
Research Article

A Bio-Inspired Method for Engineering Design Optimization
Inspired by Dingoes Hunting Strategies

Hernán Peraza-Vázquez ,1 Adrián F. Peña-Delgado ,2 Gustavo Echavarrı́a-Castillo ,1

Ana Beatriz Morales-Cepeda ,3 Jonás Velasco-Álvarez ,4 and Fernando Ruiz-Perez 1
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A novel bio-inspired algorithm, namely, Dingo Optimization Algorithm (DOA), is proposed for solving optimization problems.
0e DOA mimics the social behavior of the Australian dingo dog. 0e algorithm is inspired by the hunting strategies of dingoes
which are attacking by persecution, grouping tactics, and scavenging behavior. In order to increment the overall efficiency and
performance of this method, three search strategies associated with four rules were formulated in the DOA. 0ese strategies and
rules provide a fine balance between intensification (exploitation) and diversification (exploration) over the search space. 0e
proposed method is verified using several benchmark problems commonly used in the optimization field, classical design
engineering problems, and optimal tuning of a Proportional-Integral-Derivative (PID) controller are also presented. Furthermore,
the DOA’s performance is tested against five popular evolutionary algorithms. 0e results have shown that the DOA is highly
competitive with other metaheuristics, beating them at the majority of the test functions.

1. Introduction

Typically, a constrained optimization problem can be de-
scribed as a nonlinear programming problem (NLP) [1], as
shown below.

Minimize f(x),
Subject to gi(x)≤ 0, i � 1, . . . , p,

hj(x) � 0, j � 1, . . . , q,

x(l)k ≤ xk ≤x
(u)
k , k � 1, . . . , D.

(1)

In the above NLP problem, the function f is the ob-
jective function, where f(x): RD⟶ R, there are D vari-
ables, x � (x1, . . . , xD), is a vector of size D, x ∈ RD, RD
representing the whole search space, gi are the inequality
constraints, hj are the equality constraints, and x

(l)
k , x

(u)
k are

the lower bound constraints and upper bound constraints,
respectively, where p and q are defined as the number of
inequality and equality constraints, respectively. 0us, the
optimization goal is to find a feasible vector x to minimize
the objective function. When the vector x contains a subset
of μ and ] vectors of continuous real and integer variables,
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respectively, |μ| + |]| � D, then the NLP problem becomes a
mixed− integer nonlinear programming problem (MINLP).
Nonconvex NLPs andMINLPs are commonly found in real-
world situations. 0erefore, the scientific community con-
tinues developing new approaches to obtain optimal solu-
tions with acceptable computation time in various
engineering, industrial, and science fields. For example, on
design optimization, the design objective could simply be to
minimize the cost or maximize the efficiency of production.
However, the objective could be more complex, e.g., con-
trolling the highly nonlinear behavior of the pH neutrali-
zation process in a chemical plant. 0e need to solve
practical NLP/MINLP problems has led to the development
of a large number of heuristics and metaheuristics over the
last two decades [2, 3]. Metaheuristics, which are emerging
as effective alternatives for solving nondeterministic Poly-
nomial Time hard (NP-hard) optimization problems, are
strategies for designing or improving very general heuristics
procedures with high performance in order to find (near)
optimal solutions. 0e goal of the metaheuristics is efficient
exploration (diversification) and exploitation (intensifica-
tion) of the search space, where an effective algorithm sets a
good ratio between this two parameters. For example, we can
take advantage of the search experience to guide search
engines by applying learning strategies or incorporating
probabilistic decisions. Metaheuristics can be classified in
two main groups, local search and population based. In the
first group, the search process starts with one candidate
solution and then it is improved in each iteration over the
runtime. Algorithms such as variable neighborhood search
(VNS) [4], Tabu search (TS) [5], Simulated annealing (SA)
[6], and Iterated local search [7] are considered as part of the
local search metaheuristics group. On the other hand, in the
second group, among the population-based metaheuristics,
evolutionary algorithms are metaheuristics inspired by the
process of natural selection. Genetic Algorithms (GA) [8],
Genetic Programming [9], Differential Evolution (DE) [10],
and Evolution Strategy (ES) [11] are considered as state-of-
the-art population-based evolutionary algorithms. More-
over, Ant Colony Optimization (ACO) [12], Cuckoo Search
Algorithm (CSA) [13], and Particle Swarm Algorithm (PSO)
[14] are some representative population-based meta-
heuristics categorized as swarm based [15]. Even though
there is a great amount of research on metaheuristics, it
continues to be used in many fields, e.g., cluster analysis,
scheduling, artificial intelligence, process engineering, etc.,
with flattering results. However, there is no particular
heuristic algorithm suitable for all optimization problems
[16]. 0erefore, designing new optimization techniques is an
active research field within the scientific community [17]. A
survey of some of the most relevant animal or natured based
bio-inspired algorithms includes but is not limited to Virus
Colony Search (VCS) [18], Plant Propagation algorithms
[19], Lightning Search Algorithm (LSA) [20], Ant Lion
Optimizer (ALO) [21], Lion Optimizer Algorithm (LOA)
[22], Spotted Hyena Optimizer (SHO) [23], Harris Hawks
Optimization (HHO) [24], Dragonfly Algorithm (DFA)
[25], Grey Wolf Optimizer (GWO) [26], Dolphin Echolo-
cation Algorithm [27], Water Strider Algorithm (WSA),

