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A bio-inspired incremental learning architecture for applied

perceptual problems

Alexander Gepperth1 and Cem Karaoguz1∗

Abstract

We present a biologically inspired architecture

for incremental learning that remains resource-efficient

even in the face of very high data dimensionalities

(>1000) that are typically associated with perceptual

problems. In particular, we investigate how a new per-

ceptual (object) class can be added to a trained ar-

chitecture without retraining, while avoiding the well-

known catastrophic forgetting effects typically associ-

ated with such scenarios. At the heart of the presented

architecture lies a generative description of the percep-

tual space by a self-organized approach which at the

same time approximates the neighbourhood relations in

this space on a two-dimensional plane. This approxima-

tion, which closely imitates the topographic organiza-

tion of the visual cortex, allows an efficient local update

rule for incremental learning even in the face of very

high dimensionalities, which we demonstrate by tests

on the well-known MNIST benchmark. We complement

the model by adding a biologically plausible short-term

memory system, allowing it to retain excellent classi-

fication accuracy even under incremental learning in

progress. The short-term memory is additionally used

to reinforce new data statistics by replaying previously

stored samples during dedicated ”sleep” phases.

1. INTRODUCTION

This contribution addresses the issue of incremen-

tal learning for applied robotic scenarios. In particu-

lar, we target perceptual learning scenarios where data

dimensionalities are typically higher (>1000) than cur-

rent incremental learning algorithms are able to handle.

Incremental learning itself is a notoriously ill-defined

term, referring to methods that relax some of the classi-

cal assumption of machine learning, namely the avail-
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Figure 1. Incremental learning scenario tar-

geted in this study. A) Initial training leaving

out a subset of classes (in this paper always

just one class). B) optional: incremental re-

training with the ”missing” classes (for sys-

tem without short-term memory) C) Re-training

with all classes. D) Evaluation of overall clas-
sification performance (for all classes) on an

independent test set.

ability of training and test data obtained from sampling

the same unknown distribution. Instead, incremental

learning algorithms may be trained on a set of train-

ing data, and then retrained with data sampled from a

(more or less) different distribution, potentially multi-

ple times. Incremental learning may also refer to learn-

ing algorithms that receive their training samples one by

one without knowing their number in advance, instead

of processing all examples at the same time, which ef-

fectively amounts to changing data distributions as well.

In this contribution, we investigate an even stronger

form of incremental learning that often occurs in robotic

perception problems: the addition of new perceptual

classes (e.g., object classes) to a trained classifier. This

can happen, for example, by showing a new object to a

robot, or a whole set of new objects. This procedure is

depicted in Figure 1.

1.1. Problem setting and goals of the study

In perceptual problems, the input dimension I is of-

ten quite high, and it is not uncommon for the product

IO to exceed 10000 where O denotes output dimension-
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Figure 2. Architecture overview

ality. Furthermore, not only execution but also train-

ing time is strongly constrained in a robotics applica-

tion. Imagine a user teaching a new visual percept to

a robot; in this setting, training data must be processed

sufficiently quickly to allow interaction, apart from the

fact that execution of a trained model must be efficient.

Furthermore, the amount of available memory is often

severely limited as well if an algorithm is to run on a

real robot, potentially on an embedded computer. In ad-

dition, in a human-robot interaction scenario, training

samples are usually provided sequentially and must be

reacted upon immediately, and there is no knowing how

many other samples a human might yet provide. Lastly,

perceptual problems in robotics are often very challeng-

ing ones, so any approach needs to be benchmarked on

problems of sufficient complexity.

Therefore, the goal of this study is to present a clas-

sification architecture capable of being trained with new

classes incrementally as depicted in Figure 1, while be-

ing compatible with the following constraints:

• training samples are received one by one

• total number of training samples is unknown

• data dimensionality is high

• execution and training time is limited

• memory is limited

• newly added information should be taken into ac-

count immediately

• should work well on challenging and representa-

tive real-world tasks

1.2. Related work and taxonomy of incremen-

tal learning approaches

Incremental learning comes in various forms in the

literature, and the use of the term is not always consis-

tent: first of all, there are approaches while are capa-

ble of what we here denote online learning, meaning

that they take their training samples one by one with-

out knowing their number in advance. Most notably,

this is achieved by multilayer perceptrons (MLPs) but

there are also extensions of the support vector machine

(SVM) model [1, 2] that have this capacity. Online

learning is necessary for what we consider to be incre-

mental learning (see list of requirements in the previous

section) but not sufficient, as we require as well the ca-

pacity to adapt to limited changes (often termed ”con-

cept drift” and/or ”concept shift” [3]) in data statistics

while modifying existing models as little as possible.

