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Abstract
Theatrical performance constitutes a complicated way for students to express and to 
communicate with each other, since it targets both various artistic and educational 
goals. Even though it constitutes a top moment of students’ expression, several 
students do not feel comfortable when participating in such cultural activities, as 
performance anxiety, a negative emotional experience stemming from the public 
audience exposure, affects them. The aim of this research is to apply and evalu-
ate a student segmentation technique with the help of bio-inspired computational 
intelligence, for identifying high levels of performance anxiety at schoolchildren. 
A Mayfly-based clustering optimization algorithm is applied on a dataset with 774 
instances of students to classify them according to their levels of emotions and per-
formance anxiety that are developed during the event. A comparison with a genetic 
algorithm as well as particle swarm optimization shows that the proposed method 
is distinguished by superior categorization capabilities. The findings demonstrate 
the effective dissimilar student groups formation, with the members of each being 
distinguished by similar characteristics in terms of emotions and performance anxi-
ety, highlighting the ones with unmanageable emotional experiences. Therefore, the 
drama educator is able to effortlessly detect, manage students and develop coping 
practices in those at risk, by acknowledging each group’s characteristics.

Keywords Mayfly clustering · Bio-inspired computational intelligence approach · 
Student segmentation · Theatrical performance anxiety · Anxiety detection · 
School theatrical performance

Received: 16 May 2022 / Accepted: 1 February 2023 / Published online: 11 February 2023
© The Author(s) 2023

A bio-inspired computational classifier system for the 
evaluation of children’s theatrical anxiety at school

Konstantinos Mastrothanasis1  · Konstantinos Zervoudakis2  · 
Maria Kladaki1  · Stelios Tsafarakis2

Extended author information available on the last page of the article

1 3

http://orcid.org/0000-0002-8703-9607
https://orcid.org/0000-0002-2146-1493
http://orcid.org/0000-0003-3146-6914
http://orcid.org/0000-0001-5535-4787
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-11645-4&domain=pdf&date_stamp=2023-2-9


Education and Information Technologies (2023) 28:11027–11050

1 Introduction

Happenings in school constitute a usual cultural activity that takes place inside or 
outside the borders of school, aiming to extrovert the school units to their culture, 
while it enchases the aesthetic cultivation, the intellectual development, the creative 
expression, as well as the sensitization of the pupils to topics related to values, nation, 
and culture. They are separated into numerous form groups (e.g. exhibitions, music 
events, theatrical performances, dance, literary events, etc.), in which various related 
or non-related to educational factors, are involved. The most common event is the 
theatrical performance, since it is considered crucial for students’ expression, through 
cultural activities. It is a complicated form of creation, cultural action, communica-
tion, as well as artistic expression, targeting artistic as well as pedagogical goal.

Theatrical performance in school constitutes a usual cultural activity that takes 
place inside or outside the borders of school, aiming to extrovert the school units to 
their culture, while it enchases the aesthetic cultivation, the intellectual development, 
the creative expression, as well as the sensitization of the pupils to topics related to 
values, nation, and culture. It is a complicated form of creation, cultural action, com-
munication, as well as artistic expression, targeting artistic as well as pedagogical 
goal. As an action, in terms of education, the theatrical performance encourages and 
at the same time it helps the connection and creative communication of schoolchil-
dren with their nation and culture. In this fashion, the school’s purpose on helping the 
development of young characters and the role of the educator, are valued, and novel 
viewpoints are given in the teaching process. Moreover, to prepare a school theatrical 
event, conditions are mandatory that are not always clear, nor acknowledged.

Theatrical performance conductions are anything but easy, as social or individual 
issues usually act as inhibiting factors to the person’s attempts to accomplish pos-
sible personal goals (Nordin-Bates, 2012). The performance anxiety, is one of those 
factors and it refers to the feelings that a person could experience during participat-
ing in theatrical events, since they presume his/her social exposure, by their nature 
(Barkley, 2012; Brennan, 2020; Wilson & Roland, 2002; Wright, 1999). Even though 
it is a common belief that stress may have an impact in a positive way when its levels 
are high enough to inspire the individual to try harder, exposure to unmanageable 
stressful levels may affect mental or physical health in a negative way, often followed 
by potentially pathological problems. Such an experience is reported as performance 
anxiety or stage fright of stage anxiety, and is a non-positive emotional experience 
which is observed in situations of individuals’ public exposure (Scott, 2017). It is 
created by thinking of a negative situation or performance assessment by audience 
(Goodman & Kaufman, 2014) and is a temporary emotional pattern caused by envi-
ronmental stress, like worry and tension (Spielberger, 1966), which directly reflects 
the psychological instant reaction to a particular situation. Not only state anxiety is 
appropriate for monitoring the psychological state of children, but also it can reveal 
the potential anxiety of mentally healthy ones, due to its properties.