[27], Slime Mould Algorithm (SMA) [28], Moth Search
Algorithm (MSA) [29], Colony Predation Algorithm (CPA)
[30], Black Widow Optimization Algorithm (BWOA) [31],
Grasshopper Optimization Algorithm (Goa) [32], and the
Hunger games search (HGS) [33]. Additionally, some
outstanding physical phenomena based bio-inspired algo-
rithm for optimization are [27]: Magnetic Charged System
Search (MCSS), Colliding Bodies Optimization (CBO),
Water Evaporation Optimization (WEO), Vibrating Parti-
cles System (VPS), 0ermal Exchange Optimization (TEO),
Cyclical Parthenogenesis Algorithm (CPA), among others.

Here, a novel bio-inspired algorithm, namely Dingo
Optimization Algorithm (DOA), is proposed for solving
optimization tasks. It is based on the simulation of the
hunting strategies of Dingoes, which are attacking by
chasing, grouping tactics, and scavenging behavior. 0e
remainder of this paper is organized as follows. Section 2
illustrates the DOA details, including the inspiration and
mathematical model. In order to illustrate the proficiency
and robustness of the proposed approach, several numerical
examples and their comparison with state-of-the-art met-
aheuristics are presented in Section 3. Finally, Section 4
summarizes our findings and concludes the paper with a
brief discussion on the scope for future work.

2. Dingo Optimization Algorithm (DOA)

In this section, the inspiration of the proposed method is
first discussed. 0en, the mathematical model is provided.

2.1. Biological Fundamentals. 0e dingo is Australia’s native
largest mammalian carnivore, and their scientific name is
Canis lupus dingo. Several studies have been conducted to
study the dingoes’ feeding behavior and diet, showing that
these canines prey on several species such as mammals,
birds, vegetation (seeds), reptiles, insects, fish, crabs, and
frogs, just to mention some [34]. 0ey are opportunistic
hunters but will also scavenge food when they are exploring
new territories and suddenly find dead prey. 0eir hunting
behavior can be variable. Usually, they pursue and attack
their prey from behind. Group attack is their most used
hunting strategy in which they surround the prey inside a
perimeter and begin to chase it until they fatigue it. Further
details about the dingoes’ behavior can be found in [35, 36].

2.2. Mathematical Model and Optimization Algorithm. In
this section, the mathematical model of Dingoes different
hunting strategies is first provided. 0e DOA algorithm is
then proposed. 0e hunting strategies considered are
attacking by persecution, grouping tactics, and scavenging
behavior. In addition, dingoes’ survival probability is also
considered.

2.3. Strategy 1: Group Attack. Predators often use highly
intelligent hunting techniques. Dingoes usually hunt small
prey, such as rabbits, individually, but when hunting large
prey such as kangaroos, they gather in groups. Dingoes can
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find the location of the prey and surround it, such as wolves,
see Figure 1. 0is behavior is represented by the following
equation:

x
→
i(t + 1) � β1∑na

k�1

φk(t)
�����→

− xi
→(t)[ ]

na
− x∗
�→(t), (2)

where x
→(t + 1) is the new position of a search agent (indicates

dingoes’ movement), na is a random integer number generated
in the invertal of [2, SizePop/2], where SizePop is the total size
of the population of dingoes. φ

→
k(t) , is a subset of search agents

(dingoes that will attack) where φ ⊂ X, X is the dingoes’
population randomly generated, x

→
i(t) is the current search

agent, x
→
∗(t) is the best search agent found from the previous

iteration, and β1 is a random number uniformly generated in
the interval of [− 2, 2]; it is a scale factor that changes the
magnitude and sense of the dingoes’ trajectories. 0e Group
attack pseudocode is shown in Algorithm 1.

