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A BINARY ADDITIVE EQUATION INVOLVING FRACTIONAL
POWERS

ANGEL V. KUMCHEV

1. INTRODUCTION

It is well-known that the number of integers n < x that can be expressed as sums of two
squares is O (z(logz)™'/?). On the other hand, Deshouillers [2] showed that when 1 < ¢ < 3,
every sufficiently large integer n can be represented in the form

[mi] + [ms] = n, (1)

with integers my, mo; henceforth, [0] denotes the integral part of . Subsequently, the range
for ¢ in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter
author showed that ([II) has solutions in integers m;, my for 1 < ¢ < % and n sufficiently
large.

The analogous problem with prime variables is considerably more difficult, possibly at
least as difficult as the binary Goldbach problem. The only progress in that direction is a
result of Laporta [6], which states that if 1 < ¢ < {I, then almost all n (in the sense usually
used in analytic number theory) can be represented in the form ([Il) with primes mj, mo.

Recently, Balanzario, Garaev and Zuazua [I] considered the equation
[m*] + [p] = n, (2)

where p is a prime number and m is an integer. They showed that when 1 < ¢ < %, this
hybrid problem can be solved for almost all n. It should be noted that in regard to the range
of ¢, this result goes even beyond Konyagin’s. On the other hand, when ¢ is close to 1, one
may hope to solve () for all sufficiently large n, since the problem is trivial when ¢ = 1.
The main purpose of the present note is to address this issue. We establish the following

theorem.

Theorem 1. Suppose that 1 < ¢ < Y. Then every sufficiently large integer n can be

15°
represented in the form (B).

The main new idea in the proof of this theorem is to translate the additive equation (&)
into a problem about Diophantine approximation. The same idea enables us to give also a
simple proof of a slightly weaker version of the result of Balanzario, Garaev and Zuazua.
For x > 2, let E.(x) denote the number of integers n < x that cannot be represented in the
form (B). We prove the following theorem.

Theorem 2. Suppose that 1 < ¢ < % and € > 0. Then

EC($) < $3(1_1/C)+€ )
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We remark that Theorem [ is hardly best possible. It is likely that more sophisticated
exponential sum estimates and /or sieve techniques would have allowed us to extend the range
of ¢. The resulting improvement, however, would have been minuscule; thus, we decided not
to pursue such ideas.

Notation. Most of our notation is standard. We use Landau’s O-notation, Vinogradov’s
<-symbol, and occasionally, we write A < B instead of A < B < A. We also write {0} for
the fractional part of 6 and ||@]| for the distance from 6 to the nearest integer. Finally, we

define e(f) = exp(2mif).

2. PROOF OF THEOREM [Il INITIAL STAGE

In this section, we only assume that 1 < ¢ < 2. We write 7 = 1/c and set

X=(3n)", X;=3X, §=~X"" (3)
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If n is sufficiently large, it has at most one representation of the form (@) with X < p < Xj.
Furthermore, such a representation exists if and only if there is an integer m satisfying the
inequality

(n—1[p)" <m< (n+1-[pI)" (4)
We now proceed to show that such an integer exists, if p satisfies the conditions
X<p<Xy, {pt<i 1-36<{(n—p)}<1-2%. (5)

Under these assumptions, one has

X" = (n=XP" < (n—p) < (n—X{) T < 11X

Hence,
(=) = (0 =) (1440} p) " +0(n )

<(n=p)" + 370 —p)" O
<(n p0)7+0555+0(5n )
< [(n—pc) } +1—0.19,

and

(n+1-pp7)" = (n—-p)’ (1+v1+{p H(n - P)_1+0(n_2)>
> (n—p°) +v(n—p°)"" +O(n”‘2)

>(n C) +5+O(5n )
> [(n—p) }+1+O.15.