Performance anxiety refers to an endless anxiety, developing during performances 
and is not connected with gender, educational level, age, skill, or preparation level 
(Doğan & Palanci, 2015; Papageorgi et al., 2013). It can affect individuals regardless 
of their age and skill level (Boucher & Ryan, 2011; Papageorgi et al., 2013; Steptoe et 
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al., 1995). According to Ascenso, Perkins, and Williamon (2018) and Merritt, Rich-
ards, and Davis (2001), it is a condition affecting people in a variety of their actions, 
considering speaking, sports and other acts like dancing and acting. As Thomson 
and Jaque (2017) mention, persons are frightened of making an disastrous fault or of 
being non-positive assessed. Should individuals be incapable of coping with possible 
frightening emotions and somatic reactions, their negative feelings keep growing 
until they start experiencing a panic attack (Fernholz et al., 2019; Guyon et al., 2020). 
Obviously, this kind of experience has a negative impact on performance as well. 
Following a panic attack, the concern that upcoming acts may be sabotaged by per-
formance anxiety is growing. Artists become sensitized to both cognitive and somatic 
features of anxiety, rather than adjusting to performance situations (Barnard et al., 
2011; Thomson & Jaque, 2017). For example, they may develop enough stress to 
have dyspnea symptoms, which could be linked to a prior panic attack episode, or in 
a case of witnessing another person trying to get enough oxygen during a panic attack 
experience. Anxiety may also cause arrhythmic heartbeats or even a heart attack. 
Increased anxiety feelings also occur due to feelings experienced during memories 
of past negative events (Kiliç et al., 2008; Thomson & Jaque, 2017). All definitions 
mentioned above, consider three factors that play a key role in symptoms (State-trait 
theory of anxiety) (Psychountaki et al., 2003; Spielberger, 1966) that sustain a con-
tinuous disturbing experience in performance circumstances (Ascenso et al., 2018; 
Kenny, 2011; Papageorgi & Kopiez, 2012; Wilson, 2002). Performance anxiety is 
a condition that persons experience when performing to an audience, regardless of 
their characteristics (Doğan & Palanci, 2015; Langendörfer et al., 2006). By per-
formance anxiety, a phenomenon close to fright, is established, combining behav-
ioral, cognitive, as well as physiological responses and it stems from a real danger 
or various unknown causes. Performance anxiety is also classified as social phobia 
(Ascenso et al., 2018).

Individuals may have to overcome various worries, to support their character dur-
ing the performance, which constitutes a cause of anxiety (Papageorgi, 2021). They 
need to adore their performance experiences. During school theatrical events, the 
intense feelings triggered by performance anxiety have an undesirable impact on 
the participation of the schoolchildren involved. In the work of Wilson and Roland 
(2002) it is mentioned that an actor may develop anxiety, which can be translated into 
apprehension or fear about performing. Placement or reading, memorization, speak-
ing abilities, instrument abilities, and interfering with grip and appearance can also 
be affected by performance anxiety (Meijer & Oostdam, 2011). In certain cases, this 
kind of emotional state has a non-positive impact on the pupil’s skills. Furthermore, 
when it comes to prevalence rates, Studer et al. (2011), mentioned that a percent-
age of 12% of music students deals with high anxiety on stage, Papageorgi (2022) 
stated that a percentage of 11% of adolescent musicians also does, and Steptoe et al. 
(1995) stated that a 10% of professional actors also deals with high anxiety on stage. 
Moreover, studies show that prevalence rates for childhood social anxiety disorder 
range from 0.5 to 9.0% in pediatric primary care samples and community studies 
(Hitchcock et al., 2009).

Consequently, development of practices that will recognize schoolchildren who 
are at-risk, considering performance anxiety, for a teacher to develop coping prac-
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tices, is necessary. However, a procedure like this is considered enormously hard due 
to its multi-criteria complexity. The reflection centers on an approach for an effec-
tive detection of those cases, a safe criteria adoption for the multi-criteria evaluation 
of schoolchildren’s anxiety, along with the time needed to implement such a task. 
Recognizing and identifying such persons in early is crucial. According to reported 
findings, the effectiveness of the treatment of performance anxiety mostly relies on 
its primary identification to be treated with suitable interventions.

Under those circumstances, Computational Intelligence (CI), Artificial Intelli-
gence (AI), and Machine Learning (ML) approaches are able to support the educator 
in this way, since they introduce effective fast solvers on addressing complicated 
problems that could not be addressed by conventional methods (Kar, 2016; Yang et 
al., 2021). Regardless of the particular application, AI-based technologies depend 
on the detection of patterns within large data sets (Ćosić et al., 2020; Zhou et al., 
2020). Thus, AI has a transformational power (Hwang et al., 2020). In this fashion, 
the high levels of performance anxiety detection at schoolchildren can be considered 
as an non-deterministic polynomial-time hardness problem (NP-hard problem), since 
numerous objectives, for the individual assessment, are taken into account (Kusse-
row et al., 2012; Mastrothanasis et al., 2021; Qaddoura et al., 2021; Zervoudakis et 
al., 2020). As a result, the main purpose of the current research is to identify high 
levels of performance anxiety at schoolchildren, through learner segmentation using 
CI methods, and more specifically metaheuristic-based ones.