2.4. Strategy 2: Persecution. Dingoes usually hunt small prey,
which is chased until it is caught individually. 0e following
equation models this behavior:

x
→
i(t + 1) � x

→
∗(t) + β1 ∗ eβ2 ∗ x

→
r1
(t) − x→i(t)( ), (3)

where x
→(t + 1) indicates the dingoes’ movement, x→i(t) is

the current search agent, x
→
∗(t) is the best search agent

found from the previous iteration, β1 has the same value as in
equation (2), β2 is a random number uniformly generated in
the interval of [− 1, 1], r1 is the random number generated in
the interval from 1 to the size of a maximum of search agents
(dingoes), and x

→
r1(t) is the r1-th search agent selected,

where i≠ r1.
Equation (3) is used to represent the dingoes’ trajectories

while hunting for their prey. At the same time, Figure 2 is
used to graphically illustrate its parameters.

2.5. Strategy 3: Scavenger. Scavenger behavior is defined as
the action when dingoes find carrion to eat when they are
randomly walking in their habitat. Equation (4) is used to
model this behavior, which is graphically displayed in
Figure 3

x
→
i(t + 1) �

1

2
eβ2 ∗ x→r1

(t) − (− 1)σ ∗ x→i(t)[ ], (4)

where x
→(t + 1) indicates the dingoes’ movement, β2 has the

same value as in equation (3), r1 is the random number
generated in the interval from 1 to the size of a maximum of
search agents (dingoes), x

→
r1
(t) is the r1-th search agent

selected, x
→
i(t) is the current search agent, where i≠ r1 and σ

is a binary number randomly generated by Algorithm 2,
σ ∈ 0, 1{ }.

2.6. Strategy 4: Dingoes’ Survival Rates. 0e Australian dingo
dog is at risk of extinction mainly due to illegal hunting. In
the DOA, the dingoes’ survival rate value is provided by the
following equation:

survival(i) � fitnessmax − fitness(i)
fitnessmax − fitnessmin

, (5)

where fitnessmax and fitnessmin are the worst and the best
fitness value in the current generation, respectively, whereas
fitness(i) is the current fitness value of the i − th search
agent. 0e survival vector in equation (5) contains the
normalized fitness in the interval of [0, 1]. Equation (6) is
applied for low survival rates by Algorithm 3, e.g., for
survival rates values equal to or less than 0.3.

x
→
i(t) � x

→
∗(t) +

1

2
x
→
r1
(t) − (− 1)σ ∗ x→r2

(t)[ ], (6)

where x
→
i(t) is the search agent with low survival rates that

will be updated, r1 and r2 are random numbers generated in
the interval from 1 to the size maximum of search agents
(dingoes), with r1 ≠ r2, x→r1

(t) and x
→
r2
(t), are the r1, r2-th

search agents selected, x
→
∗(t) is the best search agent found

from the previous iteration and σ is a binary number
randomly generated by the second algorithm, σ ∈ 0, 1{ }.
Note that equation (6) is an addition or subtraction of
vectors, defined by the random value of σ.

2.7. Pseudocode for DOA. 0e pseudocode of the DOA is
explained in Algorithm 4, whereas the overall flow is shown
in Figure 4.

3. DOA Algorithm Analysis

In this section, an in-depth analysis of the DOA algorithm is
carried out. 0is analysis includes the DOA’s time com-
plexity, parameters settings studies, the hunting strategies
analysis, and the associated effects of the population size in
the algorithm’s performance.

3.1. TimeComplexity. Without any loss of generality, let f be
any optimization problem and suppose that O(f) is the
computational time complexity of evaluating its function
value. 0ereby, the DOA computational time complexity is

φ1

φ3

φ5

φ Dingo that will attack

φ6

φ2

φ4

X2

X3

X7

X4

Xi Dingo 

X
∗

X
∗
 Dingo with the best fitness

X
1

Prey

Figure 1: Group attack strategy.
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(1) Begin procedure
(2) Generate a random integer, named na, na ∈ [2, SizePop/2], answer the question: How many dingoes will attack?
(3) Generate k-index vector of random integers, with size na, k-index ∈∈[1, SizePop], answer the question: Which dingoes will attack?
(4) Generate the φ subset from Population using the k-index vector of positions, φ ⊂ Population, φ are the dingoes that will attack
(5) Apply equation (7).
(6) Return the new positions of dingoes
(7) End procedure

ALGORITHM 1: Group attack procedure.