Consequently, conditions (Bl) are indeed sufficient for the existence of an integer m satisfying
@). It remains to show that there exist primes satisfying the inequalities in (H). To this end,

it suffices to show that
> () ((n—p)) >0 (6)
X<p<Xy

for some smooth, non-negative, 1-periodic functions ® and ¥ such that ® is supported in
(0,1/2) and ¥ is supported in (1 — 20,1 — 24).
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Let ¢y be a non-negative C*°-function that is supported in [0, 1] and is normalized in L!:
|to]|1 = 1. We choose ® and ¥ to be the 1-periodic extensions of the functions

Do(t) =vo(2t)  and  Wo(t) = 1o(667'(t — 1) +5),

respectively. Writing ®(m) and W(m) for the mth Fourier coefficients of ® and ¥, we can
report that

1
2 (7)
(0) = %5, |W(m)| <, 6(146|m|)™" forall r € Z.

7
Replacing ®(p°) and ¥((n — p°)7) on the left side of (@) by their Fourier expansions, we
obtain

Yo () U((n—p)) =D > MG e +in—p)).  (8)

X<p<Xy heZ jeZ X<p<Xi

Set H = X¢ and J = X 17 where ¢ > 0 is fixed. By () with r = [¢7]+2, the contribution
to the the right side of (®) from the terms with |h| > H or |j| > J is bounded above by a
constant depending on . Thus,

Yo () ¥((n — 1)) = 156 (n(X1) — (X)) + O(FR + 1),
X<p<Xy
where 7(X) is the number of primes < X and
R=2. 2| D el +iln—p))].

|h|<H |j|<J ' X<p<Xy
(h,5)#(0,0)

Thus, it suffices to show that
S el ) < X ®
X<p<Xy

for all pairs of integers (h, j) such that |h| < H, |j| < J, and (h,j) # (0,0).

3. BOUNDS ON EXPONENTIAL SUMS

In this section, we establish estimates for bilinear exponential sums, which we shall need
in the proof of ([{@). Our first lemma is a variant of van der Corput’s third-derivative estimate
(see [, Corollary 8.19]).

Lemma 3. Suppose that 2 < F < N32 N < N; <2N, and 0 < 6 < 1. Let f € C3[N, Ny
and suppose that we can partition [N, N1| into O(1) subintervals so that on each subinterval
one of the following sets of conditions holds:

i) SFN"2 < |f"(t)| < FN~2;

i) SFN2 < |f"(8)] < FN72, |f"(t)] < OFN2.
Then

> e(f(n) < 6TVHFYONY? 4 FTUAN).
N<n<N;
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Proof. Let n be a parameter to be chosen later so that 0 < n < ¢ and let I be one of the
subintervals of [V, N;] mentioned in the hypotheses. If i) holds in I, then by [, Corollary
8.13],

> e(f(n) < 57 VP(FY? 4 NFT2). (10)

Now suppose that ii) holds in I. We subdivide I into two subsets:
L={tel:nFN > <|f'(t)| < SFN?}, L =I\I.

Since f” is monotone on I, the set I; consists of at most two intervals and I is a (possibly
empty) subinterval of I. If Iy = [a, b], then there is a £ € (a,b) such that

() = f"(a) = (b—a) ") — b—a<<nd'N.
Thus, by H, Corollary 8.13] and [, Corollary 8.19],

> elf(n) < n PP+ NFT2), (11)
nely
> e(f(n) < o MEFYONY? 4 252 ETION, (12)

n€ly

Combining (I0)—(T2), we get
Z e(f(n)) < " V2(FY2 4 NF=Y2) £ g3 NV2RY6 L gl25=23Np=1/6 (13)

N<n<Ni
We now choose
7 = 0 max (F_l/?’,FZ/?’N_l).
With this choice, ([3) yields
Z e(f(n)) < 5—1/2 (F1/6N1/2 + F—1/3N) + 5—1/3 (F5/6N—1/2 + F—1/6N1/2)’
N<n<Ni
and the lemma follows on noting that, when F < N%/?2,
FYSNY2 « prIBN, pSION—1/2  pUONI/2,
O

Next, we turn to the bilinear sums needed in the proof of (@l). From now on, X, X1, N, H, J

have the same meaning as in §] and ¢ is subject to 0 < ¢ < %(}—g — c).