The rest of the paper is organized as follows: In Sect. 2, a review of the literature 
when it comes to anxiety detection using ML methods is demonstrated, while in 
Sects. 3 and 4, the Mayfly optimization algorithm and the purpose of the study are 
described, respectively. In Sect. 5 the method to be used is presented and in Sect. 6 
the results are demonstrated. Finally, in Sects. 7 and 8, a discussion as well as the 
main conclusions of the research are presented.

2 Artificial intelligence and anxiety detection

When it comes to anxiety detection, machine learning methods have already been 
used (Muhammad et al., 2020; Priya et al., 2020). For instance, in the recent work 
of Khan et al. (2021) the authors detected psychological disorders by success-
fully implementing deep learning based models of machine learning algorithm, in 
the recognition of human behaviors pertaining to anxiety. Moreover, Pintelas et al. 
(2018) who reviewed the literature on applying machine learning methods in the 
field of detecting anxiety disorders, showed that common machine learning methods 
like logistic regression, random forest and Support Vector Machine (SVM), can be 
used to detect anxiety disorders. Particularly, Chatterjee et al. (2014) used Logis-
tic Regression, Naive Bayes and a Bayesian Network to predict generalized anxiety 
disorder, while Chen et al. (2015) used a Bayesian joint model with a linear mixed 
effects model for the longitudinal measurements, and a generalized linear model for 
the binary primary endpoint, Hilbert et al. (2017) used binary SVM within a nested 
leave-one-out cross-validation framework, and Dabek and Caban (2015) used a neu-
ral network model for the same purpose.
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When it comes to posttraumatic stress disorder, Saxe et al. (2017) performed a 
comparative analysis of support vector machine, Lasso, Logistic regression and Lin-
ear Regression to predict the anxiety of 163 children. Further details can be found 
in the work of Khan et al. (2021). Moreover, Galatzer-Levy et al. (2014) attempted 
to improve the prediction of posttraumatic stress disorders using machine learning 
predictors using a set of 957 trauma survivors within 10 days of a traumatic event. 
Furthermore, a hybrid system of standard machine learning techniques to classify 
posttraumatic stress disorder allowing three popular feature selection methods such 
as chi-square, principal component analysis and correlation based-feature selection 
was followed by Omurca and Ekinci (2015). Through the particular approach, they 
determined important indications of patients’ trauma alternative approach for predict-
ing posttraumatic stress disorder. The accuracy of the particular method varied from 
74 to 79%.

Social anxiety disorder, as well as panic disorder and agoraphobia, are also 
reported to be predicted using machine learning predictors. For instance, Liu et al. 
(2015) used multivariate pattern analysis, while Zhang et al. (2015) used a linear 
support vector machine to classify patients according to their levels of social anxiety. 
Finally, Lueken et al. (2015) applied a machine learning approach to separate depres-
sive comorbidity from panic disorder.

Furthermore, the literature review reveled that binary classifiers were used to 
diagnose children’s anxiety in the work of McGinnis et al. (2019) and Ding et al. 
(2022) used a dataset of paired self-reported state anxiety levels, in order to train and 
validate machine learning models like linear regression, support vector regression, 
LASSO regression, and ensemble of trees, to predict state anxiety. Finally, Salekin 
et al. (2018) used a weakly supervised learning framework to detect social anxiety 
and Sau and Bhakta (2019) used approaches like Logistic Regression, Random For-
est, Naive Bayes, and SVM and Catboost, to early detect and treat anxiety disorders. 
Finally, Xiong, et al. (2021) used a feature ensemble based Bayesian neural network 
for the prediction of anxiety disorders and Mastrothanasis, et al. (2021) used a bio-
inspired metaheuristic-based algorithm to classify students according to their levels 
of state anxiety.

3 Bio-inspired computation intelligence

Bio-inspired optimization algorithms constitute popular and effective tools of com-
putation intelligence for addressing complex optimization problems (Yang, 2020). 
Nature-inspired algorithms development has become very popular during the last two 
decades. Bio-inspired algorithms such as Genetic Algorithms (GA), ant colony algo-
rithms, bat algorithms, bee algorithms, Firefly Algorithms (FA), cuckoo search, fly-
ing foxes optimization algorithm and Particle Swarm Optimization (PSO) have been 
applied in various research fields with a dramatic increase of the number of relevant 
publications (Askarzadeh, 2016; Attaran et al., 2021; Faramarzi et al., 2020; Yang, 
2020; Zervoudakis & Tsafarakis, 2022; Zitouni et al., 2021). Related algorithms can 
generally be separated into four groups: (a) evolutionary based bio-inspired algo-
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rithms, (b) swarm intelligence-based bio-inspired algorithms, (c) ecology-based bio-
inspired algorithms and (d) multi-objective bio-inspired algorithms (Fan et al., 2020).

