A BINARY ADDITIVE EQUATION INVOLVING FRACTIONAL POWERS

ANGEL V. KUMCHEV

1. Introduction

It is well-known that the number of integers $n \leq x$ that can be expressed as sums of two squares is $O\left(x(\log x)^{-1 / 2}\right)$. On the other hand, Deshouillers [2] showed that when $1<c<\frac{4}{3}$, every sufficiently large integer n can be represented in the form

$$
\begin{equation*}
\left[m_{1}^{c}\right]+\left[m_{2}^{c}\right]=n, \tag{1}
\end{equation*}
$$

with integers m_{1}, m_{2}; henceforth, $[\theta]$ denotes the integral part of θ. Subsequently, the range for c in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter author showed that (11) has solutions in integers m_{1}, m_{2} for $1<c<\frac{3}{2}$ and n sufficiently large.

The analogous problem with prime variables is considerably more difficult, possibly at least as difficult as the binary Goldbach problem. The only progress in that direction is a result of Laporta [6], which states that if $1<c<\frac{17}{16}$, then almost all n (in the sense usually used in analytic number theory) can be represented in the form (1) with primes m_{1}, m_{2}. Recently, Balanzario, Garaev and Zuazua [1] considered the equation

$$
\begin{equation*}
\left[m^{c}\right]+\left[p^{c}\right]=n, \tag{2}
\end{equation*}
$$

where p is a prime number and m is an integer. They showed that when $1<c<\frac{17}{11}$, this hybrid problem can be solved for almost all n. It should be noted that in regard to the range of c, this result goes even beyond Konyagin's. On the other hand, when c is close to 1 , one may hope to solve (2) for all sufficiently large n, since the problem is trivial when $c=1$. The main purpose of the present note is to address this issue. We establish the following theorem.

Theorem 1. Suppose that $1<c<\frac{16}{15}$. Then every sufficiently large integer n can be represented in the form (2).

The main new idea in the proof of this theorem is to translate the additive equation (2) into a problem about Diophantine approximation. The same idea enables us to give also a simple proof of a slightly weaker version of the result of Balanzario, Garaev and Zuazua. For $x \geq 2$, let $E_{c}(x)$ denote the number of integers $n \leq x$ that cannot be represented in the form (2). We prove the following theorem.

Theorem 2. Suppose that $1<c<\frac{3}{2}$ and $\varepsilon>0$. Then

$$
E_{c}(x) \ll x^{3(1-1 / c)+\varepsilon} .
$$

Date: May 5, 2006.

We remark that Theorem \square is hardly best possible. It is likely that more sophisticated exponential sum estimates and/or sieve techniques would have allowed us to extend the range of c. The resulting improvement, however, would have been minuscule; thus, we decided not to pursue such ideas.
Notation. Most of our notation is standard. We use Landau's O-notation, Vinogradov's \ll-symbol, and occasionally, we write $A \asymp B$ instead of $A \ll B \ll A$. We also write $\{\theta\}$ for the fractional part of θ and $\|\theta\|$ for the distance from θ to the nearest integer. Finally, we define $e(\theta)=\exp (2 \pi i \theta)$.

2. Proof of Theorem $\boldsymbol{1}$ initial stage

In this section, we only assume that $1<c<2$. We write $\gamma=1 / c$ and set

$$
\begin{equation*}
X=\left(\frac{1}{2} n\right)^{\gamma}, \quad X_{1}=\frac{5}{4} X, \quad \delta=\gamma X^{1-c} \tag{3}
\end{equation*}
$$

If n is sufficiently large, it has at most one representation of the form (2) with $X<p \leq X_{1}$. Furthermore, such a representation exists if and only if there is an integer m satisfying the inequality

$$
\begin{equation*}
\left(n-\left[p^{c}\right]\right)^{\gamma} \leq m<\left(n+1-\left[p^{c}\right]\right)^{\gamma} . \tag{4}
\end{equation*}
$$

We now proceed to show that such an integer exists, if p satisfies the conditions

$$
\begin{equation*}
X<p \leq X_{1}, \quad\left\{p^{c}\right\}<\frac{1}{2}, \quad 1-\frac{5}{6} \delta<\left\{\left(n-p^{c}\right)^{\gamma}\right\}<1-\frac{2}{3} \delta \tag{5}
\end{equation*}
$$

Under these assumptions, one has

$$
X^{1-c}=\left(n-X^{c}\right)^{\gamma-1}<\left(n-p^{c}\right)^{\gamma-1} \leq\left(n-X_{1}^{c}\right)^{\gamma-1}<1.1 X^{1-c}
$$