Lemma 4. Suppose that 1 < ¢ < g —6e, M < M, <2M,2< K < Ky <2K, and
M < X123, (14)

Further, suppose that h,j are integers with |h| < H, |j| < J, (h,j) # (0,0), and that the
coefficients a,, satisfy |a,,| < 1. Then

Z Z ame(hmk® + j(n — mk)7) < X*7%.
M<m<M; K<k<K
X<mk<X



Proof. We shall focus on the case j # 0, the case j = 0 being similar and easier. We set
y=ijn", x=y ‘hn, T=T,=n"m =K.
With this notation, we have

FOE) = fnk) = bk + j(n — meke) = ya(kT;0),

where
a(t) = a(t;x) = ot® + (1 — t9)7. (15)
We have
f'(k) = yT 2" (kT7Y),  f"(k) = yT~*a" (kT 7Y, (16)
and
o"(t) = (c = 1)t (ca — (1 —t)7?), (17)
" (t) = —(c—1)(2c — D)t* 31 =t + (c — 2t (). (18)
Moreover, by virtue of (Bl),
L<(kT7h) < i(125)° < 2 (19)

whenever X < mk < Xj.
Let 8y = X~/ If |2| > 6;*, then by (IH), (), and (I9),

|f" (k)| < |zy| K2 < |hnK 2 — JX'TEK 2 < | (k)| < JXK 2.
Thus, by Lemma B with 6 = X7¢, F=JX and N = K,
S Y ame(fulk)) < MXP(XEROR2 4 KX, (20)

M<m<M; K<k<Ki
X<mk<X;
Note that we need also to verify that JX < K 3/2 This is a consequence of ([4).
Suppose now that |z| < ;. The set where |o”(kT~')| > &, consists of at most two
intervals. Consequently, we can partition [K, K7] into at most three subintervals such that
on each of them we have one of the following sets of conditions:

i) doly| B2 < | f" (k)| < 0 |yl
i) |yl K= <" (B)] < [yl B2, [ £ (k)| << doly| K2,
Thus, by Lemma B with 6 = 62, F = d;'|y| < 64| X, and N = K,

S Y ame(fulk)) < MXO(X SR 4 X TF), (21)
M<m<M; K<k<K
X<mk<Xi
Again, we have &, '[j|X < JX1+/10 < K3/2 by virtue of ().
Combining 1) and (), we obtain the conclusion of the lemma, provided that ¢ < 5 —5e
and
M < X3_7C/3_10€.

Once again, the latter inequality is a consequence of ([[4). 0
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Lemma 5. Suppose that 1 < ¢ < % —2, M < M, <2M, K < K; <2K, and

X2c—2+9£ < M < X3_2C_98. (22)
Further, suppose that h,j are integers with |h| < H, |j| < J, (h,j) # (0,0), and that the
coefficients a,,, by, satisfy |a,| <1, |by| < 1. Then

Z Z ambke(hmckc +j(n — m%C)V) < X2 e,
M<m§M1 K<k)§K1
X <mk<Xi

Proof. As in the proof of Lemma @l we shall focus on the case j # 0. By symmetry, we may
assume that M > X1/2. We set

y=jn", x=y 'hn, T=n
With this notation, we have
f(k,m) = hmk® + j(n — mk)? = ya(mkT ™),

where «(t) is the function defined in ([H).
By Cauchy’s inequality and [4, Lemma 8.17],

S0 anbie(f(km) <—Z S

d e mkq))‘

M<m<M; K<k<Ki |q|<QK<k<2K mel(k,q)
X<mk<X1
BEY S| mra), @
0<|q|<Q K<k<2K ' mel(k,q)

where g(m; k,q) = f(k+q,m)— f(k,m), Q = J?X%, and I(k, q) is a subinterval of [M, M;]
such that

X <mk,m(k+q) <Xy
for all m € I(k,q). We remark that the right inequality in (22) ensures that @ < KX ¢.
When ¢ # 0, we write

g(m; k,q) = yT‘I/

mk

m(k+q)

de
k + 6q

Y

o (IT Y dt = gy / Bm(k +09)T )

where 3(t) = ta/(t). Introducing the notation
29 = zp(k,q) = yq(k +0q)™", Uy =Ug(k,q) = T(k+0q)~" < M,
we find that