According to Torres-Jiménez and Pavón (2014), this kind of algorithms have the 
ability to address various optimization problems, with numerous requirements, due 
to their abilities when it comes on exploring the search space, escaping from local 
optima, and determining if a solution is considered good enough for the decision 
maker. Furthermore, they give the decision maker the ability to explore the trade-off 
between the performance and the quality of solutions. As a result, they are applied in 
various real-life applications.

According to José-García and Gómez-Flores (2016) and Ezugwu (2020), nature-
inspired-based clustering algorithms have been successfully applied in addressing 
complex real-world engineering problems as well as cluster analysis. For instance, 
the GA, is a widely used evolutionary algorithm, which has been applied to address 
several real-world optimization problems such as location problems (Chappidi & 
Singh, 2022), data clustering problems (Chehouri et al., 2017), and flow shop sched-
uling problems (Liang et al., 2022). The Differential Evolution (DE) which is another 
evolutionary algorithm, has been applied to address complex optimization problems 
in computer science and engineering (Tsafarakis et al., 2020; Xiang et al., 2015), 
while numerous DE hybrid variants have equally been used to solve various data 
clustering problems (Ezugwu et al., 2022). Furthermore, the PSO algorithm has been 
applied to solve problems such as hierarchical and partitional data clustering (Rana 
et al., 2011) by various researchers due to its advances when it comes to convergence 
rate and convergence speed. Finally, FA which is based on the flashing behavior of 
fireflies, is another successful metaheuristic algorithm that has hundreds of success-
ful applications recorded in solving many complex engineering problems (Fister et 
al., 2013) and data clustering problems (Senthilnath et al., 2011).

3.1 Mayfly optimization algorithm

The Mayfly optimization Algorithm (MA) (Zervoudakis & Tsafarakis, 2020) is a 
newly optimization algorithm which has already been used by researchers, to address 
their non-deterministic polynomial-time hardness problems (Alblehai et al., 2022; 
Bhattacharyya et al., 2020; Guo et al., 2021; Gupta & Gehlawat, 2022; Liu et al., 
2021; Roni et al., 2022; Tamilmani et al., 2022; Zhao & Gao, 2020). The main reason 
behind the widely application of the particular algorithm, is that it combines major 
advantages of both evolutionary and swarm intelligence optimization algorithms. 
Particularly, MA combines advances of PSO, GA and FA (Zervoudakis & Tsafarakis, 
2020). As a result, MA’s performance is superior to that of other state-of-the-art meta-
heuristics when it comes on addressing complex objectives.

In this algorithm, each mayfly’s position represents a potential solution to the 
problem. Firstly, a set of female and a set of male mayflies are generated at random, 
as x = (x1, . . . , xd), whose performance is assessed on the predefined objective func-
tion f(x). Considering xt

i  as the present position of mayfly i in the objective space 
during step t, it is altered by summing it with a velocity vt+1

i , as:
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 xt+1
i = xt

i + vt+1
i  (1)

with xi
0~U(xmin, xmax). The velocity v  of a male mayfly i is computed as:

 
vt+1

ij =

{
g ∗ vt

ij + a1e
−βr2

p
(
pbestij − xt

ij

)
+ a2e

−βr2
g
(
gbestj − xt

ij

)
, iff (gbest) > f (xi)

vt
ij + d ∗ r, else

 (2)

while for female mayflies as:

 
vt+1

ij =

{
g ∗ vt

ij + a2e
−βr2

mf
(
xt

ij − yt
ij

)
, iff (yi) > f (xi)

vt
ij + f l ∗ r, else

 (3)

where vt
ij  is the velocity of mayfly i in dimension j = 1,…,n at time step t, a1 and a2 

are positive attraction constants. pbestij  is the best position mayfly i had ever gone 
and gbest  is the overall best solution found so far. Moreover, β  is a fixed visibility 
coefficient, rp  corresponds to the Cartesian distance between two individuals, com-
puted as:

 
||xi − Xi|| =

√√√√
n∑

j=1

(xij − Xij)
2 (4)

Finally, g is a constant in the range of (0 , 1], d  is a positive nuptial dance coefficient 
and r , is a random value in the range [-1, 1] and fl. a random number.

The mating process between two mayflies is represented by the crossover (genetic) 
operator as:

 
offspring1 = L ∗ male + (1 − L) ∗ female

offspring2 = L ∗ female + (1 − L) ∗ male
 (5)

where male  is the male parent and female  is the female one. L  is a random value 
in the range (0,1). Initial velocities of offspring are set to zero. A detailed description 
about the way mayflies move, can be retrieved from the work of Zervoudakis and 
Tsafarakis (2020).