In the neural network literature, it is well-known that

such scenarios lead to what is termed ”catastrophic for-

getting” [4], the sudden overall deterioration of model

performance. To perform true incremental learning in

the aforementioned sense, most approaches perform a

local partitioning of the input space and train a sep-

arate classification/regression model for each partition

[5, 6, 7, 8, 9]. The manner of performing this par-

titioning is very diverse, ranging from kd-trees [9] to

genetic algorithms [8] and adaptive Gaussian receptive

fields [5]. Equally, the choice of local models varies

between linear models [5], Gaussian mixture regression

[9] or Gaussian Processes [6]. Since this article is con-

cerned with high-dimensional perceptual problems, it

can be stated for all cited approaches that it is really the

partitioning of the input space that is costly in terms of

memory. Most notably, covariance matrices used in [5]

are quadratic in the number of input dimensions which

makes their use prohibitive in our problem setting.

1.3. Bio-inspired approach to incremental

learning

As biological incremental learning has reached a

high degree of perfection, we explicitly investigated the

biological literature for hints as how to this might be

achieved. Basing ourselves on observations from the

basic sensory cortices, we noted that sensory represen-

tations seem to be prototype-based, where prototype-

sensitive neurons are topologically arranged by similar-

ity [10, 11, 12, 13]. Learning seems to act on these

representations in a task-specific way, where more pro-

totypes are allocated to sensory regions where finer

discrimination is necessary [14], i.e., where more er-

rors occur during learning. Learning is conceivably

enhanced through acetylcholine release in case of task

failures [15, 16], leading to higher ”prototype density”

in difficult regions of the sensory space. In particular,

learning seems to respect and even generate topological

layout of prototypes by changing only a small subset of



Figure 3. Illustration of how incremental learn-

ing is made possible through a topologically

ordered prototype representation. Due to topo-

logical ordering, neighbouring prototypes are

almost always situated in nearby regions of in-

put space. Therefore, local updates of proto-

types will almost always be local in input space

as well, thus effectively enabling efficient in-

cremental learning. This is shown here for

a subset of prototypes trained on the MNIST

database, the best-matching unit (BMU) for a

”5” input being indicated by a small red cir-

cle. It is obvious that the local 2D update re-

gion, indicated by a larger red circle, is indeed

local in the input space. The yellow circle in-

dicates a region where this property does not

hold (structural defect) but the reader can con-

vince himself that this occurs but rarely.

neural selectivities [17] at each learning event, namely

around those neurons that best matched the presented

stimulus [13].

We model these findings by using a self-organizing

map (SOM) learning to shape the feature preferences

of hidden layer neurons in our architecture. SOM is

a prototype-based algorithm in the sense that the hid-

den layer weight vectors ”live” in the space of inputs

and aim to approximate the probability density in that

space. We model the global, task-related error signal

by the current classification error that activates SOM

learning in case of mismatch or ambiguity. As SOM

learning attributes more prototypes to regions where

many learning events occur, this will ensure that pro-

totype density increases in difficult regions of the in-

put space. Furthermore, SOM adaptation is stably self-

terminating since no more learning will occur when no

more errors are made. Inversely, when error rates in-

crease due to the presentation of new input statistics, the

hidden layer representation will become plastic until er-

ror rates subside again, when a sufficient re-adaptation

has been achieved. Lastly, SOM produces a topologi-

cally organized representation of the input space, which

was the reason to formulate the model in the first place,

and modifies weights only locally in case of learning

(as observed in biology). It is above all this localized

adaption property that makes us choose the SOM algo-

rithm, as this is an essential prerequisite for incremental

learning as will be detailed later in this section. On may

speculate that the observed topological organization of

selectivities in biological neurons serve just for that: to

facilitate incremental learning.

Concretely, we created a three-layer neural net-

work, see Figure 2, that learns a set of plastic, topolog-

ically organized prototypes in its hidden layer, imple-

menting the approximation scheme for neighbourhood

relations. Consequently, a learning scheme that mod-

ifies the best-matching prototype and its (2D) neigh-

bours will be strictly local in input space as well, see

Fig. 3. A read-out mechanism between hidden and out-

put layer maps local input space regions (i.e., sets of

prototypes) to class memberships using simple linear

regression learning. Update of hidden layer prototypes

is strictly controlled and occurs only when output layer

activity is incorrect or ambiguous, on the grounds that

prototypes that allow satisfactory classification need not

be adapted. Inversely, the mapping from hidden to out-

put layer is adapted only when there are sufficiently

similar prototypes in the hidden layer, since excessive

dissimilarity means that unknown data is being fed to

the network, and appropriate prototypes must be formed

before meaningful readout can occur.