(1) Begin procedure
(2) if rand≤ 0.5 then
(3) return 0
(4) else
(5) return 1
(6) end if
(7) End procedure

ALGORITHM 2: σ procedure.

(1) Begin procedure
(2) for i � 1 to sizePopulation do
(3) if survival(i)≤ 0.3 then
(4) Strategy 4: x

→
i search agent updated by equation (6).

(5) end if
(6) end for
(7) End procedure

ALGORITHM 3: Survival procedure.

(1) procedure DOA
(2) Initialization of parameters
(3) P � 0.5, probability of hunting or scavenger strategy
(4) Q � 0.7, probability of Strategy 1 (group attack) or Strategy 2 (persecution attack)
(5) Generate the initial population
(6) while iteration < Max Number of Iterations do
(7) if random<P then
(8) if random<Q then
(9) Strategy 1: Group Attack Procedure, Algorithm 1, equation (2).
(10) else
(11) : Strategy 2: Persecution, (3).
(12) end if
(13) else
(14) Strategy 3: Scavenger, (4).
(15) end if
(16) Update search agents that have low survival value, Algorithm 3, equation (6)
(17) Calculate xnew, the fitness value of the new search agents
(18) if xnew <x∗ then
(19) x∗ � xnew
(20) end if
(21) iteration � iteration + 1
(22) end while
(23) Display x∗, the best optimal solution
(24) end procedure

ALGORITHM 4: Dingo Optimizer Algorithm.
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defined as O(tMx∗ nDg∗ f ), where tMx is the maximum
number of iterations and nDg is the number of dingoes
(population size).

3.2. Hunter Strategies Analysis. To better understand the
performance of each of the hunting strategies separately, a
unimodal and a multimodal problem was conducted. 0e
algorithm was modified to use only one strategy on each run
time and executed with the number of iterations set as 500
and population size (search agents) of 100.0e output of this
analysis is displayed in Figure 5. Note that the group attack
strategy has obtained the best performance for the unimodal
function F2, while the persecution strategy has the worst,
while, for the multimodal function F14, the persecution
strategy overcomes the scavenger strategy and shows
competitive results compared to the attack strategy.

3.3. Population Size Analysis. 0e effects of the population
size on the performance of the DOA algorithm are studied

by fixing the number of iterations to 100 and then varying
the population size initially at 15, then 30, 40, 50, 100, and
200 for the F2 F14 functions. 0e output of these tests is
summarized in Table 1 and Figure 6, where the best optimal
value is found at a population size of 100.

Notice that from the population size analysis results
described in Table 1, row two corresponding to size 30 shows
that the DOA algorithm outperformed, in F2 and F14, the
algorithms reported in Table 2. Nevertheless, Table 1 data
were conducted with a fixed population size of 100, whereas
Table 2 data were calculated with a population size of 500.
Moreover, for a smaller population size of 15, it still out-
performs the other algorithms.

3.4. P and Q Parameters Analysis. 0e DOA algorithm uses
two parameters, P and Q. P is a fixed value that indicates the
probability of the algorithm to choose between the hunting
or scavenger strategy. If the hunting strategy is selected by
the algorithm, then a fixedQ value indicates its probability to
choose between group attack or persecution strategy.

In order to determine the effects of P and Q parameters
on the DOA performance, an analysis of said variables is
carried out by means of the benchmark problems F1 to F23;
see Tables 3–5.0emethodology consists of setting P fixed at
0.5 while Q starts on 0.25 and is incremented on 0.25 steps
during four runtimes, one for each Q value until 1 is
achieved. Afterward, a similar approach is conducted,
leaving Q fixed at 0.5 while P starts on 0.25 and vary in 0.25
increments until P is equal to 1. 0e convergence analysis
results of this parameters test are shown in Figures 7 and 8. It
is to be noticed that regardless of P and Q values, the al-
gorithm converges to the solution reported in Table 2.0is is
due to the incorporation of the survival strategy, which
improves the quality of search agents by updating those with
low survival values.

Based on this, for the rest of the paper, the DOA tests will
be conducted with P andQ fixed at 0.5 and 0.70, respectively.

