithms except for QBPSO are provided from the authors of
the corresponding studies [69, 21, 23] or are coded according to the authors’ sug-
gestions [25] to demonstrate a reliable analysis. According to Fig. 2, there exists
no great difference between the algorithms in term of the CPU computational
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Table 3: The obtained error percentages of the algorithms on the test sets

Dataset GA BPSO NBPSO QBPSO AMABC MRABC DisABC MDisABC
5-NN

All

Wine CER 9.19±1.64 0 0.37±1.02 0 0 0.12±0.46 0 0 22.17

#NOF 6.1 5.8 6.13 5.83 6.63 5.76 5.83 5.76 13

T-Sig + ≈ ≈ ≈ ≈ ≈ ≈

Vehicle CER 20.82±1.71 20.74±1.70 21.32±1.98 22.48±2.19 21.31±1.96 20.73±1.67 20.99±1.90 21.22±2.12 23.9

#NOF 10 9.93 9.76 9.90 11.93 9.73 9.73 9.30 18

T-Sig ≈ ≈ ≈ ≈ ≈ ≈ ≈

German CER 29.06±1.84 28.97±1.79 29.17±1.91 29.12±1.84 28.62±1.71 29.90±1.69 29.43±2.61 29.85±1.87 32

#NOF 10.70 11.43 11.30 10.83 13.56 10.40 8.73 8.03 25

T-Sig ≈ ≈ ≈ ≈ - ≈ ≈

WBCD CER 7.27≈1.46 7.05±1.03 7.54±1.17 7.45±0.91 7.39±1.18 7.84±0.80 7.37±1.06 6.72±1.08 7.06

#NOF 14.96 13.36 13.96 14.30 12.06 14.50 12.23 11.86 30

T-Sig + ≈ + + + + +

Ionosphere CER 8.47±1.75 8.09±1.45 7.68±1.96 7.96±1.86 7.11±1.90 8.95±1.53 6.69±1.72 6.38±1.64 10.48

#NOF 10.93 10.1 9.63 8.23 4.9 10.13 6.03 5.76 34

T-Sig + + + + ≈ + ≈

Lung CER40.00±12.5834.07±13.3538.88±15.6435.18±11.7044.44±15.9842.96±13.9139.62±11.91 32.96±8.49 44.44

#NOF 28.03 27.33 27.30 26.70 22.03 26.50 16.66 24.36 56

T-Sig + ≈ ≈ ≈ + + +

Hill-Valley CER 45.95±2.05 45.73±1.84 45.78±1.48 45.53±1.79 45.6±2.68 45.67±2.34 44.57±2.23 44.92±2.13 47.25

#NOF 45.73 46.16 44.86 44.7 31.5 44.73 24.60 30.53 100

T-Sig + + + ≈ ≈ ≈ ≈

Musk 1 CER 17.19±2.36 16.64±2.78 16.04±2.40 15.40±2.20 18.33±3.17 15.71±2.73 15.88±2.91 14.71±2.07 20

#NOF 81.83 81,2 82,23 81,4 75,96 82.26 86.16 75.76 166

T-Sig + + + ≈ + ≈ ≈

Madelon CER 23.79±1.28 24.03±1.45 23.96±1.73 22.55±1.47 24.58±1.60 23.95±1.31 23.02±3.84 21.14±2.02 28.21

#NOF 250.03 248.1 246.26 240.56 238.43 248.43 223.86 195.96 500

T-Sig + + + + + + +

Isolet5 CER 14.90±1.19 15.33±1.19 15.09±1.04 14.47±1.10 16.63±1.14 15.20±1.12 16.02±1.38 14.51±1.17 19.02

#NOF 306.06 306.6 303.93 305.73 347.4 303.96 378.33 300.10 617

T-Sig ≈ + + ≈ + + +
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times in almost all datasets. For instance, the CPU time difference between
the algorithms is at most 1 or 2 seconds from Wine to Musk1. This is not a
large difference when compared to the runtime of algorithms on these datasets
which was between 18 and 35 seconds. Proportional to the dimensionality and
number of patterns, the time complexity is increased in the Madelon and Iso-
let5 datasets, where the AMABC and DisABC algorithms cannot preserve the
scalability as in the other datasets.

Figure 2: Average CPU computational times of the algorithms

When comparing the proposed MDisABC with deterministic methods, there
is no clear pattern since the computational time used by different methods heav-
ily depends on the datasets. In general, for datasets with a small number of
features (e.g. Wine), the deterministic methods take shorter time than MDis-
ABC. For datasets with a large number of features (e.g. Madelon), MDisABC
is often slower than LFS and LFFS, but is faster than GSBS. The main reason
is that most of the computational time in a wrapper feature selection method
is spent on the evaluation procedures. On large datasets (e.g. Madelon), GSBS
may have a larger number of evaluations than MDisABC and each evaluation
in GSBS may take longer time than in MDisABC because GSBS starts eval-
uations with a large number of features. Thus, it can be concluded that not
only in the traning and testing classification performance, but also in the CPU
computational time the proposed MDisABC algorithm performs well.