On the computational side, all major approaches

to incremental learning, (see Section 1.2), perform a

partitioning of the input space and learn independent

models in each partition. In this way, learning is al-

ways localized in the input space, in the sense that a

change of statistics in one part of that space will not af-

fect learning in other, distant parts. It is this property

that avoids ”crosstalk” and therefore catastrophic for-

getting that is observed in many connectionist models

[4]. The presented architecture follows this approach

using an approximation scheme that strongly simpli-

fies the definition of local regions which is very costly

in spaces of high dimensionality I, for example when

using a covariance matrix that will contain I2 entries.

To avoid this, local regions are coarsely approximated

by hyperspheres whose centers are defined by support

points (or prototypes). The quality of this approxima-

tion can be controlled by controlling the overall number

of prototypes. As such a prototype-based representa-

tion approximates the distribution of data points in in-

put space as a whole, it is a generative model [18] as

it could be used for sampling purposes. As a local re-

gion will usually be defined by more than one proto-

type, and learning should act on all or at least many



prototypes of a region, a way needs to be found to adapt

”nearby” prototypes together, amounting to the need

of an efficient neighbourhood relation between proto-

types. We approximate this by placing prototypes onto a

two-dimensional lattice where lattice distance expresses

closeness in input space, this property being assured by

the learning rule for prototype adaptation. This approx-

imation scheme (which is conveniently and implicitly

generated by the SOM learning algorithm), which leads

to drastically reduced memory requirements for high-

dimensional problems, is explained in Figure 3.

We also incorporate the interplay between short-

term and long-term memory in our model. There is

a large body of literature investigating the roles of

the hippocampal and neocortical areas of the brain in

learning. Generally speaking, the hippocampus em-

ploys a rapid learning rate with separated represen-

tations whereas the neocortex learns slowly, building

overlapping representations of the learned task [19]. A

well-established model of the interplay between the hip-

pocampus and the neocortex suggests that recent mem-

ories are first stored in the hippocampal system and they

are played back to the neocortex over time [20]. This

accommodates the execution of new tasks that have not

been recently performed as well as the transfer of new

task representations from the hippocampus (short-term

memory) to the neocortical areas (long-term memory)

through slow synaptic changes. Inspired from these bi-

ological findings, we investigated the effects of such a

setup on our model.

Summarizing, we have tried to incorporate as many

facts about incremental learning in biology as possi-

ble while keeping the model as simple and efficient as

possible. Our modeling takes place at the architectural

level, leaving aside the finer details of neural modeling

(rate/spike code, dynamic neuron models etc.).

2. METHODS

As stated in Section 1.3, we implement our ap-

proach to incremental learning as a three-layer neural

network architecture depicted in Figure 2. To train the

hidden layer H of topologically organized prototypes,

we use a learning scheme adapted from the well-known

self-organizing map (SOM) algorithm [21] which is de-

scribed in Section 2.1, whereas the readout from hidden

to output layer O is performed by linear regression (LR)

explained in Section 2.2. A particular point are the mod-

ulation influences within the architecture, which control

and restrict learning in hidden and output layers, see

Section 2.3.

We denote neural activity vector in a 2D represen-

tation X by zX (~y, t), and weight matrices for SOM and

LR, represented by their line vectors attached to target

position y = (a,b), by wSOM
~y

. For reasons of readabil-

ity, we often skip the dependencies on space and time

and include them only where ambiguity would other-

wise occur. Thus we write zX instead of zX (~y, t) and

wSOM instead of wSOM
~y

(t).

