
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

A Binary Self-Organizing Map and its FPGA Implementation

Kofi Appiah Andrew Hunter Hongying Meng and Shigang Yue

Mervyn Hobden Nigel Priestley Peter Hobden and Cy Pettit

The vector components of the winning node Wk with mini­

mum distance Di; is then updated as follows

where TJ is the learning rate. The topological ordering prop­

erty is imposed by also updating weight vectors of nodes in

the neighbourhood of the winning node. This can be achieved

by the following learning rule

(3)

(2)

(1)

N-l

D; == L (Xi - Wji)2.

i=O

where N j is a neighbourhood function (defining the region

around Wk) based on the topological displacement of

neighbouring neuron from the winning neuron. The size of

N j decreases as training progresses.

In the vast majority of implementations, the SOM input

data and neurons are represented by real numbers, making

it difficult to implement on a hardware architecture like the

Field Programmable Gate Array (FPGA). However, in many

applications the data is either presented as a binary string, or

may be conveniently recoded as such (a "binary signature").

For example, in image processing applications a bank of Haar

filters produces a long binary signature. In this paper we

present a new learning algorithm which takes binary inputs

and maintains tri-state weights (neuron) in the SOM. We

also present the FPGA implementation of this binary Self

Organizing Map (bSOM). The bSOM is designed for efficient

hardware implementation, having both greatly reduced circuit

size compared to a real-valued SOM, and exceptionally fast

execution and training times.

In section II, we review previous implementations of SOM

on hardware architectures. The novel bSOM algorithm is then

presented in III, followed by its FPGA implementation in

section IV. Section V, presents the experimental results in

software and hardware, and we conclude in section VI.

During training, the "nearest" neuron prototype vector to

the input vector is identified - this is called the "winning"

neuron - using a distance metric, D. The Euclidean distance

is most frequently used as the metric.

For a given network with M neurons and N-dimensional

input vector x, the distance for neuron with weight vector Wj

(j < M) is given by

I. INTRODUCTION

T HE original Self Organizing Map (SOM) proposed by

Kohonen [1] consists of two layers; the input and

the competitive layers. It is an unsupervised neural network

with competitive learning models that captures the topology

and probability distribution of input data, which facilitates

clustering and classification in pattern recognition[2] , [3], [4].

The SOM is typically implemented on a standard von

Neumann architecture computer. For large input dimension­

ality and training set size execution speeds are reasonable,

but training is rather slow, as the SOM training algorithm

typically requires thousands of iterations, each of which

involves the calculation of the Euclidean distance of each of

the input vectors to each of the neuron prototype vectors.

Hardware implementation is therefore of interest. Fortu­

nately, the structure is fairly easy to convert into hardware

processing units executing in parallel [5]. However, a direct

implementation of the standard SOM onto hardware results in

large designs, which consume substantial hardware internal

resources (slices, registers and look-up table (LUT) units),

limiting the scale of network implementation.

The SOM algorithm presented in [1] is based on a

competitive learning algorithm, the winner-take-all (WTA)

network, where an input vector is represented by the closest

neuron prototype vector, which is assigned during training

to a data cluster centre. The prototype vectors are stored

in the "weights" of the neural network. The architecture

consists of topologically organized array of neurons, each

with N-dimensional weight vector, where N is also the

dimensionality of the input vector. The basic principle of the

SOM is to adjust the weight vectors until the neurons repre­

sent the input data, while using a topological neighbourhood

update rule to ensure that similar prototype occupy nearby

positions on the topological map.

Abstract- A binary Self Organizing Map (SOM) has been
designed and implemented on a Field Programmable Gate
Array (FPGA) chip. A novel learning algorithm which takes
binary inputs and maintains tri-state weights is presented.
The binary SOM has the capability of recognizing binary
input sequences after training. A novel tri-state rule is used in
updating the network weights during the training phase. The
rule implementation is highly suited to the FPGA architecture,
and allows extremely rapid training. This architecture may be
used in real-time for fast pattern clustering and classification
of binary features.

Kofi Appiah, Andrew Hunter, Hongying Meng and Shigang Yue are with

the Department of Computing and Informatics, University of Lincoln, UK
and Mervyn Hobden, Nigel Priestley, Peter Hobden and Cy Pettit are with

e2v Technologies, Lincoln, UK.