Hence,

$$
\begin{aligned}
\left(n-\left[p^{c}\right]\right)^{\gamma} & =\left(n-p^{c}\right)^{\gamma}\left(1+\gamma\left\{p^{c}\right\}\left(n-p^{c}\right)^{-1}+O\left(n^{-2}\right)\right) \\
& <\left(n-p^{c}\right)^{\gamma}+\frac{1}{2} \gamma\left(n-p^{c}\right)^{\gamma-1}+O\left(n^{\gamma-2}\right) \\
& <\left(n-p^{c}\right)^{\gamma}+0.55 \delta+O\left(\delta n^{-1}\right) \\
& <\left[\left(n-p^{c}\right)^{\gamma}\right]+1-0.1 \delta,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(n+1-\left[p^{c}\right]\right)^{\gamma} & =\left(n-p^{c}\right)^{\gamma}\left(1+\gamma\left(1+\left\{p^{c}\right\}\right)\left(n-p^{c}\right)^{-1}+O\left(n^{-2}\right)\right) \\
& \geq\left(n-p^{c}\right)^{\gamma}+\gamma\left(n-p^{c}\right)^{\gamma-1}+O\left(n^{\gamma-2}\right) \\
& >\left(n-p^{c}\right)^{\gamma}+\delta+O\left(\delta n^{-1}\right) \\
& >\left[\left(n-p^{c}\right)^{\gamma}\right]+1+0.1 \delta
\end{aligned}
$$

Consequently, conditions (5) are indeed sufficient for the existence of an integer m satisfying (41). It remains to show that there exist primes satisfying the inequalities in (15). To this end, it suffices to show that

$$
\begin{equation*}
\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \Psi\left(\left(n-p^{c}\right)^{\gamma}\right)>0 \tag{6}
\end{equation*}
$$

for some smooth, non-negative, 1-periodic functions Φ and Ψ such that Φ is supported in $(0,1 / 2)$ and Ψ is supported in $\left(1-\frac{5}{6} \delta, 1-\frac{2}{3} \delta\right)$.

Let ψ_{0} be a non-negative C^{∞}-function that is supported in $[0,1]$ and is normalized in L^{1} : $\left\|\psi_{0}\right\|_{1}=1$. We choose Φ and Ψ to be the 1-periodic extensions of the functions

$$
\Phi_{0}(t)=\psi_{0}(2 t) \quad \text { and } \quad \Psi_{0}(t)=\psi_{0}\left(6 \delta^{-1}(t-1)+5\right)
$$

respectively. Writing $\hat{\Phi}(m)$ and $\hat{\Psi}(m)$ for the m th Fourier coefficients of Φ and Ψ, we can report that

$$
\begin{array}{cl}
\hat{\Phi}(0)=\frac{1}{2}, & |\hat{\Phi}(m)|<_{r}(1+|m|)^{-r} \quad \text { for all } r \in \mathbb{Z} \\
\hat{\Psi}(0)=\frac{1}{6} \delta, & |\hat{\Psi}(m)|<_{r} \delta(1+\delta|m|)^{-r} \quad \text { for all } r \in \mathbb{Z} \tag{7}
\end{array}
$$

Replacing $\Phi\left(p^{c}\right)$ and $\Psi\left(\left(n-p^{c}\right)^{\gamma}\right)$ on the left side of (6) by their Fourier expansions, we obtain

$$
\begin{equation*}
\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \Psi\left(\left(n-p^{c}\right)^{\gamma}\right)=\sum_{h \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \sum_{X<p \leq X_{1}} \hat{\Phi}(h) \hat{\Psi}(j) e\left(h p^{c}+j\left(n-p^{c}\right)^{\gamma}\right) . \tag{8}
\end{equation*}
$$

Set $H=X^{\varepsilon}$ and $J=X^{c-1+\varepsilon}$, where $\varepsilon>0$ is fixed. By (7) with $r=\left[\varepsilon^{-1}\right]+2$, the contribution to the the right side of ((8) from the terms with $|h|>H$ or $|j|>J$ is bounded above by a constant depending on ε. Thus,

$$
\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \Psi\left(\left(n-p^{c}\right)^{\gamma}\right)=\frac{1}{12} \delta\left(\pi\left(X_{1}\right)-\pi(X)\right)+O(\delta \mathcal{R}+1)
$$

where $\pi(X)$ is the number of primes $\leq X$ and

$$
\mathcal{R}=\sum_{\substack{|h| \leq H \\(h, j) \neq(0,0)}} \sum_{|j| \leq J}\left|\sum_{X<p \leq X_{1}} e\left(h p^{c}+j\left(n-p^{c}\right)^{\gamma}\right)\right| .
$$

Thus, it suffices to show that

$$
\begin{equation*}
\sum_{X<p \leq X_{1}} e\left(h p^{c}+j\left(n-p^{c}\right)^{\gamma}\right) \ll X^{2-c-3 \varepsilon} \tag{9}
\end{equation*}
$$

for all pairs of integers (h, j) such that $|h| \leq H,|j| \leq J$, and $(h, j) \neq(0,0)$.

3. Bounds on exponential sums

In this section, we establish estimates for bilinear exponential sums, which we shall need in the proof of (9). Our first lemma is a variant of van der Corput's third-derivative estimate (see [4, Corollary 8.19]).