5.4. Analysis of Selected Features

To show the stability/consistency of the features selected by the proposed
algorithm over different independent runs, we analyse the number of times for
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each feature being selected by the algorithms in the 30 independent runs. Due
to the space limit, five datasets (Wine, Vehicle, German, WBCD and Iono-
sphere) with relatively small number of features are used here as examples for
the analysis of the selected features.

Presenting the selection times of each feature in Wine, Table 5 shows that
F1, F7 and F10 are the most dominant features in classification frequently
selected by all algorithms, and F4, F5, F12 and F13 are mostly not preferred
features by all algorithms except for the cases of GA and NBPSO in F12. For
the other features, whereas F2 is mostly preferred by DisABC and AMABC, it
is not preferred frequently by the BPSO variants and the proposed MDisABC
algorithm. F8 is mostly preferred by AMABC and is sometimes preferred by
DisABC and NBPSO, but it is only selected for once by the others. Therefore,
MDisABC is as stable as the other algorithms. Furthermore, the best feature
subset obtained by MDisABC comprises of all dominant and two occasionally
preferred complementary features (Sbest = {F1, F2, F6, F7, F10}).

Considering the count of selection times for each feature in Vehicle, Table 6
shows that F1, F3, F6, F10 and F11 are the dominant features mostly preferred
by the algorithms except for the case of AMABC in F1 and the case of QBPSO
in F3. As for the least or not preferred features, F4, F7, F12, F13 and F16 can
be given as examples. Although F4 is not preferred by MDisABC and binary
variants of the PSO, it is occasionally chosen by AMABC, DisABC and GA.
Also, although F7 is preferred by AMABC, it is not preferred by the other ones.
It can be inferred that the stability of MDisABC also carries on in Vehicle, and
AMABC is not as consistent as the other ones. Besides, the best feature subset
obtained by MDisABC is Sbest = {F1, F3, F5, F6, F8, F9, F10, F14}, compris-
ing of all dominant features (except for F11) and four occasionally selected
features.

According to Table 7, F1, F3 and F7 are the most frequently selected features
among all of the algorithms in German. Although F18 is also one of the most
preferred features among MDisABC, AMABC, NBPSO and BPSO, it is not
much preferred by GA, DisABC and QBPSO. For the least preferred features,
F2 (except for the case of AMABC), F4 and F10 can be given as samples. Not
only F2, but also F14 and F15 are much more frequently picked by AMABC.
These features may lead AMABC to obtain higher feature subset size than the
others (see Table 3). Therefore, it may be suggested that AMABC is also not
good at eliminating redundant or irrelevant features despite its performance
in German, and the stability of MDisABC is illustrated in German. The best
feature subset obtained by MDisABC is the {F1, F3, F6, F8, F12, F17, F21}
comprising of dominant features (except for F7).

In WBCD, Table 8 shows that there is no dominant features chosen by
all algorithms like the previous datasets, yet F1 and F21 are maybe given as
samples. On the other hand, F2, F4, F22 and F24 are the least preferred
features by the algorithms. It is difficult to make an analysis of all cases due
to the different combinations of feature subsets, but the stability of MDisABC
can be illustrated in WBCD. The best feature subset obtained by MDisABC is
the {F1, F7, F8, F13, F15, F16, F21, F26, F27, F28, F29}, which comprises of
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dominant features, but does not include any least preferred features.
According to Table 9, F5 is the most preferred feature, and F12, F20, F24

(except for GA), F26, F28, F30 and F32 (except for GA) are the least pre-
ferred features among all the algorithms in Ionosphere. It is also seen in Ta-
ble 9 that there exist features such as F15, F23 and F25 which are selected
more frequently by the PSO algorithms, GA and MRABC than by the binary
variants of ABC. This might be the reason why the size of feature subsets
obtained by binary variants of ABC is about half of the feature subset size ob-
tained by the other ones. The best feature subset obtained by MDisABC is the
{F3, F4, F5, F16, F23, F25, F27}, the combination of one available dominant
and six occasionally selected features. In conclusion, the proposed MDisABC
algorithm is the most stable and robust algorithm.

5.5. Comparisons with Recent ACO Papers

To further test the performance of MDisABC, we compare MDisABC with
two ACO based algorithms [72, 73] published in 2015, which use the similar
methodology for feature selection to this paper. According to the first study [72],
four datasets, including Wine, Vehicle, German and Ionosphere are common
with this paper, and the classification results of them for ACO based feature
selection are 4.51%, 28.25%, 30.40% and 14.82%, respectively. The results show
that MDisABC performs better than ACO [72]. According to the other study
[73] with an improved ACO algorithm, Wine and Vehicle datasets are common
with this paper, and the classification results of them for an improved version of
ACO are 3.10% and 24.70%, respectively. Therefore, MDisABC is also superior
to the improved ACO.