This work was supported by TSB under BRAINS Project

II. HARDWARE ARCHITECTURES FOR KOHONEN' S MAP

Software simulations are very useful for investigating the

capabilities of neural network models [6], and are suitable

978-1-4244-3553-1/09/$25.00 ©2009 IEEE 164

for many applications, but are limited in the size of network

implementation, particularly where very fast execution and

training is required. Hardware neural networks can be im­

plemented using analogue or digital systems [12].

The popularity of digital implementations stems from the

fact they are more accurate, more flexible and are less

sensitive to noise than analogue ones [7] - notwithstanding

the analogue inspiration from theoretical neural models. The

computational complexity of the SOM algorithm [1] prevents

it from training in real-time on single processor architectures,

for many real-time applications. The FPGA provides a suit­

able platform for the implementation of a digital version of

the SOM neural network, due to its reconfigurability and

smaller non-recurring engineering (NRE) costs.

However, a floating-point representation of neurons in a

neural network presents significant difficulties for implemen­

tation on FPGAs, despite the current advances in FPGA

technology [13], since floating point multipliers and the

computation of nonlinear excitation functions is complex and

consumes large resources [7] [8]. A number of authors have

sought to mitigate this problem by introducing simplifications

to the SOM algorithm; Pena et. al. [4] implemented a digital

version of the SOM on FPGA by replacing the Euclidean

distance computations with a Cityblock (Manhattan distance)

computation to avoid the expense of hardware multiplication.

In addition, they simplified the neighbourhood function and

introduced a set of new learning parameters.

A similar implementation of the SOM, where the distance,

neighbourhood and learning rate computation is replaced

with a simplified version, has been presented by Chang

et. al. [9] and Porrmann et. al. [10]. An efficient SOM

architecture based on a new Frequency Adaptive Learning

(FAL) algorithm, which efficiently replaces the neighbour­

hood adaptation function of the conventional SOM, has been

presented in [9]. The design was implemented on a Xilinx

FPGA and is capable of quantizing a 512 x 512 pixel colour

image in about 1.003sec at 35MHz clock rate without the

use of sub-sampling.

A design based on the universal rapid prototyping system

RAPTOR2000 for the acceleration of SOM is presented in

[10]. Using Xilinx FPGAs, the implementation achieves a

speed-up of up to 190 (with five FPGA modules on the RAP­

TOR2000 system) compared to a software implementation on

a state of the art personal computer, for typical applications

of self-organizing maps. A similar system, implemented on

a Xilinx Virtex II XC2V300, aimed at reducing the training

processing time of SOM, has been presented in [11]. The

design consists of 16 units in the input layer, N neurons in

the output layer and is divided into three sections: the pro­

cessing unit array, the address generator and the controller.

Compared with an all software implementation, the design

achieves approximately 89% speed-up.

Other forms of neural networks have also been designed

and implemented on hardware architectures such as FPGA.

In [17], Nedjah et. al. proposed the design of a feed­

forward neural network on FPGA using a stochastic process

to implement the computation performed by the neurons.

In the implementation, the multiplication and addition of

stochastic values are achieved by an ensemble of XNOR and

AND gates respectively. In the proposed stochastic model,

a long probabilistic bit-stream whose density of set bits

is proportional to the encoded numeric value is used to

represent a number.

Merchant et. al. [13] designed an intrinsic embed­

ded online evolution system using Block-based neural

networks(BbNN)[15]; a grid based network structure of

interconnected block-based neurons. Each neuron block can

have up to 3 inputs, 3 outputs and 9 synaptic weights and

biases depending on the internal configuration determined by

the network structure. The design has been implemented on a

Xilinx Virtex II Pro FPGA running at 40MHz, using a LUT

based BbNN implemented on the block RAM.

A modified version of Boolean k-nearest neighbour

(BKNN), a supervised classifier using Boolean Neural Net­

works, with binary inputs and outputs, has been implemented

on FPGA by Liu et. al. [14]. The modification omits the

iterative classification procedure and is characterised by a

one-shot training and a single classification sweep to obtain

the answer. The design has been verified with Xilinx ISE 6,

targeting XC2S 100E Xilinx Spartan2E FPGA.