Lemma 3. Suppose that $2 \leq F \leq N^{3 / 2}, N<N_{1} \leq 2 N$, and $0<\delta<1$. Let $f \in C^{3}\left[N, N_{1}\right]$ and suppose that we can partition $\left[N, N_{1}\right]$ into $O(1)$ subintervals so that on each subinterval one of the following sets of conditions holds:
i) $\delta F N^{-2} \ll\left|f^{\prime \prime}(t)\right| \ll F N^{-2}$;
ii) $\delta F N^{-3} \ll\left|f^{\prime \prime \prime}(t)\right| \ll F N^{-3},\left|f^{\prime \prime}(t)\right| \ll \delta F N^{-2}$.

Then

$$
\sum_{N<n \leq N_{1}} e(f(n)) \ll \delta^{-1 / 2}\left(F^{1 / 6} N^{1 / 2}+F^{-1 / 3} N\right) .
$$

Proof. Let η be a parameter to be chosen later so that $0<\eta \leq \delta$ and let I be one of the subintervals of [N, N_{1}] mentioned in the hypotheses. If i) holds in I, then by [4, Corollary 8.13],

$$
\begin{equation*}
\sum_{n \in \mathbf{I}} e(f(n)) \ll \delta^{-1 / 2}\left(F^{1 / 2}+N F^{-1 / 2}\right) \tag{10}
\end{equation*}
$$

Now suppose that ii) holds in \mathbf{I}. We subdivide \mathbf{I} into two subsets:

$$
\mathbf{I}_{1}=\left\{t \in \mathbf{I}: \eta F N^{-2} \leq\left|f^{\prime \prime}(t)\right| \ll \delta F N^{-2}\right\}, \quad \mathbf{I}_{2}=\mathbf{I} \backslash \mathbf{I}_{1} .
$$

Since $f^{\prime \prime}$ is monotone on \mathbf{I}, the set \mathbf{I}_{1} consists of at most two intervals and \mathbf{I}_{2} is a (possibly empty) subinterval of \mathbf{I}. If $\mathbf{I}_{2}=[a, b]$, then there is a $\xi \in(a, b)$ such that

$$
f^{\prime \prime}(b)-f^{\prime \prime}(a)=(b-a) f^{\prime \prime \prime}(\xi) \quad \Longrightarrow \quad b-a \ll \eta \delta^{-1} N
$$

Thus, by [4, Corollary 8.13] and [4, Corollary 8.19],

$$
\begin{gather*}
\sum_{n \in \mathbf{I}_{1}} e(f(n)) \ll \eta^{-1 / 2}\left(F^{1 / 2}+N F^{-1 / 2}\right), \tag{11}\\
\sum_{n \in \mathbf{I}_{2}} e(f(n)) \ll \eta \delta^{-4 / 3} F^{1 / 6} N^{1 / 2}+\eta^{1 / 2} \delta^{-2 / 3} F^{-1 / 6} N . \tag{12}
\end{gather*}
$$

Combining (10)-(12), we get

$$
\begin{equation*}
\sum_{N<n \leq N_{1}} e(f(n)) \ll \eta^{-1 / 2}\left(F^{1 / 2}+N F^{-1 / 2}\right)+\eta \delta^{-4 / 3} N^{1 / 2} F^{1 / 6}+\eta^{1 / 2} \delta^{-2 / 3} N F^{-1 / 6} \tag{13}
\end{equation*}
$$

We now choose

$$
\eta=\delta \max \left(F^{-1 / 3}, F^{2 / 3} N^{-1}\right)
$$

With this choice, (13) yields

$$
\sum_{N<n \leq N_{1}} e(f(n)) \ll \delta^{-1 / 2}\left(F^{1 / 6} N^{1 / 2}+F^{-1 / 3} N\right)+\delta^{-1 / 3}\left(F^{5 / 6} N^{-1 / 2}+F^{-1 / 6} N^{1 / 2}\right)
$$

and the lemma follows on noting that, when $F \ll N^{3 / 2}$,

$$
F^{-1 / 6} N^{1 / 2} \ll F^{-1 / 3} N, \quad F^{5 / 6} N^{-1 / 2} \ll F^{1 / 6} N^{1 / 2}
$$

Next, we turn to the bilinear sums needed in the proof of (9). From now on, X, X_{1}, N, H, J have the same meaning as in $₫ 2$ and ε is subject to $0<\varepsilon<\frac{1}{2}\left(\frac{16}{15}-c\right)$.
Lemma 4. Suppose that $1<c<\frac{6}{5}-6 \varepsilon, M<M_{1} \leq 2 M, 2 \leq K<K_{1} \leq 2 K$, and

$$
\begin{equation*}
M \ll X^{1-2 c / 3-\varepsilon} . \tag{14}
\end{equation*}
$$