Algorithm 1 Pseudo code of Mayfly (MA).

Objective function of the problem f(x), x=(x1, . . . , xd)
T

Initialize the male mayfly populationxi (i = 1,2, . . . , N)
Initialize the male mayfly velocitiesvmi

Initialize the female mayfly populationyi (i = 1,2, . . . , M)
Initialize the female mayfly velocitiesvfi

Evaluate solutions according to the predefined objective function.
Find global best solution (gbest ).
Find personal best solutions of male mayflies (pbest).
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Do While stopping criteria are not met.
 Update velocities and positions of male mayflies.
 Update velocities and positions of female mayflies.
 Evaluate solutions according to the predefined objective function.
 Rank the mayflies according to the objective function values.
 Mate the mayflies.
 Evaluate offspring according to the predefined objective function.
 Separate offspring to male and female randomly.
 Replace worst solutions with the best new ones.
 Update pbest  andgbest
end while.
Postprocess results and visualization.

4 Purpose of the study

The main objective of the current research is to identify high levels of performance 
anxiety at schoolchildren, through learner segmentation using CI methods. Through 
a MA-based clustering algorithm, dissimilar learner clusters, with the individuals of 
each one being distinguished by homogeneous characteristics of performance anxi-
ety are created. The clustering approach will be applied on an observation data set 
regarding the positive, the mild negative and the strong negative feelings of students, 
during their artistic participation in school theatrical events (Mastrothanasis & Kla-
daki, 2022), based on the instrument of evaluating the state performance anxiety of 
Spielberger et al. (1973). Consequently, through these clusters, the cases of school-
children experiencing non-positive emotional experiences will be demonstrated. 
Finally, the performance of the proposed method will be compared with that of two 
state-of-the-art metaheuristics.

5 Method

5.1 Datasets

To complete this research, evaluative quantitative data of 774 10–12-year-old primary 
school pupils (average age = 10.53, S.D.= 1.72), of which 466 were boys (60.2%) and 
308 were girls (39.8%) from numerous different parts of Greece, were used. These 
students among with their teachers participated in a research program, which was 
conducted throughout Greece by the University of the Aegean, during the academic 
year 2020–2021 (Mastrothanasis & Kladaki, 2022).

Once the teachers were properly trained, they prepared a school play, with their 
students as the actors, as part of their schools’ cultural activities. During their stu-
dents’ performance, the teachers observed and captured the feelings of the students, 
according to three three-point Likert observation scales (Mastrothanasis & Kladaki, 
2022). These observation scales were based on the theoretical background of state 
anxiety for children of Spielberger et al. (1973) (State Anxiety Inventory, STAIC), 
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and each item is scored with 1, 2 or 3 points by the researchers, with higher values 
indicating more negatively charged emotional states.

The first scale was about positive feelings (Pos) and included five items about 
emotional states that positively affect a person, such as calmness, pleasantness, hap-
piness and satisfaction. The second scale was about mild negative feelings (Mildneg) 
and included four items regarding emotional states that negatively affect a person but 
do not have a great emotional intensity, such as disturbance, nervousness, discomfort, 
and worry. Finally, the third scale was about the existence of strong negative feelings 
(Strongneg) and included three items related to adverse emotional states character-
ized by intense emotional loading, such as panic, terror and fear (Mastrothanasis & 
Kladaki, 2022). According to the theory of Spielberger et al. (1973) these kinds of 
emotions shape the actors’ state performance anxiety (Psychountaki et al., 2003).

The three scales which were described above were included in a single online 
questioner, on which the teachers noted the intensity of the emotions they observed in 
their students. After completing the questionnaire, the teachers sent their answers to 
the researchers. Figure 1 indicatively demonstrates a small part of the questionnaire, 
and the way in which it was completed by the teachers.

The descriptive data and the violin plots of the data retrieved from the three 
adopted measurement scales, are demonstrated in Table 1; Fig. 2, respectively.

5.2 Research design

To address the NP-hard problem of clustering of learners when it comes to perfor-
mance anxiety, the MA was used.