1 1
g%mz/szﬁw%ﬂw,d%mzfzwﬁW%mea
0 0

and
B(t) = (c— Dt (Pr+ (1=t (c+ (c — 1)t9)), (24)
B"(t) = (¢ — 1)(2c = 1)E* (1 — ) ((c — 1)t + 2¢) + (¢ — 2)t 7' 8"(2). (25)
Let §y = X~/ If |2| > 6;*, then by ([24)) and a variant of (),
lg"(m)| < lqzyl(XM)™H = g JX M < g (m)] < JglTM
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Thus, by Lemma B with § = X, F = |¢|JM and N = M,
> elglmsk,q)) < (|g|.)VSM*PX2, (26)

mel(k,q)
Note that we need also to verify that F' < M?3/2, which holds if
M > X6e=1+12e (27)
Suppose now that |z| < d;'. We then deduce from (24)) and (Z5) that
8" (mUy ) < 65", |8 (mUy )] < 657,
whence
8" (mUy )| = 8" (mU; )| + O(lg| K~'05") = 8" (mUs )| + O (&)

We now note that the subset of [M, M;] where |8”(mU;")| > &, consists of at most two
intervals. Consequently, we can partition [M, M;] into at most three subintervals such that
on each of them we have one of the following sets of conditions:

) dolgy|(X M)~ < |g"(m)] < 65 [y (X M)
i) Jqy| X' M2 < g"(m)| < Jqy[ XM 72, [g"(m)] < dolqy|(X M)~
Thus, Lemma Bl with § = 62, F' = &,"|¢j|M, and N = M yields (6], provided that (27)
holds.
Combining (23) and (Z4), we get

' Z Z ambke(f(k,m)) ’ < X2Q_1 +X2+E/2(QJ)1/6M_1/3. (28)

M<m<M; K<k<Kj
X<mk<X;

In view of our choice of @), the conclusion of the lemma follows from (28), provided that
M > X7'5(C_1)+10€.

Both (7)) and the last inequality follow from the assumption that M > X'/2 and the
hypothesis ¢ < }—g — 2¢. U

We close this section with a lemma that will be needed in the proof of Theorem Bl

Lemma 6. Suppose that 1 < ¢ <2,2< X < X; <2X,and0 < < i. Let S5 denote the
number of integers n such that X <n < Xy and ||n°|| < 0. Then

S5 < 6(Xy — X) + 612X,

Proof. Let ® be the 1-periodic extension of a smooth function that majorizes the characteris-
tic function of the interval [—6, 0] and is majorized by the characteristic function of [—24, 24].

Then
Ss< Y. o) = > d0)+> (h) DY e(hn). (29)

X<n<X; X<n<X; h#0 X<n<X;
If h # 0, [, Corollary 8.13] yields
Z e(hn®) < |h|'2 X</,

X<n<X;
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whence

Z(i)(h) Z e(hnc)<<XC/QZ|(i)(h)||h|1/z

h#£0 X<n<X1 h#£0
< X¢/? Z M < §Y2xel/? (30)
(1 +d[h[)? ’
h#0
Since ®(0) < 40, the lemma follows from [2d) and (B0). O

4. PROOF OF THEOREM 1: CONCLUSION

Suppose that 1 < ¢ < % and 0 < € < %(% — c). To prove (@), we recall Vaughan’s

identity in the form of [, Proposition 13.4]. We can use it to express the sum in ([{) as a
linear combination of O(log® X) sums of the form

Z Z ambre(hmk® + j(n — m°ke)?),
M<m<M; K<k<K
X<mk<X,

where either

i) |an,| < m&?, by =1, and M < X*3; or
i) [an,| < m*?, |by| < k2, and X3 < M < X?/5.

A sum subject to conditions ii) is < X?7¢735 by Lemma B A sum subject to conditions
i) can be bounded using Lemma @ if () holds and using Lemma B if ([d]) fails. In either
case, the resulting bound is < X27¢73% . Therefore, each of the O(log? X) terms in the
decomposition of (@) is < X?7¢73%, This establishes (@) and completes the proof of the
theorem.