Further, suppose that h, j are integers with $|h| \leq H,|j| \leq J,(h, j) \neq(0,0)$, and that the coefficients a_{m} satisfy $\left|a_{m}\right| \leq 1$. Then

$$
\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1}}} \sum_{\substack{ \\X<K_{1}}} a_{m} e\left(h m^{c} k^{c}+j\left(n-m^{c} k^{c}\right)^{\gamma}\right) \ll X^{2-c-4 \varepsilon} .
$$

Proof. We shall focus on the case $j \neq 0$, the case $j=0$ being similar and easier. We set

$$
y=j n^{\gamma}, \quad x=y^{-1} h n, \quad T=T_{m}=n^{\gamma} m^{-1} \asymp K .
$$

With this notation, we have

$$
f(k)=f_{m}(k)=h m^{c} k^{c}+j\left(n-m^{c} k^{c}\right)^{\gamma}=y \alpha\left(k T_{m}^{-1}\right),
$$

where

$$
\begin{equation*}
\alpha(t)=\alpha(t ; x)=x t^{c}+\left(1-t^{c}\right)^{\gamma} . \tag{15}
\end{equation*}
$$

We have

$$
\begin{equation*}
f^{\prime \prime}(k)=y T^{-2} \alpha^{\prime \prime}\left(k T^{-1}\right), \quad f^{\prime \prime \prime}(k)=y T^{-3} \alpha^{\prime \prime \prime}\left(k T^{-1}\right), \tag{16}
\end{equation*}
$$

and

$$
\begin{gather*}
\alpha^{\prime \prime}(t)=(c-1) t^{c-2}\left(c x-\left(1-t^{c}\right)^{\gamma-2}\right) \tag{17}\\
\alpha^{\prime \prime \prime}(t)=-(c-1)(2 c-1) t^{2 c-3}\left(1-t^{c}\right)^{\gamma-3}+(c-2) t^{-1} \alpha^{\prime \prime}(t) . \tag{18}
\end{gather*}
$$

Moreover, by virtue of (3),

$$
\begin{equation*}
\frac{1}{2}<\left(k T^{-1}\right)^{c} \leq \frac{1}{2}(1.25)^{c}<\frac{4}{5} \tag{19}
\end{equation*}
$$

whenever $X<m k \leq X_{1}$.
Let $\delta_{0}=X^{-\varepsilon / 10 . ~ I f ~}|x| \geq \delta_{0}^{-1}$, then by (16), (17), and (19),

$$
\left|f^{\prime \prime}(k)\right| \asymp|x y| K^{-2} \asymp|h| n K^{-2} \quad \Longrightarrow \quad J X^{1-\varepsilon} K^{-2} \ll\left|f^{\prime \prime}(k)\right| \ll J X K^{-2} .
$$

Thus, by Lemma 3 with $\delta=X^{-\varepsilon}, F=J X$ and $N=K$,

$$
\begin{equation*}
\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1}}} \sum_{\substack{K<k \leq K_{1}}} a_{m} e\left(f_{m}(k)\right) \ll M X^{\varepsilon / 2}\left(X^{(c+\varepsilon) / 6} K^{1 / 2}+K X^{-c / 3}\right) \tag{20}
\end{equation*}
$$

Note that we need also to verify that $J X \leq K^{3 / 2}$. This is a consequence of (14).
Suppose now that $|x| \leq \delta_{0}^{-1}$. The set where $\left|\alpha^{\prime \prime}\left(k T^{-1}\right)\right| \geq \delta_{0}$ consists of at most two intervals. Consequently, we can partition $\left[K, K_{1}\right]$ into at most three subintervals such that on each of them we have one of the following sets of conditions:
i) $\delta_{0}|y| K^{-2} \ll\left|f^{\prime \prime}(k)\right| \ll \delta_{0}^{-1}|y| K^{-2}$;
ii) $|y| K^{-3} \ll\left|f^{\prime \prime \prime}(k)\right| \ll|y| K^{-3},\left|f^{\prime \prime}(k)\right| \ll \delta_{0}|y| K^{-2}$.

Thus, by Lemma 3 with $\delta=\delta_{0}^{2}, F=\delta_{0}^{-1}|y| \asymp \delta_{0}^{-1}|j| X$, and $N=K$,

$$
\begin{equation*}
\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1}}} \sum_{K<k \leq K_{1}} a_{m} e\left(f_{m}(k)\right) \ll M X^{\varepsilon / 10}\left(X^{(c+2 \varepsilon) / 6} K^{1 / 2}+K X^{-1 / 3}\right) \tag{21}
\end{equation*}
$$

Again, we have $\delta_{0}^{-1}|j| X \leq J X^{1+\varepsilon / 10} \leq K^{3 / 2}$, by virtue of (14).
Combining (20) and (21), we obtain the conclusion of the lemma, provided that $c<\frac{4}{3}-5 \varepsilon$ and

$$
M \ll X^{3-7 c / 3-10 \varepsilon} .
$$

Once again, the latter inequality is a consequence of (14).