4. Experimental Setup

In this section, 23 classical benchmark functions, reported in
the literature [37], are optimized to investigate the effec-
tiveness, efficiency, and stability of the DOA algorithm. 0e
functions are categorized as unimodal, multimodal, and
fixed-dimension multimodal. Table 3 shows unimodal
functions, labeled from F1 to F7, whereas functions F8 to F13
are considered as multimodal, as shown in Table 4. Addi-
tionally, functions F14 to F23 are defined as fixed-dimension
multimodal in Table 4. Unimodal functions allow testing the
exploitation ability since they only have one global optimum,
whereas multimodal functions and fixed-dimension multi-
modal functions are able to test the exploration ability since
they include many local optima. Tables 3–5 summarizes
these benchmark functions where Di m indicates the di-
mension of the function, Interval is the boundary of the
function’s search space, and fmin is the optimum value.
Figure 9 shows the typical 2D plots of the cost function for
some test cases considered in this study.

0.5-0.5 0 1-1

β2

-6

-4

-2

0

2

4

6

β
1
eβ

2

Figure 2: Effects of β1 and β2 on the evaluation of equation (3)
(dingoes’ hunting trajectories).
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Figure 3: Scavenger vectorial trajectory, taken from the evaluation
of equation (4).0e red line represents the possible trajectory of the
resulting vector when randomly varying β (β> 0 or β< 0) and σ
(σ � 1 or σ � 0), blue and green lines, respectively.
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Figure 4: DOA Flowchart.
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For each benchmark function, the DOA algorithm was
run 30 times, the size of the population (search agents) was
set to 30, while the number of iterations was defined as 500.
Figure 10 shows the convergence graphs of all functions.

0e DOA algorithm was compared with the following
algorithms: the Whale Optimization Algorithm (WOA)
[38], Particle Swarm Optimization (PSO) [39], Gravity
Search Algorithm (GSA) [40], Differential Evolution (DE)
[41], and Fast Evolutionary Programming (FEP) [42]. Our
approach is implemented in MATLAB R2018a. All com-
putations were carried out on a standard PC (Linux Kubuntu
18.04 LTS, Intel core i7, 2.50GHz, 16GB). 0e six algo-
rithms were ranked by computing their Mean Absolute
Error (MAE). MAE is a valid statistical criterion and an
unambiguous measurement of the average error magnitude.
It shows how far the results are from actual values. 0eMAE
formula is as follows:

MAE �
∑Ni�1 mi − ki

∣∣∣∣ ∣∣∣∣
N

, (7)

where mi indicates the mean of the optimal values, ki is the
corresponding global optimal value, and N represents the
number of test functions. Table 6 shows the average error
rates obtained in the 23 benchmark functions. 0e ranking
of all the algorithms based on their MAE calculations is
illustrated in Table 7.

5. Results and Discussion

According to the statistical results given in Table 2, the
Dingo Optimization Algorithm (DOA) is able to provide
very competitive results. In the exploitation analysis, uni-
modal functions, the DOA outperforms all other algorithms,
as Whale Optimization Algorithm (WOA), Particle Swarm
Optimization (PSO), Gravity Search Algorithm (GSA), and
Fast Evolutionary Programming (FEP), in F1, F2, F3, and F7
functions and similar to Differential Evolution (DE), it
found the optimal result in F4. Table 8 shows the exploi-
tation capability results summary. We can see that this result
represents an accumulated rate of 71.43 % that outperforms
or ties over the others algorithms. 0erefore, these results
show DOA superior performance in terms of exploitation at
the optimum. On the other hand, the exploration analysis
shows that the DOA was most efficient in
F10, F15, F16, F17, F19, F20, F21, and F23, multimodal and
fixed-dimension multimodal functions (see Table 2). In
addition, the DOA showed similar behavior to other met-
aheuristics to find the optimal result in F9, F11, F14, F18,
and F22 functions. 0is result represents an accumulated
rate of 81.25 % that outperforms or ties compared with other
algorithms. Table 8 confirms that the DOA also has a very
good exploration capability. We can see that the DOA al-
gorithm is at least the second-best and frequently the most
efficient on the majority of the test functions due to the

Table 1: Population size analysis.