5. PROOF OF THEOREM

We can cover the interval (x'/2,z] by O((logx)?®) subintervals of the form (N, Ny}, with
Ny = N(1+ (log N)%). Thus, it suffices to show that

ZC(N) < N3_3/C+58/6, (31)
where Z.(N) is the number of integers n in the range
N <n<N(1+ (logN)™?)

that cannot be represented in the form ().
As in the proof of Theorem [, we derive solutions of () from solutions of (H). We set
v =1/c,n= (log N)72, and write

Ni=(1+nN, X=@EN), Xi=1+nX, §=+X""°
Suppose that N <n < Ny and X < p < X;. Then
(1—=n)d<~(n-— pc)ﬁ{_1 < (1+ 2n)o.
Assuming that p satisfies the inequalities

dn<{py<l—dn, 1-6-ns<{(n—p°)"} <1—6+nd, (32)
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we deduce that

(n — [pc])“’ < (n — pc)ﬁ’ +(1—4n)(1+2n)d + O(én_l)
< [(n —pc)ﬁq +1- 7757
(n+1—[p)" > (n—p°)" + (1 +4n)(1—n)d+O(6n~")

> [ n—pc)ﬁ/}+1+n5.

In particular, a prime p, X < p < X, that satisfies (B2) yields a solution m of (@) and a
representation of n in the form (&2).

Let @ be the 1-periodic extension of a smooth function ®, that majorizes the characteristic
function of [61, 1 —6n] and is majorized by the characteristic function of [4n, 1 —4n]|. Further,
let ¥ be the 1-periodic extension of

Wo(t) = o ((206) ' (t — 1 +6) + 3),

where 1)y is the function appearing in the proof of Theorem [l Then W, is supported inside
[1—6—mnd,1— 38+ nd| and the Fourier coefficients of ¥ satisfy

A

U(0) =216, |U(h)| <, nd(1+ndlh|)™" forall r € Z. (33)
Hence,

S o) U((n—p)) =D > () U(h)e(h(n—p)")

X<p<Xy heZ X<p<Xy

=¥(0) Y () +RM)

X<p<Xi
= 210 (n(X1) — 7(X) + O(S)) + R(n). (34)
Here,
R(n)=> W(h) > @(p°)e(h(n—p))
h#0 X<p<X
and S is the number of integers m such that X < m < X; and ||m°|| < 6n. By Lemma [,

S < (X, — X)+n 12X <« p’X. (35)
Combining (B4)), (BY) and the Prime Number Theorem, we find that
> () U((n—p)) > X (log X) (36)
X<p<Xy

for any n, N < n < Njp, for which we have

R(n) < X2 e7¢/12, (37)
Since the sum on the right side of (Bfl) is supported on the primes p satisfying (82), (B1I) will
follow if we show that (B7) holds for all but O (N3=#175/6) integers n € (N, N].

Set H = X°~'*¢/6, By ([B3) with r = 2+ [2c7!], the contribution to R(n) from terms with
|h| > H is bounded. Consequently,

Z(N) < X726 N Ry(n)?,
N<n<Np
9



where

Ri(n)= Y

0<|h|<H
Appealing to Cauchy’s inequality and the Weyl-van der Corput lemma [, Lemma 8.17], we

obtain
ZC(N) < Xc—3+€/3 Z Z

0<|h|<H N<n<Ni

< Xc—2+e/3Q—1 Z Z Z

0<|h|<H |q|<Q X<p<Xi

Y @()e(hln—p))

X<p<Xy

2

Y. e(@)e(hln—p))

> elf(n)

N<n<N;

)

where () < nX is a parameter at our disposal and
f(n) = qh((n—p)" = (n— (p+q))).
We choose Q = nX'~%/6. Then
[gh N7 < [ f'(n)] < [ghINT! < < 3,
so [, Corollary 8.11] and the trivial bound yield
> elf(n) < N(1+]|gh)~".

N<n<Np
We conclude that

Z(N) < NX°¢2+2%/3 Z Z (14 |gh|)~! < NX2e-3+5/6,

0<|h|<H |q|<Q
This establishes (BII) and completes the proof of the theorem.
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