Lemma 5. Suppose that $1<c<\frac{16}{15}-2 \varepsilon, M<M_{1} \leq 2 M, K<K_{1} \leq 2 K$, and

$$
\begin{equation*}
X^{2 c-2+9 \varepsilon} \ll M \ll X^{3-2 c-9 \varepsilon} \tag{22}
\end{equation*}
$$

Further, suppose that h, j are integers with $|h| \leq H,|j| \leq J,(h, j) \neq(0,0)$, and that the coefficients a_{m}, b_{k} satisfy $\left|a_{m}\right| \leq 1,\left|b_{k}\right| \leq 1$. Then

$$
\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1}}} \sum_{K<k K_{1}} a_{m} b_{k} e\left(h m^{c} k^{c}+j\left(n-m^{c} k^{c}\right)^{\gamma}\right) \ll X^{2-c-4 \varepsilon} .
$$

Proof. As in the proof of Lemma 4 we shall focus on the case $j \neq 0$. By symmetry, we may assume that $M \geq X^{1 / 2}$. We set

$$
y=j n^{\gamma}, \quad x=y^{-1} h n, \quad T=n^{\gamma} .
$$

With this notation, we have

$$
f(k, m)=h m^{c} k^{c}+j\left(n-m^{c} k^{c}\right)^{\gamma}=y \alpha\left(m k T^{-1}\right)
$$

where $\alpha(t)$ is the function defined in (15).
By Cauchy's inequality and [4, Lemma 8.17],

$$
\begin{align*}
\left|\sum_{\substack{M<m \leq M_{1} \\
X<m k \leq X_{1}}} \sum_{K<k K_{1}} a_{m} b_{k} e(f(k, m))\right|^{2} & \ll \frac{X}{Q} \sum_{|q| \leq Q} \sum_{K<k \leq 2 K}\left|\sum_{m \in \mathbf{I}(k, q)} e(g(m ; k, q))\right| \\
& \ll \frac{X^{2}}{Q}+\frac{X}{Q} \sum_{0<|q| \leq Q} \sum_{K<k \leq 2 K}\left|\sum_{m \in \mathbf{I}(k, q)} e(g(m ; k, q))\right| \tag{23}
\end{align*}
$$

where $g(m ; k, q)=f(k+q, m)-f(k, m), Q=J^{2} X^{6 \varepsilon}$, and $\mathbf{I}(k, q)$ is a subinterval of $\left[M, M_{1}\right]$ such that

$$
X<m k, m(k+q) \leq X_{1}
$$

for all $m \in \mathbf{I}(k, q)$. We remark that the right inequality in (22) ensures that $Q \ll K X^{-\varepsilon}$. When $q \neq 0$, we write

$$
g(m ; k, q)=y T^{-1} \int_{m k}^{m(k+q)} \alpha^{\prime}\left(t T^{-1}\right) d t=q y \int_{0}^{1} \beta\left(m(k+\theta q) T^{-1}\right) \frac{d \theta}{k+\theta q}
$$

where $\beta(t)=t \alpha^{\prime}(t)$. Introducing the notation

$$
z_{\theta}=z_{\theta}(k, q)=y q(k+\theta q)^{-1}, \quad U_{\theta}=U_{\theta}(k, q)=T(k+\theta q)^{-1} \asymp M
$$

we find that

$$
g^{\prime \prime}(m)=\int_{0}^{1} z_{\theta} U_{\theta}^{-2} \beta^{\prime \prime}\left(m U_{\theta}^{-1}\right) d \theta, \quad g^{\prime \prime \prime}(m)=\int_{0}^{1} z_{\theta} U_{\theta}^{-3} \beta^{\prime \prime \prime}\left(m U_{\theta}^{-1}\right) d \theta
$$

and

$$
\begin{gather*}
\beta^{\prime \prime}(t)=(c-1) t^{c-2}\left(c^{2} x+\left(1-t^{c}\right)^{\gamma-3}\left(c+(c-1) t^{c}\right)\right) \tag{24}\\
\beta^{\prime \prime \prime}(t)=(c-1)(2 c-1) t^{2 c-3}\left(1-t^{c}\right)^{\gamma-4}\left((c-1) t^{c}+2 c\right)+(c-2) t^{-1} \beta^{\prime \prime}(t) \tag{25}
\end{gather*}
$$

Let $\delta_{0}=X^{-\varepsilon / 10}$. If $|x| \geq \delta_{0}^{-1}$, then by (24) and a variant of (19),

$$
\left|g^{\prime \prime}(m)\right| \asymp|q x y|(X M)^{-1} \quad \Longrightarrow \quad{ }_{6}|q| J X^{-\varepsilon} M^{-1} \ll\left|g^{\prime \prime}(m)\right| \ll|q| J M^{-1}
$$

Thus, by Lemma 3 with $\delta=X^{-\varepsilon}, F=|q| J M$ and $N=M$,

$$
\begin{equation*}
\sum_{m \in \mathbf{I}(k, q)} e(g(m ; k, q)) \ll(|q| J)^{1 / 6} M^{2 / 3} X^{\varepsilon / 2} \tag{26}
\end{equation*}
$$