Population size
F2 (optimal value: 0) F14 (optimal value: 1)

Worst Best Ave std Worst Best Ave std

15 1.64E − 17 1.62E − 48 1.64E − 18 5.18E − 18 1.17E+ 00 9.96E − 01 1.02E+ 00 5.52E − 02
30 6.53E − 20 2.85E − 43 6.86E − 21 2.06E − 20 9.98E − 01 9.98E − 01 9.98E − 01 1.49E − 04
50 6.57E − 27 5.87E − 47 6.64E − 28 2.08E − 27 9.99E − 01 9.98E − 01 9.98E − 01 3.25E − 04
100 1.09E − 29 3.96E − 58 1.09E − 30 3.43E − 30 9.99E − 01 9.98E − 01 9.98E − 01 3.57E − 04
200 4.34E − 39 3.96E − 53 4.84E − 40 1.36E − 39 9.99E − 01 9.98E − 01 9.98E − 01 3.37E − 04

F2 F14
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Figure 6: Population size analysis.
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integrated mechanisms of exploitation and exploration
leading the algorithm to the global optimum. 0e statistical
results of the MAE test show that the DOA algorithm has the
lowest value of the mean absolute error for the 23 classical
benchmark functions and outperforms all the other algo-
rithms (see Table 6), whereby DOA algorithm appears
ranked in the first position (see Table 7). Additionally, a
convergence analysis was carried out. 0e purpose of the

convergence analysis is to understand and visualize the
search on promising regions by the algorithm exploration
and exploitation capabilities. 0e DOA andWOA algorithm
are compared during the convergence analysis due to WOA
better performance over the metaheuristics reported in [38].
Figure 11 illustrates the DOA convergence analysis results
for selected test functions versus the highest-ranking algo-
rithms taken from MAE test. We can see that the DOA

Table 3: Unimodal testbench functions [37].

Function Dim Interval fmin

F1(x) � ∑n
i�1 x

2
i 30 [− 100, 100] 0

F2(x) � ∑i�1|xi| +∏n
i�1 |xi| 30 [− 10, 10] 0

F3(x) � ∑i�1(∑ij− 1 xj)2 30 [− 100, 100] 0
F4(x) � maxi |xi|, 1≤ i≤ n{ } 30 [− 100, 100] 0
F5(x) � ∑n− 1

i�1 [100(xi+1 − x2i )
2 + (xi − 1)2] 30 [− 30, 30] 0

F6(x) � ∑n
i�1 ([xi + 0.5])

2 30 [− 100, 100] 0
F7(x) � ∑n

i�1 ix
4
i + random[0, 1) 30 [− 1.28, 1.28] 0

Table 4: Multimodal testbench functions [37].

Function Dim Interval fmin

F8(x) � ∑n
i�1 − xi sin(

���
|xi|

√
) 30 [− 500, 500] − 2094.9145

F9(x) � ∑n
i�1[x2i − 10 cos(2πxi + 10)] 30 [− 5.12, 5.12] 0

F10(x) � − 20 exp(− 0.2
���������
1/n∑ni�1 x2i√

) − exp(1/n∑ni�1 cos(2πxi)) + 20 + e 30 [− 32, 32] 0

F11(x) � 1/4000∑n
i�1 x

2
i − ∏n

i�1 cos(
xi�
i

√ ) + 1 30 [− 600, 600] 0

F12(x) � π/n 10 sin(πy1) +∑n− 1
i�1 (yi − 1)

2[1 + 10 sin2(πyi+1)] + (yn − 1)
2{ }

+∑n
i�1u(xi, 10, 100, 4)

yi � 1 + (xi + 1/4)u(xi, a, k, m) �
k(xi − a)

m, xi > a,
0 − a<xi < a,
k(− xi − a)

m, xi < − a.


30 [− 50, 50] 0

F13(x) � 0.1 sin
2(3πxi) +∑n

i�1(xi − 1)
2[1 + sin2(3πxi + 1)] + (xn − 1)

2[1 + sin2(2πxn)]{ }
+∑n

i�1u(xi, 5, 100, 4)
30 [− 50, 50] 0

Table 5: Fixed-dimension multimodal testbench functions [37].