Table 1 Descriptive statistics of datasets
S.D. Skewness Kurtosis Min Max Range CI 95%

Positive emotions 0.46 0.46 0.08 1.00 3.00 2.00 1.67–1.73
Mild negative emotions 0.47 0.93 0.24 1.00 3.00 2.00 1.42–1.49
Strong negative emotions 0.33 2.33 5.30 1.00 2.67 1.67 1.14–1.19

Fig. 1 Indicative questions
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In this research, it is assumed that n  schoolchildren distinguished by m  charac-
teristics, are to be separated into a maximum of k  clusters. In this fashion, a potential 
solution is a matrix of k × (m + 1) elements, as Zervoudakis, Mastrothanasis and 
Tsafarakis (2020) suggest. As a result, each cluster is represented by each row of 
a potential solution. The randomly generated initial positions of the m  columns of 
each solution are generated between the range of each characteristic values, while 
values in the last column range on (0,1)  to determine the amount of groups. Rows of 
a solution with a value less than 0.5 in the last column are excluded and the amount 
of groups is reduced. The remaining ones with the last column ignored, are then 
evaluated. If the number of remaining clusters is less than two, an iterative process 
begins, where the cluster with the smallest value in the last column is selected, until 
a total of two clusters is achieved. An example of a random potential solution when 
searching for a maximum of five clusters, using the dataset presented in Subsection 
5.1, is demonstrated in Fig. 3.

Since the values in the last column of the second, third and fifth clusters are less 
than 0.5, these clusters are excluded together with the entire fourth column, and the 
final number of clusters is reduced to two, whose centroids are represented in Fig. 4, 
and will be evaluated by the objective function.

Each mayfly is then assessed using the Davies-Bouldin index, which is a com-
monly used metric for evaluating potential solutions when it comes to cluster analysis 
(Davies & Bouldin, 1979). The goal is to minimize the DBI value. Using this index, 
a cluster is assessed according to the Ri,j  value, which is computed as:

 
Ri,j ≡

Si + Sj

Mi,j
 (6)

where Si  and Sj  are the clusters i  and j  dispersions, respectively, computed as:

Fig. 2 Violin plots for emotion scales
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Si =



 1
Ti

Ti∑

j=1

|Xj − Ai|q



1/q

 (7)

where Ti  is the amount of individuals in cluster i , Xj  is a vector of their charac-
teristics, Ai  correspond to the cluster i  centroid, and q is an integer. In the current 
research q has the value of 1, which makes Si  as the average Euclidean distance of 
individual’s characteristics in cluster i to its centroid. As a result, each individual is 
placed to the cluster with the minimum distance.

Clusters i  and j  are characterized by Mi,j  which is the Minkowski metric, as 
(Friedman & Rubin, 1967):

 
Mi,j =

{
N∑

k=1

|ak,i − ak,j|p
}1/p

 (8)

where ak,i  is the kth  element of Ai . In the current research, p  = 2, which corresponds 
to the Euclidean distance.

To compute the objective function value, −
R  is calculated as follows:

Fig. 4 Random potential solu-
tion before assessment
 

Fig. 3 Random potential 
solution
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−
R≡ 1

N

N∑

i=1

Ri  (9)

where N correspond to the number of groups to be evaluated, and.

 Ri ≡ Ri,ji �= j  (10)

All the optimization approaches were coded using the Matlab platform, on an i5 
3.3 GHz desktop computer with an 8GB of RAM.

The final clustering solution is then assessed through a Multivariate Analysis of 
Covariance (MANCOVA) test. The size effects were also computed using the Eta 
Squared (η2) indicators. Finally, a Receiver Operator Characteristic (ROC) curve was 
generated and the area under the ROC curve (AUC) was computed to estimate the 
screening and the diagnostic accuracy of the method (Ma et al., 2013). The ROC 
analysis results are interpreted as: AUC ≥ 0.90, high diagnostic accuracy; AUC in the 
range of 0.70–0.90, moderate diagnostic accuracy; and AUC < 0.70, low diagnostic 
accuracy (Streiner & Cairney, 2007).

6 Results

MA runs for 50 times. Its performance is compared to that of the state-of-the art 
metaheuristics like Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

Initially, the same fine-tuning process as described by Zervoudakis and Tsafarakis 
(2020) was performed, to determine the best parameter configuration settings. Fol-
lowing the work of Zervoudakis and Tsafarakis (2020), each initialization scheme 
was performed for 10 times. Initially, the population size of both male and female 
mayflies was tested. The results of the algorithm according to the swarm sizes, are 
presented in Fig. 5. The blue line corresponds to the male mayflies and the orange 
line to the female ones. The findings verify the use of a fixed population size of n = 
40 (20 males and 20 females).

Fig. 5 Results according to the 
swarm sizes
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The attraction constants were then tested, as presented in Fig. 6. The findings 
verify the use of attraction constants of a1 = 1, a2 = 1.5.

The nuptial dance and random flight coefficients were then tested, as presented 
in Fig. 7 The blue line corresponds to the nuptial dance while the orange line corre-
sponds to random flight. The findings verify the use of nuptial dance d = 0.1, random 
flight fl = 0.1.

Finally, the visibility coefficient β = 2 was also verified according to Fig. 8.
In the same way, it was found that, a single point uniform crossover with a rate of 

0.95 and a linear selection mechanism as well as a gaussian mutation with a rate of 
0.1, were the most sufficient for using in this research. The findings were in line with 
the work of Zervoudakis and Tsafarakis (2020).