5.6. Comparisons with Deterministic Approaches

According to Table 4, LFS finds the smallest feature subsets in most cases.
However, it cannot provide the same success in terms of the classification error
rate. LFFS performs similar or slightly worse than LFS. On the other hand,
GSBS finds the largest feature subsets nearly in all cases, and it performs worse
than LFS and LFFS in terms of the classification error rate since it is a greedy
backward search starting with the entire subset of features. When comparing
the MDisABC algorithm with the deterministic approaches, it is seen that the
MDisABC algorithm provides the best performances on 9 out of the 10 datasets
and it statistically obtains meaningful results in almost all cases. Only in Hill
Valley, the MDisABC algorithm cannot achieve significantly better performance
than the deterministic approaches, but their performances are very similar. In
terms of the time complexity, the forward approaches (LFS and LFFS) are
the cheapest ones, but the backward approach (GSBS) costs higher than the
others. Especially in large-scale datasets (Madelon and Isolet5), it may take
nearly 1 week. In conclusion, the MDisABC algorithm is also superior to the
deterministic approaches and can be used as an alternative in feature selection
problems.
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6. Conclusions

The main goal of this study was to propose a new variant of the DisABC al-
gorithm for feature selection. This goal was successfully achieved by introducing
DE based neighborhood search into the similarity based mechanism of DisABC.
The second goal of this study was to demonstrate a comprehensive comparative
study for the future studies of researchers. This goal was achieved by comparing
the proposed algorithm with the seven different EC based algorithms, includ-
ing BPSO, NBPSO, QBPSO, DisABC, AMABC, MRABC and GA, and three
deterministic approaches, including LFS, LFFS and GSBS. It should be noted
that while BPSO and GA are the algorithms most widely applied to the feature
selection, the other EC based algorithms are implemented for feature selection
for the first time.

The obtained results reveal that the integration of DE based similarity search
mechanism into the DisABC algorithm effectively improved the global search
ability of the algorithm in feature selection, and the proposed MDisABC al-
gorithm achieved the best classification performance in both training and test
sets in almost all cases. Further, the proposed MDisABC algorithm is able to
remove redundant features effectively while obtaining the highest classification
results. The results also show that the proposed MDisABC algorithm outper-
formed the deterministic non-EC methods, LFS, LFFS and GSBS in terms of
the classification accuracy and selected a much smaller number of features than
GSBS. The analysis of the features selected by different algorithms reveals that
the proposed MDisABC algorithm is the most stable and consistent algorithm
among all the algorithms. Moreover, the analysis of the CPU times of the dif-
ferent methods shows that the proposed MDisABC algorithm achieved better
accuracy than the existing methods without taking longer computational time.

In the future, the studies of feature selection based on ABC are expected
to increase and more ABC based approaches will be developed. There are also
some new metaheuristics [74, 75] which have not been used in feature selection.
We will test the proposed method on large dimensional datasets and consider
the feature selection problem in filter approaches using ABC.
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Table 4: The obtained error rates of the deterministic approaches with the proposed approach
on the test sets

Dataset LFS LFFS GSBS MDisABC

Wine CER 25.93 25.93 24.07 0

#NOF 7 8 10 5.8

T-Sig + + + N/A

Vehicle CER 27.89 24.30 24.7 21.69±1.85

#NOF 9 5 16 9.23

T-Sig + + + N/A

German CER 31.67 31.67 30.67 29.85±1.87

#NOF 5 5 20 8.03

T-Sig + + + N/A

WBCD CER 7.65 8.82 7.06 6.72±1.08

#NOF 12 11 29 11.86

T-Sig + + + N/A

Ionosphere CER 9.52 9.52 10.48 6.38±1.64

#NOF 6 6 29 5.76

T-Sig + + + N/A

Lung CER 33.33 33.33 33.33 32.96±8.49

#NOF 6 5 36 24.36

T-Sig + + + N/A

Hill-Valley CER 44.51 46.15 45.60 44.92±2.13

#NOF 9 8 95 30.53

T-Sig ≈ + ≈ N/A

Musk 1 CER 19.29 20.71 17.14 14.71±2.07

#NOF 12 12 124 75.76

T-Sig + + + N/A

Madelon CER 28.97 32.31 25.12 21.14±2.02

#NOF 7 6 250 195.96

T-Sig + + + N/A

Isolet5 CER 23.72 25.43 19.23 14.51±1.17

#NOF 27 23 585 300.10

T-Sig + + + N/A
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