2.1. Activity generation and prototype training

in the hidden layer

The hidden layer H is not intended to reduce the

dimensionality of the input but rather to re-encode it

in a way that enables incremental learning, see Fig-

ure 3, while preserving information. Therefore, in-

stead of reducing the output of the hidden layer to the

best-matching unit (as it is usually done for the SOM

model), we calculate the (graded) activations of all hid-

den layer units for performing the following linear re-

gression. Hidden layer activations zH are meant to mea-

sure a sparse similarity between input and the proto-

type associated to a particular unit and are normalized

in the [0,1] interval. They are obtained by first pass-

ing all input-prototype distances z̄H through a Gaussian

function with standard deviation κ , and then applying

a transfer function TF(·) that sparsifies these similari-

ties. Here, there is a technical point to be observed:

since there is no way of knowing a priori the typical

input-prototype distances, κ must be adapted to the data

during the learning process, making it a dynamic, time-

dependent quantity:κ ≡ κ(t).
In order not to trigger the adaptation of too many

linear regression weights, the transfer function thresh-

olds these similarities, thus ensuring that only those

units whose prototypes are very close to the input are

active and take part in linear regression training.

Prototype adaptation is performed using the con-

ventional SOM update step except that it takes into ac-

count a control signal λ (t) coming from the output level

of the hierarchy, which will be described in Section 2.3.

In precise terms, the equations for activity generation in

the hidden layer in response to input activity zI are as

follows:

z̄H(~y) = ||wSOM
~y − zI || (1)

z̃H = gκ

(

z̄H
)

(2)

zH = TFθ ,p

(

z̃H
)

(3)

The adaptation steps for the weights and the dis-

tance metric κ(t) are as follows:

wSOM
~y (t +1) = wSOM

~y +λ (t)εSOMgσ (||~y−~y∗||)(zI −wSOM
~y )

(4)

κ(t +1) = (1− τ) κ(t)+ τ max~yz̄H(~y) (5)



range meaning

∈ [−1,−0.5] certain, incorrect

∈ [−0.5,−0.1] uncertain, incorrect

∈ [0.1,0.5] uncertain, correct

∈ [0.5,1] certain, correct

Table 1. Significance of various value ranges

of the confidence measure m(zP).

where gσ (x) is a zero-mean Gaussian function with

standard deviation s and ~y∗ denotes the position of

the best-matching unit (i.e., the one with the highest

similarity-to-input) in H. In accordance with standard

SOM training practices, the SOM learning rate and ra-

dius, εSOM and σ , are maintained at ε0,σ0 for t < T1

and are exponentially decreased afterwards in order to

attain their long-term values ε∞,σ∞ at t = Tconv. TF

represents a monotonous non-linear transfer function,

TF : [0,1]→ [0,1] which we model as follows with the

goal of maintaining the BMU value unchanged while

non-linearly suppressing smaller values:

TFθ ,p(z̃
H) =

{

T̃Fp(z̃
H) if T̃F(z̃H)> θ

0 otherwise
(6)

where

T̃Fp(z̃
H) =

(

z̃H
)p

max~y (z̃H(~y, t))p−1
(7)

2.2. Decision making and learning in the out-

put layer

Generation of output layer activities is performed

by a simple linear transformation of thresholded hidden

layer activities zH , using the linear regression weights

wLR. Learning is subsequently modifying these weights

to optimize the mapping of hidden layer activities zH to

the target representation zT containing the ”true” class

of a sample.

zP(~y) = wLR
~y · zH (8)

wLR
~y (t +1) = wLR

~y (t)+2ε
LRzH

(

zP(~y)− zT (~y)
)

(9)

In contrast to the hidden layer learning rate, the learn-

ing rate of linear regression, εLR remains constant at all

times.

2.3. Feedback control of learning and detection

of novelty

Hidden layer and output layer neurons do not adapt

their weights all the time, only when it is deemed ap-

propriate. Here, there are two distinct cases to be dis-

tinguished: first, when the hidden layer has low overall

activity, maybe because the input belongs to a newly

added class, then linear regression should not adapt its

weights because hidden layer activity is probably not

meaningful and it will impair performance for already

represented classes. This is achieved automatically by

thresholding hidden layer activities in the transfer func-

tion T Fθ ,p by θ as specified in Equation(3), leading to

zero activity if activity is too low. In this case, linear

regression weights will not be updated as this requires

non-zero activities in the hidden layer H. Secondly, hid-

den layer weights wSOM will only be updated when the

current estimate of class membership, i.e. the output

layer activities zP, is either uncertain or wrong. To mea-

sure uncertainty, we first define an uncertainty measure

based on the output layer activities, whose basic idea is

that a certain estimate of class membership has a clear

activity maximum, so a good measure is just to use the

bounded difference between first and second maximum:

u(zP) = max~y zP −max2~y zP (10)

This measure, u(zP), can be combined with the fact

whether the activity maximum of zP is in the right place,

i.e., in accordance with ground-truth information zT :

m(zP,zT ) =

{

u(zP), if arg max~yzP = arg max~yzT

−u(zP), otherwise

(11)

Finally, we obtain the modulation measure λ (t)
that decides whether hidden layer weights should

be trained, by thresholding the confidence measure

m(zP,zT ):

λ (t) =

{

0, m(zP,zT )> θm

1, otherwise
(12)

Table 1 gives an overview over the intuitive meaning

of various values of the confidence measure m. By

thresholding m(zP) we thus allow hidden layer weights

to be trained only when the current class estimate is of

less-than-perfect quality, either outright incorrect (for

θm ≤ 0) or correct but of significant uncertainty (for

θm > 0).