To entirely avoid numeric weights in the SOM, while

maintaining the level of performance as well as speed up in

training and using SOM for real-time application, Yamakawa

et. al. in [3] proposed a binary weighted vector SOM and

simulated it in hardware. The proposed SOM uses binary data

for both input and weight vectors. The Hamming distance

is used to calculate the distance between the input and

weight vectors, to identify the winning neuron in the network.

However, the weight vector is updated with priority given to

the most significant bit, thus attempting to treat the weights

as a direct representation of integer values.

The use of the binary weighted SOM on FPGA proves

to be very successful compared to the others. The design

of the binary weighted SOM is five times faster than the

real number weighted SOM in software and 140 times faster

in hardware[3]. This highlights a key principle - that the

most successful design will take account of the nature of the

hardware architecture. A novel binary SOM that follows this

principle is presented in the following section.

III. PROPOSED BINARY SOM ALGORITHM

In this section we introduce the binary Self Organizing

Map (bSOM). This takes a binary vector input, and maintains

tri-state vector weights with {O, 1, # } as the possible values.

The # represents a "don't care" state, which signifies that

the corresponding input vector bit may be either set or clear.

The weight vectors have the same length as the input binary

vector. The bSOM has the same essential structure as a stan­

dard SOM, with an input layer and a competitive layer - see

figure 1. Given a binary input vector hi == (b1 , b2 , ... , bn) ,

all the units in the competitive layer are "connected" by

corresponding prototype vectors, Wj == (Wjl, Wj2, ... ,Wjn).

165

Input layer ne urons
I • A bit in the weight vector is only updated if it is

different from its corresponding input vector bit.

• An update value is generated for each iteration during

training. This value decreases as training progresses.

• A random number is then generated and if the number

is greater than the update value, the bit is updated.

• A bit is updated by changing its value from I to #, 0

to # or # to (0 or 1) depending on the input bit value.

Output layer neurons

Fig. I. Structure of the Original SOM[18] .

where X i and Wji are the bit inverse of Xi and Wji respec­

tively.

The bSOM trammg algorithm is discussed below, and

compared and contrasted with the original SOM algorithm

and Yamakawa's [3] implementation.

a 1 #

a 0.5 a 0.5

1 a 0.5 0.5

0.5 0.5 a

a 1 #

a 1-0.5p a 0.5p

1 a 1-0.5p 0.5p

0.5p 0.5p l-p

Fig. 2. The conditional Markov transition matrix

Fig. 3. The effective Markov transition matrix

X in (T ----t >"I)X = 0 where >.. = 1 and X is a vector

representing the three states (0, 1, #) ; Xl = X 2 = X 3 . This

shows that increasing the number of training iterations makes

no significant difference to the final results, confirming that

the bSOM requires fewer iterations to converge, as compared

to the original SOM and that presented in [3]. The following

section gives the architectural and implementation features

of the proposed bSOM algorithm.

The bit transition can be modelled as a Markov chain

with a conditional Markov transition matrix (T) as shown

in figure 2. If the probability of applying the conditional

Markov transition matrix is given as p = 1 - update rate.

The resulting effective Markov transition matrix (Te) for a bit

to change is as shown in figure 3. If T is a regular transition

matrix, then as n approaches infinity, T" ----t S, where S is

a matrix with constant vectors, as shown in figure 4. The

transition matrix settles after the 12th iteration. Solving for

(5)

D. Updating Weight Vectors

The winning neuron and its neighbourhood are updated

as shown in equation 3. In bSOM, a probabilistic update is

used . The probabilistic update in the bSOM is summarised

as follows :

B. Winner Take All (WTA)

Analogously to the original SOM, the unit with the small­

est Hamming distance to the input is defined as the winning

neuron; see equation 5. Since the weight is a tri-state vector,

a # is considered as a matching bit irrespective of the input

bit's value. The total number of #'s in the weight vector

is stored and used when selecting the winning unit in the

competitive layer. When there is a tie or when two neurons

have the same Hamming distance to the input vector, the

neuron with the minimum number of #'s is chosen as the

better match .

C. Neighbourhood Selection

As in the original SOM and in [3], a neighbourhood

N e of neurons around the winning neuron W e is selected

and updated with the winning neuron. The size of the

neighbourhood is inversely proportional to the iteration value.