Note that we need also to verify that $F \leq M^{3 / 2}$, which holds if

$$
\begin{equation*}
M \gg X^{6(c-1)+12 \varepsilon} . \tag{27}
\end{equation*}
$$

Suppose now that $|x| \leq \delta_{0}^{-1}$. We then deduce from (24) and (25) that

$$
\left|\beta^{\prime \prime}\left(m U_{\theta}^{-1}\right)\right| \ll \delta_{0}^{-1}, \quad\left|\beta^{\prime \prime \prime}\left(m U_{\theta}^{-1}\right)\right| \ll \delta_{0}^{-1}
$$

whence

$$
\left|\beta^{\prime \prime}\left(m U_{\theta}^{-1}\right)\right|=\left|\beta^{\prime \prime}\left(m U_{0}^{-1}\right)\right|+O\left(|q| K^{-1} \delta_{0}^{-1}\right)=\left|\beta^{\prime \prime}\left(m U_{0}^{-1}\right)\right|+O\left(\delta_{0}^{2}\right)
$$

We now note that the subset of $\left[M, M_{1}\right]$ where $\left|\beta^{\prime \prime}\left(m U_{0}^{-1}\right)\right| \geq \delta_{0}$ consists of at most two intervals. Consequently, we can partition $\left[M, M_{1}\right]$ into at most three subintervals such that on each of them we have one of the following sets of conditions:
i) $\delta_{0}|q y|(X M)^{-1} \ll\left|g^{\prime \prime}(m)\right| \ll \delta_{0}^{-1}|q y|(X M)^{-1}$;
ii) $|q y| X^{-1} M^{-2} \ll\left|g^{\prime \prime \prime}(m)\right| \ll|q y| X^{-1} M^{-2},\left|g^{\prime \prime}(m)\right| \ll \delta_{0}|q y|(X M)^{-1}$.

Thus, Lemma 3 with $\delta=\delta_{0}^{2}, F=\delta_{0}^{-1}|q j| M$, and $N=M$ yields (26), provided that (27) holds.

Combining (23) and (26), we get

$$
\begin{equation*}
\left|\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1} \leq K_{1}}} a_{m} b_{k} e(f(k, m))\right|^{2} \ll X^{2} Q^{-1}+X^{2+\varepsilon / 2}(Q J)^{1 / 6} M^{-1 / 3} \tag{28}
\end{equation*}
$$

In view of our choice of Q, the conclusion of the lemma follows from (28), provided that

$$
M \gg X^{7.5(c-1)+10 \varepsilon} .
$$

Both (27) and the last inequality follow from the assumption that $M \geq X^{1 / 2}$ and the hypothesis $c<\frac{16}{15}-2 \varepsilon$.

We close this section with a lemma that will be needed in the proof of Theorem 2 ,
Lemma 6. Suppose that $1<c<2,2 \leq X<X_{1} \leq 2 X$, and $0<\delta<\frac{1}{4}$. Let \mathcal{S}_{δ} denote the number of integers n such that $X<n \leq X_{1}$ and $\left\|n^{c}\right\|<\delta$. Then

$$
\mathcal{S}_{\delta} \ll \delta\left(X_{1}-X\right)+\delta^{-1 / 2} X^{c / 2} .
$$

Proof. Let Φ be the 1-periodic extension of a smooth function that majorizes the characteristic function of the interval $[-\delta, \delta]$ and is majorized by the characteristic function of $[-2 \delta, 2 \delta]$. Then

$$
\begin{equation*}
\mathcal{S}_{\delta} \leq \sum_{X<n \leq X_{1}} \Phi\left(n^{c}\right)=\sum_{X<n \leq X_{1}} \hat{\Phi}(0)+\sum_{h \neq 0} \hat{\Phi}(h) \sum_{X<n \leq X_{1}} e\left(h n^{c}\right) . \tag{29}
\end{equation*}
$$

If $h \neq 0$, [4, Corollary 8.13] yields

$$
\sum_{X<n \leq X_{1}} e\left(h n^{c}\right) \ll|h|^{1 / 2} X^{c / 2},
$$

whence

$$
\begin{align*}
\sum_{h \neq 0} \hat{\Phi}(h) \sum_{X<n \leq X_{1}} e\left(h n^{c}\right) & \ll X^{c / 2} \sum_{h \neq 0}|\hat{\Phi}(h)||h|^{1 / 2} \\
& \ll X^{c / 2} \sum_{h \neq 0} \frac{\delta|h|^{1 / 2}}{(1+\delta|h|)^{2}} \ll \delta^{-1 / 2} X^{c / 2} \tag{30}
\end{align*}
$$

Since $\hat{\Phi}(0) \leq 4 \delta$, the lemma follows from (29) and (30).