2.4. Incremental learning with short-term

memory

We employ a short-term memory mechanism in the

form of a simple queue where novel experiences are

stored. The novelty of an experience is determined via

the comparison of the supervision signal to the predic-

tion zP of the model which we rename here for conve-

nience to zP-SOM: if the model cannot correctly classify



the input (corresponding to m(zP-SOM,zT )< 0), the fea-

ture vector zI and its label vector zT are stored in the

short-term memory. The short-term memory has lim-

ited capacity, hence a new experience overwrites the

oldest entry if the short-term memory is full.

In accordance with biological findings, the short-

term memory structure is used in both prediction and

learning phases. In the prediction phase, response of

the short-term memory representation S, z̄S to an input

zI is computed based on a distance measure, similar to

the hidden layer of the model (see Equation 1):

z̄S(i) = ||wSTM
i − zI || (13)

where wSTM
i is the prototype i stored in the short-term

memory. The decision whether the model or the short-

term memory should be used for final prediction zP is

done by comparing the activities z̄H and z̄S:

zP =

{

zP-STM, if min z̄S < min z̄H

zP-SOM, otherwise
(14)

where zP-STM is the label stored in the short-term mem-

ory along with prototype i∗ = arg miniz̄
S. In this way,

the short-term memory shall assist the classification

task when the system is exposed to samples from a new

class of object (i.e. the incremental learning stage).

Mimicking simulated experiences that occur dur-

ing sleep [22], contents of the short-term memory are

additionally replayed to the model in certain intervals M

which are referred to as sleep phases, where the whole

content of the STM is replayed to the system, thus train-

ing hidden and output layer weights. In this way, novel

experiences do not directly cause synaptic changes in

the system, they are rather exposed to the model over

the short-term memory. This may help the model to

quickly build representations for new classes and enable

the use of different dynamics for learning new classes.

2.5. Training and testing schedules and dedi-

cated incremental learning measures

The hidden layer training algorithm requires an ini-

tialization phase (until Tconv, see Section 2.1) and, af-

ter that, needs to be trained on P − 1 classes for a

while to provide a starting point for incremental learn-

ing. The initial global prototype ordering is terminated

at T1, and hidden layer initialization is performed un-

til Tconv without modulation (λ (t) ≡ 1) as modulation

information can only be obtained from a converged hid-

den layer via the subsequent linear regression stage.

Non-incremental training is conducted until Tinc1 with

modulation switched on.

When learning without short-term memory, a first

incremental training stage from Tinc1 to Tinc2, and a sec-

ond stage from then on until the end of the experi-

ment at Teval. For the first incremental training stage,

the threshold parameter θm, see Section 2.1, is set to

a high value: θm = θ inc
m , whereas it is set to zero for

all other training or testing stages: θm = 0. This is

done to ”protect” the classes that are not in the in-

put data, as a new class would initially lead to quasi-

random, weakly localized hidden layer activity which

could quickly unlearn previously learned linear regres-

sion models. Similarly, the neighbourhood radius σ(t),
see Section 2.1, is multiplied by a factor of 10 during

the first incremental stage, and slowly decreased (back)

to its long-term stable value σ∞ during the second in-

cremental stage. This allows it to perform incremental

learning, which requires a large σ for connected regions

sensitive to the new class to form in the hidden network

layer, while keeping high precision which requires that

the final neighbourhood radius σ∞ be very small.

When learning with short-term memory, a single

incremental training stage is conducted from Tinc1 to

Teval, maintaining θm = 0 and σ(t) = σ∞. Temporal

sequence of initialization, training and evaluation steps

for the setup without short-term memory are given in

Figure 4. For the setup with short-term memory, tem-

poral organization of training and test phases is shown

in Figure 5 where the exposition of novel examples is

embedded in sleep phases (shown as green periods) and

done implicitly. While the scheme illustrated in Figure

  

 initialization incremental learning

Global 
ordering

0 T1 Tinc2

start of 
modulation

P-1 classes class P all classesP-1 classes

Tinc1  Tconv Teval

evaluation

iterations

Figure 4. Temporal organization of training and

testing phases without short-term memory (x

axis not to scale).