A. Distance Computation

The Euclidean distance computation, equation 1, is used in

the original SOM to calculate the distance between the input

vector and the neuron prototype vectors. The implementation

of this equation is not only difficult to realise in hardware,

but also unnecessary for binary vectors. Following [3], we

use the Hamming distance H, as shown in equation 4, for an

input vector x and weight vector Wj .

166

T2 T I2

0.5000 0.2500 0.2500 0.3335 0.3333 0.3333

0.2500 0.50 00 0.2500 0.3333 0.3335 0.3333

0.2500 0.2500 0.5000 0.3333 0.3333 0.3335

T 13 T I4

0.3334 0.3333 0.3334 0.3334 0.3333 0.3333

0.3333 0.3334 0.3334 0.3333 0.3334 0.3333

0.3334 0.3334 0.3333 0.3333 0.3333 0.3334

many clock cycles as there are bits in the binary input vector

to complete the initialization. The hardware architecture

presented here has been test with binary image characters

of size 28 x 28, totalling 784 bits. The sizes of the input

and weight vectors are all set to 784 bits and can easily

be altered for any image size. The presented implementation

takes exactly 784 clock cycles to completely initialize all the

neurons.

Fig. 5. A block diagram of the design circuit.

Fig. 4. The conditional Markov transition matrix after the 2nd, 12th, 13th
and 14th iterations respectively.

TABLE I

SPECIFICATIONOF FPGA CIRCUIT DESIGN.

(6)

D. Neighbourhood update block

This block is use to select the neighbourhood of the

winning neuron and to update the neurons in the specified

region. The size of the neighbourhood reduces as training

progresses. In the hardware implementation the maximum

size of the neighbourhood is set to 4, and decreases as

training progresses. The iterations count determines the size

of the neighbourhood; for example, if the total number of

iterations is set to 100, then for the first 25 iterations the

neighbourhood is set to 4, then 3 in the second 25 iterations

(thus iteration 26 to 50) and then I in the last 25 iterations.

where k is the total number of bits in the input vector and

j E (1 · .. 40) is the address of the neuron. It is worth noting

that the neuron vector is tri-state and the # state is ignored

when computing the Hamming distance . Thus, for a neuron

with 784 #'s, the Hamming distance will always be O.

2) Winning neuron unit: This unit uses the results from

the Hamming distance computed in section IV-C.l to identify

the winning neuron. The design, as shown in figure 6, uses

a series of comparators to select the minimum of every

two input Hamming distances . For an implementation with

40 values, the design takes exactly seven clock cycles to

compute the node with the minimum Hamming distance .

C. Winner Take All block

This block is made up two parts, the Hamming distance

computation unit and the winning neuron unit.

I) Distance computation unit: This unit is used to com­

pute the Hamming distance between the input binary vector

and all the (40) neurons in the bSOM. The Hamming distance

between the input vector X i and a neuron Wj, as shown in

equation 6 is a bitwise operation and hence, takes as many

clock cycles as there are bits in the input vector. Since the

Hamming distance for all the 40 neurons are computed in

parallel, it takes exactly 784 clock cycles to compute the

Hamming distance for all the neurons in the network .

784

n., = 2::= H ijk , where Wjk -I- #.

k=l

B. Pattern Input block

This block is used to acquire the binary input vector (or

binary image) from an external camera. The size of the input

vector 784 is pre-programmed and the input is complete

when a total of 784 bits is read from the camera. This binary

data is stored in the input vector and then passed onto the

WTA block for further processing.

40 neurons
784 bits
784 bits
Random

4 neurons

Network Size
Input vectors
Neuron vectors
Initial weights
Maximum neighbourhood

IV. FPGA ARCHITECTURE AND IMPLEMENTATION

The most critical aspect of any hardware design is the

selection and design of the architecture that provides the most

efficient and effective implementation [9]. The specifications

of the circuit implemented on FPGA is given in table

I with its corresponding block diagram in figure 5. The

circuitry is made up of five basic blocks, namely the weight

initialization, pattern input, Winner Take All, neighbourhood

update and the display blocks.

Three of the five blocks run in parallel. These are the

pattern input, Winner Take All and the display (output) block.

The weight initialization block is triggered only at start-up .

Similarly, the neighbourhood update block is triggered when

a winning node ui; is identified for an input binary vector.

Details of the five basic blocks are presented in the following

sections.