By repeating the process for PSO, a fixed population size of n = 50 was used, 
acceleration coefficients c1 and c2 were set to 1.5 and 2, respectively, while the iner-
tia weight value w was set to be changed during the optimizing process from 0.9 to 
0.5. The findings were in line with the finding of Zervoudakis, Mastrothanasis and 
Tsafarakis (2020) who used a PSO algorithm for student segmentation. Finally, for 
GA, a fixed population size of n = 50 was used, and it was found that values of 0.8 
and 0.05 were the most sufficient ones for crossover and mutation rate, respectively. 

Fig. 7 Results according to nup-
tial dance and random flight
 

Fig. 6 Results according to at-
traction constants
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The crossover and mutation techniques used in this research are the same with the 
ones used in previous research for GA (Laref et al., 2019; Zervoudakis et al., 2020).

Table 2 presents the results according to DBI. Bold values correspond to the best 
(minimum) located values. As Table 2 demonstrates, MA’s performance is superior 
to both PSO and GA in terms of accuracy and efficiency.

The convergence behavior of each algorithm is presented in Fig. 9, where the 
superiority of MA over PSO and GA in terms of convergence speed is demonstrated.

From the results presented above, it is clear the MA constitutes a better optimiza-
tion approach in terms of convergence speed and rate, comparing to the other two 
successful optimization methods. Using MA, two clusters with homogeneous char-

Fig. 9 Convergence characteris-
tic curves of optimizers
 

DBI MA PSO GA
Min 0.66 0.66 0.66
Average 0.66 0.67 0.67
Median 0.66 0.66 0.67
Max 0.66 0.67 0.67
SD 3.93E-05 3.97E-03 4.20E-03

Table 2 Performance of com-
paring algorithms

 

Fig. 8 Results according to vis-
ibility coefficient
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acteristics were created, as demonstrated in Fig. 10. 46 (5.94%) individuals and 728 
(94.06%) ones are contained in the first cluster (Cluster A) and the second one (Clus-
ter B), respectively.

Cluster A includes schoolchildren characterized by the highest scores on all three 
scales, while Cluster B includes the ones having the medium and lowest scores, as 
presented in Table 3, revealing that students in Cluster A are at higher risk when it 
comes to performance anxiety. As a result, the students of the first cluster are dis-
tinguished by fewer positive feelings (2.45 ± 0.44) and more mild negative feelings 
(2.38 ± 0.36) and strong negative feelings (2.04 ± 0.37), compared to the students of 
the second cluster. It is noted here that the higher the values of each variable, the 
more negatively charged the emotional states are.

The multivariate tests on Pos, Mildneg and Strongneg among the students of both 
groups, revealed a statistically significant difference, with Cluster A being distin-
guished by statistically greater values of performance anxiety, as presented in Table 4, 
which reveals the discriminant validity of the proposed method.

Moreover, the results of the MANCOVA test for the dependent variables, is pre-
sented in Table 5.

The ROC curve for the screening accuracy and the diagnostic of Pos, Mildneg 
and Strongneg emotions for the prediction of performance anxiety, is presented in 
Fig. 11.

All parameters had good diagnostic ability, with Strongneg emotions being the 
most promising one. The area under the curve (AUC) of positive emotions was 90% 

Table 3 Descriptive statistics by variable and cluster
Variables Pos Mildneg Strongneg
Cluster 1 2 1 2 1 2
Mean 2.45 1.65 2.38 1.40 2.04 1.11
SD 0.44 0.41 0.36 0.42 0.37 0.23
Min 1.67 1.00 2.00 1.00 3.00 2.75
Max 3.00 3.00 3.00 2.75 2.67 2.33
Range 1.33 2.00 1.00 1.75 1.67 1.33

Fig. 10 Graphical representation 
of clusters
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Table 4 Multivariate Tests
Tests value F Hypothesis df Error df p partial η2

Pillai’s Trace 0.499 255 3 770 < 0.001 0.50
Wilks’ Lambda 0.501 255 3 770 < 0.001 0.50
Hotelling’s Trace 0.995 255 3 770 < 0.001 0.50
Roy’s Largest Root 0.995 255 3 770 < 0.001 0.50
Note: partial η2: Partial Eta Squared

Table 5 Multivariate Analysis of Covariance summary table
Variables SS df MS F p partial η2

Positive emotions 27.9 1 27.8682 162 < 0.001 0.17
Error (Positive emotions) 132.7 772 0.1718
Mild negative emotions 41.3 1 41.2691 241 < 0.001 0.24
Error (Mild negative emotions) 132.2 772 0.1712
Strong negative emotions 37.4 1 37.3851 638 < 0.001 0.45
Error (Strong negative emotions) 45.2 772 0.0586
Note: SS: Sum of Squares, MS: Mean Square, partial η2: Partial Eta Squared

Fig. 11 ROC curves for the positive, mild negative and strong negative emotion dimensions
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with the respective 95% confidence intervals (CI) between 85.8 and 94.1%. The AUC 
of mild negative emotions was 95.3% (95%CI: 93.5–97%) and that of strong nega-
tive emotions was estimated at 96.5% (95%CI: 93.6–99.4%). The mean area under 
the curves of the model is greater than 0.9, which suggests high diagnostic accuracy 
of the performance anxiety.