  

 initialization incremental learning

Global 
ordering

0 T1

start of 
modulation

Tinc1  Tconv Teval

evaluation

iterations

P-1 classes P-1 classes all classes

Sleep phases

Figure 5. Temporal organization of training and
testing phases for the setup with short-term
memory (x axis not to scale).



data set dimensions # train # test preproc. # classes

MNIST 784 50.000 16.000 none 10

Table 2. Data set used in this study and its prin-

cipal properties.

 

Figure 6. Representative examples from the

MNIST data set used in this study.

4 is still viable for the system with short-term memory,

blending the incremental learning phase into the whole

learning process as in Figure 5 may be more plausible

for life-long autonomous learning. All other factors of

temporal schedules of training and testing are identical

to the setup without short-term memory.

3. EXPERIMENTS

The experiments in this article were conducted on

the well-known MNIST handwritten digit recognition

benchmark [23], representing a task of moderate diffi-

culty and real-world relevance problem with however

a large number (10) of categories. We evaluate per-

formance as indicated by Figure 1: training out model

in a leave-one-out fashion on all but one class and the

adding the remaining class. We also conduct a final

training phase with all classes included before evalu-

ation on the independent test set to draw conclusions

about the efficacy of each approach and possible com-

binations. For a classification task with P classes, this

gives essentially P experiments. Please see Table 2 for

relevant properties of the used data set, and Fig. 6 for

representative data samples.

3.1. Global parameter settings

We use the following fixed parameters for our sys-

tem, where the total number of neurons in the hidden

layer is n × n: n = 30, εLR = 0.001, ε0 = 0.1, σ0 =
0.3n, T1 = 50000, Tconv = 150000, Tinc1 = 800.000,

Tinc2 = 820.000, Teval = 900.000 ε∞ = 0.001, σ∞ = 0.05,

p = 20, θm = 0.0, θ inc
m = 0.75, θ = 0.75 and τ = 0.001.

SOM, STM and LR weight matrices are initialized

to random uniform values between -0.001 and 0.001.

Training examples are always randomly and uniformly

drawn from the current training set. The capacity of the

short-term memory is set to C = 300, the system is go-

ing into a sleep-phase in every 5000 iterations, replay-

ing all examples stored in the STM.

3.2. Baseline evaluation

To establish a baseline to which we can compare in-

cremental learning performance, we train the proposed

architecture on the MNIST data set as described in Sec-

tion 2, using all classes, while evaluating generalization

performance directly after the initialization phase, see

Figure 4, yielding a test error rate of 4.8% for MNIST.

This is a baseline performance that is quite competitive

when compared to other results on this popular bench-

mark, especially since we are using a rather small hid-

den layer size of 30x30 elements. With higher hidden

layer sizes, the error rate can be improved to < 2%.

3.3. Evaluation of incremental learning perfor-

mance without short-term memory

Incremental learning experiments on the MNIST

data set use the scheme explained in Figure 4. Ten ex-

periments are conducted in total each of which uses one

of the 10 classes as the excluded class, labeled Inc-0

through Inc-9. Along with the baseline experiment, Fig-

ure 7 shows the evolution of test errors.

As expected, overall error increases as soon as sam-

ples from the new class are introduced. The rapid de-

crease of classification error shows that system learns

the newly introduced class quickly. The final error val-

ues are usually higher than the values obtained right be-

fore the introduction of the new class. However, a slight

increase in the overall error should be expected since an

added class creates a more difficult classification prob-

lem. In addition, we find that the second incremen-

tal training step in Figure 1, with all classes included,

is unavoidable in almost all cases, a notable exception

being the Inc-1 experiment on MNIST shown in Fig-

ure 7. This is quite understandable, as a new class in

most cases resembles an existing one, thus partly occu-

pies the same volume in input data space and therefore

necessarily breaks readout models in this region. This

usually concerns just a few classes, as we can see in

experiment Inc-0 on MNIST from Figure 7: MNIST

classes ”5” and ”6”, which are very similar, are seri-

ously impacted by incremental training of class ”0” but

none of the other classes. The additional training step

with all classes essentially corrects the balance between

classes that are too similar, which is why it improves

performance strongly.