A. Weight Initialization block

This block is used to randomly initialize all the weight

(neuron) vectors in the network . All the neurons in the

network are initialized in parallel bit-by-bit; hence it takes as

167

Fig. 6. Structure of the WTA unit.

7 clock cycles

Resource Total Used

Name Total Used Per.(%)

Flip Flops 135,168 4,095 3

4 input LUTs 135,168 18,387 13

bonded lOBs 768 147 19

Occupied Slices 67,584 11,468 16

RAM16s 288 43 14

A. Software Simulation

The software based simulation of the bSOM has been

achieved on a PC with a general purpose processor clocked

at 2.8GHz and 2GB of SDRAM. Initial experiments were

conducted to empirically select control parameters - number

of neuron, neighbourhood size and learning rate - for all

three implementations of the SOM (the conventional SOM,

strict binary SOM and tri-state SOM (bSOM)).

To determine the number of neurons required to represent

all 60,000 patterns in the dataset; see figure 7. We experi­

mented with different numbers of neurons from 10 to 100

in steps of 10. This experiment was primarily based on the

bSOM and also applies for the conventional SOM algorithms.

The results improve with increasing numbers of neurons until

performance begin to plateau at 80 neurons for the bSOM

(with minimal improvement thereafter).

initialization. The clock frequency of 40MHz also includes

the design for controlling the external logic for the VGA

and the camera. This is the actual hardware test and the

most stable clock frequency. The frequency could be much

higher without the requirement to interface these devices.

Table II gives the details of the resource utilization of the

FPGA implementation.

V. EXPERIMENTAL RESULTS

This section describes some of the experiments conducted

on the algorithm to verify its correctness, and compares

it with other implementations. The MNIST database of

handwritten digits[19], sample shown in figure 7 is used

to test the implementation on both PC simulation and on

the FPGA hardware architecture. A comparison on the PC

between the original SOM as presented by Kohonen in [1]

(herein referred to as the conventional SOM), a strictly binary

SOM and the proposed tri-state SOM (bSOM) algorithms is

also given in this section.

Even though the bSOM is meant for hardware imple­

mentation; for simulation and a fair comparison with the

conventional SOM, we have also implemented the bSOM on

a PC using MATLAB. To justify the use of tri-state (0,1, #)
rather than just binary (0,1), we have also implemented a

version of the binary SOM with only O's and 1's excluding

the third state #. The solely binary implementation uses the

same rules as in the tri-state (or bSOM) implementation and

it is herein referred to as the strict binary SOM.

TABLE II

IMPLEMENTATION RESULTS FOR THE BSOM, USING VIRTEX-4

XC4VLX160, PACKAGE FFl148 AND SPEED GRADE -10.

Muniplexer

S,

D--1___
S2

c ENS

Multiplexer

S, D-

S:1

C ENS

"
Minimum
hamming

Muniplexer distance and
s, address of the

S2 corresponding

c ENS
neuron

The update requires a random number generator, which is

not only complex to implement in hardware but also compu­

tationally expensive. To avoid these costs, an LUT with 2000

randomly generated numbers has been implemented on the

FPGA. For a mismatched bit between the input vector and

the neuron to be updated, one of the 2000 values is selected

using the iteration count. If the number of iterations exceeds

2000, the last 10 bits of the iteration count is used to address

the random number in the LUT.

Mis-matching bits in the neuron vector are updated as

discussed in section III-D; thus a 1 changes to #, a 0 changes

to # and a # changes into 0 or 1 depending on the binary

input value. Note, a # is implemented as '10' or decimal 2.

E. Output display blocks

This block displays the neurons (weights) as binary image

on an external Video Graphics Array (VGA) for visual

verification. It runs in parallel with the input and WTA

blocks. It runs at the refresh rate for the VGA used, typically

60Hz.

The bSOM architecture discussed here has been imple­

mented on a Xilinx Virtex-4 FPGA chip (XC4VLX160)

with approximately 152,064 logic cells with embedded RAM

totalling 5,184 Kbits. The design and verification was accom­

plished using the Handel-C high level descriptive language.

Compilation and simulation were achieved using the Agility

DK design suite. Synthesis - the translation of abstract high­

level code into a gate-level net-list - was accomplished using

Xilinx ISE tools.