4. Proof of Theorem 1: conclusion

Suppose that $1<c<\frac{16}{15}$ and $0<\varepsilon<\frac{1}{2}\left(\frac{16}{15}-c\right)$. To prove (91), we recall Vaughan's identity in the form of [4, Proposition 13.4]. We can use it to express the sum in (9) as a linear combination of $O\left(\log ^{2} X\right)$ sums of the form

$$
\sum_{\substack{M<m \leq M_{1} \\ X<m k \leq X_{1}}} \sum_{K<k \leq K_{1}} a_{m} b_{k} e\left(h m^{c} k^{c}+j\left(n-m^{c} k^{c}\right)^{\gamma}\right),
$$

where either
i) $\left|a_{m}\right| \ll m^{\varepsilon / 2}, b_{k}=1$, and $M \ll X^{2 / 3}$; or
ii) $\left|a_{m}\right| \ll m^{\varepsilon / 2},\left|b_{k}\right| \ll k^{\varepsilon / 2}$, and $X^{1 / 3} \ll M \ll X^{2 / 3}$.

A sum subject to conditions ii) is $\ll X^{2-c-3.5 \varepsilon}$ by Lemma 5 A sum subject to conditions i) can be bounded using Lemma 4 if (14) holds and using Lemma 5 if (144) fails. In either case, the resulting bound is $\ll X^{2-c-3.5 \varepsilon}$. Therefore, each of the $O\left(\log ^{2} X\right)$ terms in the decomposition of (9) is $\ll X^{2-c-3.5 \varepsilon}$. This establishes (9) and completes the proof of the theorem.

5. Proof of Theorem 2

We can cover the interval $\left(x^{1 / 2}, x\right]$ by $O\left((\log x)^{3}\right)$ subintervals of the form $\left(N, N_{1}\right]$, with $N_{1}=N\left(1+(\log N)^{-2}\right)$. Thus, it suffices to show that

$$
\begin{equation*}
Z_{c}(N) \ll N^{3-3 / c+5 \varepsilon / 6} \tag{31}
\end{equation*}
$$

where $Z_{c}(N)$ is the number of integers n in the range

$$
N<n \leq N\left(1+(\log N)^{-2}\right)
$$

that cannot be represented in the form (2).
As in the proof of Theorem (1) we derive solutions of (21) from solutions of (4). We set $\gamma=1 / c, \eta=(\log N)^{-2}$, and write

$$
N_{1}=(1+\eta) N, \quad X=\left(\frac{1}{2} N\right)^{\gamma}, \quad X_{1}=(1+\eta) X, \quad \delta=\gamma X^{1-c}
$$

Suppose that $N<n \leq N_{1}$ and $X<p \leq X_{1}$. Then

$$
(1-\eta) \delta<\gamma\left(n-p^{c}\right)^{\gamma-1}<(1+2 \eta) \delta .
$$

Assuming that p satisfies the inequalities

$$
\begin{equation*}
4 \eta<\left\{p^{c}\right\}<1-4 \eta, \quad 1-\delta-\eta \delta<\left\{\left(n-p^{c}\right)^{\gamma}\right\}<1-\delta+\eta \delta \tag{32}
\end{equation*}
$$

we deduce that

$$
\begin{aligned}
\left(n-\left[p^{c}\right]\right)^{\gamma} & <\left(n-p^{c}\right)^{\gamma}+(1-4 \eta)(1+2 \eta) \delta+O\left(\delta n^{-1}\right) \\
& <\left[\left(n-p^{c}\right)^{\gamma}\right]+1-\eta \delta, \\
\left(n+1-\left[p^{c}\right]\right)^{\gamma} & >\left(n-p^{c}\right)^{\gamma}+(1+4 \eta)(1-\eta) \delta+O\left(\delta n^{-1}\right) \\
& >\left[\left(n-p^{c}\right)^{\gamma}\right]+1+\eta \delta .
\end{aligned}
$$

In particular, a prime $p, X<p \leq X_{1}$, that satisfies (32) yields a solution m of (41) and a representation of n in the form (2).

Let Φ be the 1-periodic extension of a smooth function Φ_{0} that majorizes the characteristic function of $[6 \eta, 1-6 \eta]$ and is majorized by the characteristic function of $[4 \eta, 1-4 \eta]$. Further, let Ψ be the 1-periodic extension of

$$
\Psi_{0}(t)=\psi_{0}\left((2 \eta \delta)^{-1}(t-1+\delta)+\frac{1}{2}\right),
$$

where ψ_{0} is the function appearing in the proof of Theorem Then Ψ_{0} is supported inside $[1-\delta-\eta \delta, 1-\delta+\eta \delta]$ and the Fourier coefficients of Ψ satisfy

$$
\begin{equation*}
\hat{\Psi}(0)=2 \eta \delta, \quad|\hat{\Psi}(h)|<_{r} \eta \delta(1+\eta \delta|h|)^{-r} \quad \text { for all } r \in \mathbb{Z} . \tag{33}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \Psi\left(\left(n-p^{c}\right)^{\gamma}\right) & =\sum_{h \in \mathbb{Z}} \sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \hat{\Psi}(h) e\left(h\left(n-p^{c}\right)^{\gamma}\right) \\
& =\hat{\Psi}(0) \sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right)+\mathcal{R}(n) \\
& =2 \eta \delta\left(\pi\left(X_{1}\right)-\pi(X)+O(\mathcal{S})\right)+\mathcal{R}(n) . \tag{34}
\end{align*}
$$