7 Discussion

In this research, a CI-based student segmentation technique was used to identify 
extreme levels of performance anxiety at schoolchildren. The MA-based bio-inspired 
clustering approach is characterized by higher predictive accuracy, compared to com-
mon metaheuristics like PSO and GA, according to Table 2; Fig. 9, due to its combi-
nation of swarm intelligence and evolutionary operators (Zervoudakis & Tsafarakis, 
2020). Another benefit of the proposed approach is that in cases where common 
metaheuristics get trapped into local optimum points, MA is capable of escaping due 
to its nuptial dance and random flight operators (Zervoudakis & Tsafarakis, 2020). 
Based on this approach, it was detected that 5.94% of school-age students experi-
ence significantly negative performance anxiety in school performance compared to 
other students. The screening and the diagnostic accuracy of the mayfly-based clus-
tering method was confirmed by a ROC analysis. This finding is in line with previous 
research on music students and professional actors while relevant research when it 
comes to the specific age group was not detected (Mastrothanasis et al., 2021). Partic-
ularly, studies show that prevalence rates for childhood social anxiety disorder range 
from 0.5 to 9.0% (Hitchcock et al., 2009). Moreover, Studer et al. (2011), mentioned 
that a percentage of 12% of music students deals with stress on stage and Papageorgi 
(2020) stated that a percentage of 11% of adolescent musicians also does. Finally, 
based on Steptoe et al. (1995) significantly negative performance anxiety percentage 
ranges at 10% in populations of apprentice college actors.

Despite the promising results of the proposed method, some limitations need to be 
further explored. Initially, one dataset was used, focusing on Greek population, and 
addressing an anxiety disorder developing during theatrical performances. Research-
ers are highly advised to use the proposed method on other populations and disorders. 
However, such a task is extremely difficult due to the complexity of data collection 
in the field of mental health. Collecting and preparing a set of mental health data is 
an important task, since most of the times individual diagnostic interviews must be 
conducted by a clinical psychologist. In the case of this research, the used dataset 
took a long time to collect, as the teachers who observed and recorded the reactions 
of the young actors had first to be educated and trained on the valid answer to the 
three-scale questionnaire.

Second, although the generated results using the method could be used to priori-
tize diagnostic interviews, the clinical psychologist should always have the last word 
when it comes to diagnosing disorders.
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 8 Conclusions

The aim of this research was to identify extreme levels of performance anxiety at 
schoolchildren using CI-based student segmentation techniques. According to the 
findings the application of MA, reliable solutions can be detected to the NP-hard 
problem of creating schoolchild clusters with common performance anxiety charac-
teristics. Consequently, possible cases of individuals experiencing significantly non-
positive performance anxiety in school theatrical events are identified. A comparison 
with a GA as well as PSO showed that the proposed MA-based clustering approach 
is distinguished by superior categorization capabilities. Moreover, MA was reported 
to converge faster towards optima solutions, compared to PSO and GA.

Teachers could therefore have an application in which they could enter the obser-
vation data from their students to automatically detect dangerous cases in the school 
environment. As a result, the drama educator can effortlessly detect and manage learn-
ers, by knowing each group’s characteristics, to develop coping practices in students 
who are at risk. What is equally important is that using such an application, students 
facing difficulties except from anxiety, like learning difficulties or depression, could 
be detected, as long as the data to be entered are in a quantitative form. As a result, 
through such an application, more educators and psychologists could be provided in 
schools with high percentages of students who are characterized by such difficulties.

As a group formation method, it can be applied both in actual classroom condi-
tions with schoolchildren, as well as in digital societies, like digital drama, assist-
ing the educator since it is able to offset problems in the multi-criteria clustering of 
pupils (Pizzo et al., 2019). The biggest benefit of the particular approach is that it 
can be used to a variety of pupils and suggest group formations in a minimal time 
of 8.6 s, by means. Moreover, there is no limit to the amount of data that can be 
imported, nor to the evaluable factors that are collected from the student’s holistic 
assessment as regards their performance anxiety. As a final point, testing more clus-
tering approaches to the particular problem as well as comparing them in terms of 
convergence rate, convergence speed and efficiency is highly recommended, as well 
as research on the educators’ attitudes or other specialists (e.g. theatrical therapist) as 
regards as their satisfaction with the grouping results and the extent to which it is able 
to detect anxiety disorders, effectively.
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