The entire design can be clocked up to 40MHz, making

it possible to train the binary Self Organizing Map with

up to 25,000 patterns of size 784bit in a second after

168

o~ocoo~ooooooaoO~OoD

I \ I 11:1. Ill' t I I) I I \ I' I J

~~Z~2d~z~2~zZZ ~lZ~~z

3J33~J$33~3333333333

Y¥~~f~~f4~ Yo/¥~~~~~~¥
SJ5~~~jS~fsSSSrS5$Ss

~ G ~ , ~ 6 6 b 6 G ~ G b 6 ~ ~ ~ 6 b ~

77~1771777~77)7~~777

¥?38~3f3!1 ~?~gr~8fK3

1.7 'l 7 '! o/ "J Cf 9 8 9 Q I:f 1 'lcr't9q~

Fig. 7. A subset of the MNIST database of handwritten digits.

Fig. 8. Results of the cSOM with neighbourhood size of 10.

I'll r tl~11
1IIIgS'~S'7"

77777""?"19stJ
' + ~ 9 ¥ " 1 1 ' S 6 ' 4
'i t:f q , C\ , '1 '1 ~ ,

6f4"(,"~ '~"
('~~.:l~~,:l~.4~

l7t3333c3eJOO
8 t ! ' t r J (} , O O O ~ O O

OOOOOO()tJt1t1
Fig. 9. Results of the bSOM with neighbourhood size of 10.

The neighbourhood size was determined primarily using

the conventional SOM. Increasing the neighbourhood size

increases the number of unused neurons in the conventional

SOM. Even though the bSOM did not suffer from the same

effects, for a fair comparison, the optimal neighbourhood

size for the conventional SOM was adopted for all the other

implementations. Figures 8 and 9 show the neurons after

training the conventional SOM (CSOM) and tri-state SOM

(bSOM) respectively, with the neighbourhood size set to 10

1:....... ..&.: ·m.Q' : ~ { 'j" : ~ ""'} : ~ ""!l,
~ lfP .:J' t' ,:.J , . ~ -A. .,.;;t . ~ .

'S' () .it ,n°0 0 "$' 3 ~ ~ :.

li ,1; .:A, a t) '..~ , q ~. :1'
~ ' ~ . , ~ ''ii. .?~ . ~ e: < ~ , ~ ·C.
~. ~;J v ~ ~ o; ~ : ~ . :0 .=- ~. ~ Q
~ £'! A. ,~. , #t. 'n.".,;,.. A :
w · .:Q.: U 4 ~ ~~ . '~ ..: c~ · V

.~¢ .1t il.7J : ' ~ '. d:. K r: . t : ~ . .~ : : f ~ ~
~ ~ J ~ ~ u . ~~ . .~ 7

2t 'S '9 S· ~ : .~ , . " ~ r :J'
~ A · ~ · o P ::. : ~ :t!. 'n ~ ': . §
~ ~ c ~ .~ ¥ (. ., •

~ i g eS·7· ~~· "r¥ .3
-!{ ffG' ,.1J' r.: : ~ ~ . ? . : ~ . ,3 . ~ ·1....... · : I:. ~ · · w ,...., ' : ~ ~ . 4i!": , ..~

Fig. 10. Results with the [19] dataset; 100 neurons and 100 iterations for
strict binary SOM implementation .

After the selection of appropriate parameters, various tests

were conducted to compare the performance of the tri­

state SOM (bSOM), with the conventional SOM (CSOM)

and a strict binary SOM algorithms . The main aim of this

experiment it to compare the convergence of the tri-state

SOM with the others. Tests for 10, 100, 200 and 500

iterations on the MNIST dataset[19] were conducted. The

experiment was repeated for a number of times. In the case of

the conventional SOM and the strict binary SOM, repetitions

did not make any difference, whereas the results of the tri­

state SOM showed some variability.

Six runs have been conducted on the 10, 100 and 200 iter­

ations, with three runs for the 500 iterations. Figures 13 and

14 show the best and average results for the various runs for

the three implementations. From the two graphs, the tri-state

SOM plateaus after 100 iterations. Increasing the number

of iterations does not make much difference for the tri-state

SOM. In contrast to the tri-state SOM, the conventional SOM

improves as the number of iteration increases and the tri­

state version outperforms the conversional SOM for smaller

iterative values. The performance level of the strict binary

version is inferior as compared to either the conventional or

the tri-state SOMs.