Figure 7. Results of incremental learning experiments Inc-0 through Inc-9 conducted on MNIST. Left:

development of overall classification performance for Inc-0 through Inc-9. Middle: development of

individual class errors for Inc-0. right: development of individual class errors for Inc-1.

3.4. Qualitative effects and biological analogy

of incremental learning

Fig. 8 qualitatively compares the impact incremen-

tal learning has on hidden layer prototypes for experi-

ment Inc-0 without short-term memory. We can observe

several things: first of all, prototypes of a class are not

always homogeneously arranged but can formed sev-

eral ”islands”, which is normal since prototypes are not

organized by class membership but by Euclidean dis-

tance. Furthermore, and more surprisingly, prototypes

of a class do not always vote most strongly for that class

in the linear regression. This is however just an expres-

sion of efficiency, as the linear regression uses all the

information at its disposal: if a prototype that encodes

the digit ”1” can be used for classifying the class ”7”

as well then it is natural that linear regression will try

to do this. And lastly, we can clearly see how class

”0” intrudes into what was previously a region covered

by prototypes of class ”6”. When observing the devel-

opment of classification errors for class ”6” in Fig. 7,

we find a corresponding increase for class ”6” during

the first phase of incremental learning, reflecting the de-

struction of many of is prototypes. However, classifica-

tion performance recovers, probably also because sev-

eral of the prototypes for ”0” actually help classifying

”6”, as we can plainly see from the color coding.

These results are meant to illustrate the global man-

ner in which incremental learning in the proposed archi-

tecture works in practice. They show that new classes

are smoothly and strictly locally embedded into exist-

ing structures, and always at positions where there is

the greatest similarity to existing prototypes, which en-

sures, as a side effect, that the ”invaded” classes may

still profit from the new prototypes as they remain very

similar.

3.5. Effects of short-term memory

Experiments with the short-term memory assisted

model were done similar to the previous ones. The

capacity of the short-term memory is set to C = 300,

the system is going into a sleep-phase in every 5000 it-

erations. All other parameters of the model were the

same as the previous experiments (see Sec. 3.1). Fig-

ure 9 shows the results from experiment Inc-6. The plot

on the left shows the frequency of short-term memory

usage for prediction throughout the whole experiment.

As expected, the system utilizes the short-term memory

more often when new experiences are presented: in the

beginning and at the start of the incremental learning

phase. The impact of the short-term memory in pre-

diction performance becomes apparent if the error plots

from experimental setups with and without short-term

memory are compared: high peaks of error that occur at

the start of the incremental learning phase with the sys-

tem without short-term memory (Figure 7, middle and

right) are suppressed by the utilization of the short-term

memory (Figure 9, right).

From the perspective of learning, in some experi-

ments with the system where short-term memory is not

utilized, the newly introduced class may cause disrup-

tions in another class that is already learned when the

classes share similar features. For example, in exper-

iment Inc-0, the newly added class 0 disrupts already

learned class 6 (Figure 7, middle). On the other hand,

from the experiments conducted with the model assisted

by a short-term memory it can be observed that after

the introduction of new samples, test errors per class re-

main consistent while the model gradually takes over

the prediction task from the short-term memory. This

suggests that the model successfully learns representa-

tions for the new class without breaking the old ones.



Figure 8. Qualitative effect of incremental learning on hidden layer prototypes for experiment Inc-0

without STM. Shown is a visual representation of prototypes for each of the n2 hidden layer units.

Left: prototypes just before incremental learning of class 0 at t = Tinc1. Right: prototypes at t = Tinc2.

The hue of each prototype corresponds to the class it votes for most strongly, which is read out

from the linear regression weights.

4. DISCUSSION

4.1. Significance of contribution

We consider the results of this study very signifi-

cant in the following sense:

• we present an incremental learning architecture

that stays resource-efficient at very high in-

put/output dimensionalities, especially w.r.t. mem-

ory consumption, which is not the case for any

other incremental learning algorithm we are aware

of. For a hidden layer with N2 elements and in-

put/output dimensionalities of I and P, the mem-

ory requirements scale roughly with N2(I+P) and

are thus linear in the sum of input and output di-

mensions. This means that memory consumption

is in no case limited by high problem dimensions

but rather by the amount of hidden layer units one

is willing to spend for better performance.

• the architecture is conceptually simple, efficient to

execute and highly parallelizable as we could show

in a previous publication[24]

• we present an intuitive way to benchmark incre-

mental learning and apply it to our architecture us-

ing two challenging perceptual problems, with ex-

cellent results regarding incremental learning per-

formance, which never degrades overall precision

by more than a few percents.