Here,

$$
\mathcal{R}(n)=\sum_{h \neq 0} \hat{\Psi}(h) \sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) e\left(h\left(n-p^{c}\right)^{\gamma}\right)
$$

and \mathcal{S} is the number of integers m such that $X<m \leq X_{1}$ and $\left\|m^{c}\right\|<6 \eta$. By Lemma 6,

$$
\begin{equation*}
\mathcal{S} \ll \eta\left(X_{1}-X\right)+\eta^{-1 / 2} X^{c / 2} \ll \eta^{2} X . \tag{35}
\end{equation*}
$$

Combining (34), (35) and the Prime Number Theorem, we find that

$$
\begin{equation*}
\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) \Psi\left(\left(n-p^{c}\right)^{\gamma}\right) \gg X^{2-c}(\log X)^{-5} \tag{36}
\end{equation*}
$$

for any $n, N<n \leq N_{1}$, for which we have

$$
\begin{equation*}
\mathcal{R}(n) \ll X^{2-c-\varepsilon / 12} \tag{37}
\end{equation*}
$$

Since the sum on the right side of (361) is supported on the primes p satisfying (32), (31) will follow if we show that (37) holds for all but $O\left(N^{3-3 \gamma+5 \varepsilon / 6}\right)$ integers $n \in\left(N, N_{1}\right]$.

Set $H=X^{c-1+\varepsilon / 6}$. By (33) with $r=2+\left[2 \varepsilon^{-1}\right]$, the contribution to $\mathcal{R}(n)$ from terms with $|h|>H$ is bounded. Consequently,

$$
Z_{c}(N) \ll X^{-2+\varepsilon / 6} \sum_{N<n \leq N_{1}} \mathcal{R}_{1}(n)^{2},
$$

where

$$
\mathcal{R}_{1}(n)=\sum_{0<|h| \leq H}\left|\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) e\left(h\left(n-p^{c}\right)^{\gamma}\right)\right| .
$$

Appealing to Cauchy's inequality and the Weyl-van der Corput lemma [4, Lemma 8.17], we obtain

$$
\begin{aligned}
Z_{c}(N) & \ll X^{c-3+\varepsilon / 3} \sum_{0<|h| \leq H} \sum_{N<n \leq N_{1}}\left|\sum_{X<p \leq X_{1}} \Phi\left(p^{c}\right) e\left(h\left(n-p^{c}\right)^{\gamma}\right)\right|^{2} \\
& \ll X^{c-2+\varepsilon / 3} Q^{-1} \sum_{0<|h| \leq H} \sum_{|q| \leq Q} \sum_{X<p \leq X_{1}}\left|\sum_{N<n \leq N_{1}} e(f(n))\right|,
\end{aligned}
$$

where $Q \leq \eta X$ is a parameter at our disposal and

$$
f(n)=q h\left(\left(n-p^{c}\right)^{\gamma}-\left(n-(p+q)^{c}\right)^{\gamma}\right) .
$$

We choose $Q=\eta X^{1-\varepsilon / 6}$. Then

$$
|q h| N^{-1} \ll\left|f^{\prime}(n)\right| \ll|q h| N^{-1} \ll \eta<\frac{1}{2}
$$

so [4. Corollary 8.11] and the trivial bound yield

$$
\sum_{N<n \leq N_{1}} e(f(n)) \ll N(1+|q h|)^{-1}
$$

We conclude that

$$
Z_{c}(N) \ll N X^{c-2+2 \varepsilon / 3} \sum_{0<|h| \leq H} \sum_{|q| \leq Q}(1+|q h|)^{-1} \ll N X^{2 c-3+5 \varepsilon / 6}
$$

This establishes (31) and completes the proof of the theorem.

References

[1] E. P. Balanzario, M. Z. Garaev, and R. Zuazua, Exceptional set of a representation with fractional powers, preprint.
[2] J.-M. Deshouillers, Un problème binaire en théorie additive, Acta Arith. 25 (1973/74), 393-403.
[3] S. A. Gritsenko, Three additive problems, Izv. Ross. Akad. Nauk 41 (1992), 447-464, in Russian.
[4] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society, 2004.
[5] S. V. Konyagin, An additive problem with fractional powers, Mat. Zametki 73 (2003), 633-636, in Russian.
[6] M. B. S. Laporta, On a binary problem with prime numbers, Math. Balkanica (N.S.) 13 (1999), 119-123.
Department of Mathematics, Towson University, Towson, MD 21252-0001, U.S.A.
E-mail address: akumchev@towson.edu