Results of tests conducted using the MNIST dataset [19],

with 100 neurons in each network and the training repeated

169

85

Perfo rmance Evaluati on (Best Results)

~ C S O M

_ TSOM

880M

500i200i

Number of it erations

lODi10i

. . . .
, ,---------=-

I-

60

Fig. 13. A graph showing the best performance for the 3 implementations.

implementations. Corresponding graphs for the two tables

are shown in figures 13 and 14, where TSOM is the tri-state

SOM, CSOM is the convensional SOM and BSOM is the

strict binary SOM.

Fig. II. Results with the [19] dataset; 100 neurons and 100 iterations for

the original SOM implementation.
Performan ce Evaluation (Average Results)

A graph showing an average performance for the 3 implement a-

, , ----------=---..----

Number of ite rations

for 100 iterations are shown in figures 10, 11 and 12 for the

strict binary, conventional and tri-state SOMs respectively.

From the figures, the tri-state evenly represents the dataset,

while the results of the original SOM is visually the best,

and the strict binary version is the worse. The 60,000 binary

image patterns from the MNIST dataset [19] are converted

into binary strings each with 784 bits longs. The binary

signatures are then used to train binary networks each with

100 nodes; hence figures 10, II and 12 are the binary

representations of the 60,000 binary patterns using the the

strict binary, conventional and tri-state SOMs respectively.

84

82

~ 80

j 78

~ 76

574

<3 72

~ 70

<3 68

66

64

Fig. 14.
tions .

10i lODi 200i 500i

--+- CSOM

_ TSOM

880M

:7 lJ :/ .q- :4t '1 '~l ~ J r
~ ~. J. if. <'" S S o g' ''S,
~3 'I. 7· $' :8' ·fJ· #(~ , ~ :

I:t> 9 ~ .:1 ' !S o M ~7 e 4·
6· 0 'q 3 q.' -q. i» 7 ';" . it·
~3S '~ ·S ·q. e s.s »
O·t.\ Ct.3. I Oe ·~S2
• .t .ff li 0 ·f ;q '1 0 ., .

' ~ l 3 G 2,· ~ : 0 eo .S" '0
:L " ~ :f ' q' 7 a '"' s: Z.:1

Fig. 12. Results with the [19] dataset; 100 neurons and 100 iterations for
the tri-state SOM implementation.

Tables III and IV, show the performance level in terms of

the number of binary images correctly classified by the three

The software implementations were written in MATLAB.

The original SOM (conventional SOM) runs slightly faster

on the PC with the MATLAB implementation than the tri­

state SOM. It is worth noting that MATLAB is not the

most optimal for a tri-state implementation on the PC.

However, the hardware implementation speed of the bSOM

far outperforms the conventional SOM algorithm.

TABLE III

A TAB LE SHOWI NG TH E BEST PERFOR MANCE OF TH E 3

IM PLEM ENTATIO NS FOR 4 DIFFER ENT ITERATIO NS .

Design lOi 100i 200i 500i

CSOM 78.58% 80.02% 80.03% 81.84%

TSOM 82.95% 83.54% 83.39% 83.02%

BSOM 70.28% 72.18% 73.06% 73.68%

B. Hardware Simulation

The MNIST dataset [19] has been used to test the im­

plementation on FPGA. The dataset is available as binary

strings. We first convert the binary strings into binary images.

The binary dataset is then converted into a video stream and

fed to the hardware implementation . Results of the hardware

170

TABLE IV

A TABLE SHOWING THE AVERAGE PERFORMANCE FOR THE 3

IMPLEMENTATIONS FOR 4 DIFFERENT ITERATIONS.

Design 10i 100i 200i 500i

CSOM 78.58% 80.02% 80.03% 81.84%

TSOM 81.86% 82.83% 82.69% 82.57%

BSOM 70.28% 72.18% 73.06% 73.68%

are displayed on a VGA for visual inspection as well as

written onto memory for further verification. Networks of

size 10 to 60 neurons have been successfully implemented on

the FPGA platform running at 40MHz. Networks with up to

100 neurons have been simulated on the hardware emulator

and will be transferred onto the physical device in due course.