• we present a biologically plausible, efficient and

easy-to-implement way of simplifying incremental

learning even further using a short-term memory

system

4.2. Discussion of methodology

The architecture without short-term memory per-

forms incremental learning successfully but in a rather

complicated and ad hoc way. In particular, the system

has to know (i.e., be told) when incremental learning is

going to happen to that certain parameters (notable θm

and σin f ) can be set properly for successful incremental

learning. While this is a valid approach (as in most ap-

plications of incremental learning, e.g., in robotics, it is

known when new things must be learned), it is neither

very elegant nor very easy-to-use: it would be much

more appealing if the system could detect conceptually

new samples autonomously, and perform incremental

learning on them without the user having to prepare

samples beforehand in order to appear exclusively (first

incremental training phase). The addition of the short-

term memory does just that! It is a very nice side effect

that it is in close analogy to biological memory architec-

tures, which may shed some light on the underlying rea-



Figure 9. Results of incremental learning experiment Inc-6 with short-term memory conducted on

MNIST. Left: frequency of short-term memory usage for prediction. Middle: development of indi-

vidual class errors for Inc-6. Right: test error of the same experiment zoomed in to the incremental

phase for better visualization. The noise in the curves after 800K iterations is due to higher sampling

rate of test error.

sons such memory architectures have evolved. From a

purely technical point of view, however, the short-term

memory solves a concrete need while leaving overall

classification performance completely unchanged.

4.3. Comparison to related work

It was attempted to compare our approach to ex-

isting prior art in the field of incremental learning, for

which we chose the LWPR algorithm[5] following the

best practices for choosing parameters as laid down in

[25]. However, when working on MNIST data having

756 dimensions and 10 classes, we found that

• performance was unsatisfactory (approximately

15% overall error) when using a single output vari-

able c expressing the class as c ∈ {1,2,3, . . .}

• performance improved when using a binary-coded

vector of 10 elements,~c, to express class member-

ship. However the number of receptive fields was

limited to approximately 15 before freezing the

computer (3GHz off-the-shelf PC running Linux,

4GB memory) due to lack of memory. In this

case, overall error rates of approximately 7% could

be achieved which is well above the error rates

achieved by our architecture.

For these reasons, we found that a fair comparison was

impossible due to the memory requirements of LWPR

when faced with high input and output dimensionalities.

As LWPR was not capable to create as many receptive

fields as it considered necessary, it could not achieve

the best possible performance. We suppose that, us-

ing computers with more memory, a fairer comparison

could be conducted which will be the subject of sub-

sequent experimental studies. For the time being, we

can conclude that LWPR performs much worse than out

model in terms of memory consumption when applied

to the MNIST dataset, and that its performance, as far

as it could be measured, is inferior. We believe that the

problem of memory complexity for large input/output

dimensionalities will manifest itself for most or all other

incremental learning algorithms listed in Sec. 1.2 as all

of them perform a partitioning of the input space, often

in a fashion that is comparable to the one LWPR uses.

4.4. Conclusion and future work

We have presented a neural architecture for incre-

mental learning that is novel in the sense that it can op-

erate in high-dimensional perceptual spaces. The func-

tionality and feasibility of this architecture has been

demonstrated on two real-world perceptual classifica-

tion benchmarks of sufficient difficulty, showing that

very high input/output dimensionalities are no obstacle

at all, and that the addition of a new perceptual class

to a trained model results in only a very small perfor-

mance impairment. Furthermore, we included a bio-

logically very plausible version of a short-term mem-

ory system, which fulfills very concrete functions: first

of all, it allows the system to use a much simpler in-

cremental learning scheme with just a single learning

phase. Secondly it permits much quicker ”reactions”

to new classes, giving correct classifications almost in-

stantly where otherwise thousands if iterations would

be needed for model convergence. And lastly, it en-

ables the system to concentrate learning on samples

from new classes that are embedded into samples of

known classes: as the new samples arrive relatively

rarely, model convergence would be very slow without

STM, which was the reason in the first place to split

incremental learning into two phases, with new exam-

ples submitted exclusively during the first incremental

phase.

Future work will include a careful study of the

dynamic interplay between long-term and short-term



memory, aiming at simplifying the architecture and

making as many parameters as possible self-adaptive.

This is a prerequisite for doing extended benchmarks on

more challenging, real-world classification problems on

which the presented architecture should perform well in

as generic a fashion as possible.
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