VI. CONCLUSION

In this paper we have proposed a novel binary SOM

algorithm suitable for FPGA implementation, and designed

the digital hardware based on the algorithm. The features

of the algorithm include a binary input and neuron vectors.

At the reported processing speed of 40MHz, the hardware

tri-state SOM is 30 times faster than the original SOM

implemented on a state-of-the-art PC. Generally, SOMs

with neighbourhood update have topology-preserving nature.

Unfortunately, this has not been the case with MNIST dataset

[19]; a behaviour subject to further analysis.

REFERENCES

[1] T. Kohonene, Self-Organizing Maps. Springer,New York, 1995.

[2] H. C. Card, G.K. Rosendahl, D. K. McNeill and R. D. McLeod Com­

petitive Learning Algorithms and Neurocomputer Architecture IEEE

Transaction on Computers, Vol. 47 No. 8 August 1998

[3] T.Yamakawa, K. Horio and T. Hiratsuka Advanced Self-Organizing

Maps using Binary weight vector and its digital hardware design Proc.

of the 9th Int. Conf. on Neural Information, 2002.

[4] J. Pena and M. Vanegas Digital Hardware Architecture of Kohonen 's

Self Organizing Feature Maps with Exponential Neighboring Func­

tion IEEE International Conference on Reconfigurable Computing and

FPGA, 2006.

[5] W. Kurdthongmee A novel hardware-oriented Kohonen SOM image

compression algorithm and its FPGA implementation Journal of Sys­

tems Architecture, Volume 54, Issue 10, October 2008, Pages 983-994,

ISSN 1383-7621.

[6] P. Moerland and E. Fiesler Hardware-Friendly Learning Algorithms

for Neural Networks: an Overview Proc. of 5th international conf. on

microelectronics for neural networks and fuzzy systems, 1996.

[7] A. Muthuramalingam, S. Himavathi, E. Srinivasan Neural Network Im­

plementation Using FPGA:Issues and Application International Journal

of Information Technology Volume 4 Number 2, Winter 2008.

[8] R. Molz, P.Engel, F. Moraes, L. Torres and M. Robert A fast prototyping

neural network model for image classification Proc. of Design of

Circuits and Integrated Systems, 2000.

[9] C. Chang, M. Shibu and R. Xiao Self Organizing Feature Map for Color

Quantization on FPGA FPGA implementations of neural networks ­

Springer, 2006.

[10] M. Porrmann, U. Witkowski and U. Ruckert Implementation of Self­

Organizing Feature Maps in Reconfigurable Hardware FPGA imple­

mentations of neural networks - Springer, 2006

[11] R. AGUNDIS, G. GIRONES, C. PALERO and D. CARMONA A

Mixed Hardware/Software SOFM Training System Computacin y Sis­

temas, No. 004, april 2008.

[12] J. Starzyk, Z. Zhu and T. Liu Self-Organizing Learning Array IEEE

Trans. on Neural Networks, vol. 16, no. 2, pp. 355-363, March 2005.

[13] S. Merchant, G. Peterson and S. Kong Intrinsic Embedded Hardware

Evolution of Block-based Neural Networks, Proceedings of the 2006

International Conference on Engineering of Reconfigurable Systems &

Algorithms, June 26-29, 2006,

[14] J. Liu, B. Li and D. Liang Design and Implementation of FPGA-Based

Modified BKNN Classifier IJCSNS International Journal of Computer

Science and Network Security, VOL.7 No.3, March 2007.

[15] S. Moon and S. Kong Block-based neural networks Neural Networks,

IEEE Transactions on Volume 12, Issue 2, March 2001.

[16] P.De Souto,T. Ludermir and M. Campos Encoding of Probabilistic

Automata into RAM-Based Neural Networks In Proceedings of the

IEEE-INNS-ENNS international Joint Conference on Neural Networks,

2000.

[17] N. Nedjah and L. de Macedo Stochastic Reconfigurable Hardware for

Neural Networks In Proc. of IEEE Euromicro Symposium on Digital

System Design, 2003.

[18] B. Magomedov Self-Organizing Feature Maps (Kohonen maps)

http://www.codeproject.com/KB/recipes/sofm.aspx

[19] Y. LeCun and C. Cortes The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/

[20] J. Geusebroek, G. Burghouts, A. Smeulders The Amsterdam Library

of Object Images International Journal of Computer Vision, 2005.

171