Function Dim Interval fmin

F14(x) � (1/500 + ∑ j � 1251/j + ∑ i � 12(xi − aij)6)− 1 2 [− 65, 65] 1
F15(x) � ∑11i�1[ai − x1(bi2 + bix2)/bi2 + bix3 + x4]2 4 [− 5, 5] 0.00030
F16(x) � 4x12 − 2.1x14 + (1/3)x16 + x1x2 − 4x22 + 424 2 [− 5, 5] − 1.0316
F17(x) � (x2 − (5.1/4π2)x21 + (5/π)x1 − 6)

2 + 10(1 − (1/8π))cos x1 + 10 2 [− 5, 5] 0.398

F18(x) � [1 + (x1 + x2 + 1)
2(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)] × [30 + (2x1 − 3x2)

2

×(18 − 32x1 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2] 3

F19(x) � − ∑4i�1 ciexp(− ∑3j�1 aij(xj − pij)2) 3 [1, 3] − 3.86
F20(x) � − ∑4i�1 ciexp(− ∑6j�1 aij(xj − pij)2) 6 [0, 1] − 3.32
F21(x) � − ∑5i�1 [(X − ai)(X − ai)T + ci]− 1 4 [0, 10] − 10.1532
F22(x) � − ∑7i�1 [(X − ai)(X − ai)T + ci]− 1 4 [0, 10] − 10.4028
F23(x) � − ∑10i�1[(X − ai)(X − ai)T + ci]− 1 4 [0, 10] − 10.5363
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converges faster than WOA due to its adaptive mechanism.
0is behavior is illustrated on F1, F2, and F4 test benchmark
functions; see Figure 11. Whereas in F7, F10, F14, F15, F22
and F23 test functions, the DOA converges rapidly from the
initial stage of iteration. Based on this trends, we conclude
that the DOA exploitation and exploration capabilities are
quite effective finding the optimal.

6. Real-World Applications

In this section, a constrained optimization problem, typically
represented by (1), is considered. 0e DOA algorithm was
tested with four constrained engineering design problems: a
cantilever beam, a three-bar truss, a pressure vessel, and a
gear train design problem. 0e pressure vessel design
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problem and the Gear train design problem contain discrete
variables. 0e constraint handling method used is based on
[43], where infeasible solutions (that is, at least one

constraint is violated) are compared based on only their
constraint violation. 0e constraint handling methods are
formulated as follow:

F( x→) �
f( x→), if gi( x

→)≤ 0, ∀i � 1, 2, . . . , p,
fmax +∑p

i�1〈gi( x
→)〉, otherwise,

 (8)

where fmax is the objective function value of the worst
feasible solution in the population. Note that the fitness of a
feasible solution is equal to its objective function value. On
the other hand, the fitness of an infeasible solution is
punished. Typically, it is defined as the value of the worst

feasible solution in the current population plus the sum of
the values obtained when evaluating each constraint
violated.

On the other hand, also the DOA algorithm was tested to
find the optimal tuning parameters of a PID controller.

Table 6: Average error rates obtained in the 23 benchmark problems.

F DOA WOA PSO GSA DE FEP

F1 0.0000E+ 00 6.1304E − 32 5.9130E − 06 1.1000E − 17 3.9048E − 15 2.4783E − 05
F2 0.0000E+ 00 4.6087E − 23 1.8323E − 03 2.4198E − 03 7.1429E − 11 3.5217E − 04
F3 0.0000E+ 00 2.3435E − 08 3.0489E+ 00 3.8980E+ 01 3.2381E − 12 6.9565E − 04
F4 0.0000E+ 00 3.1557E − 03 4.7238E − 02 3.1978E − 01 0.0000E+ 00 1.3043E − 02
F5 1.2565E+ 00 1.2115E+ 00 4.2051E+ 00 2.9367E+ 00 0.0000E+ 00 2.2000E− 01
F6 2.1810E − 01 1.3549E − 01 4.4348E − 06 1.0870E − 17 0.0000E+ 00 0.0000E+ 00
F7 5.2317E− 07 6.1957E − 05 5.3415E − 03 3.8887E − 03 2.2048E − 04 6.1522E − 03
F8 5.7185E+ 01 1.2982E+ 02 1.1941E+ 02 3.1573E+ 01 4.2787E+ 02 4.5477E+ 02
F9 0.0000E+ 00 0.0000E+ 00 2.0306E+ 00 1.1291E+ 00 3.2952E+ 00 2.0000E − 03
F10 3.8617E− 17 3.2193E − 01 1.2001E − 02 2.6994E − 03 4.6190E − 09 7.8261E − 04
F11 0.0000E+ 00 1.2565E − 05 4.0065E − 04 1.2044E+ 00 0.0000E+ 00 6.9565E − 04
F12 1.3179E − 02 1.4769E − 02 3.0074E − 04 7.8244E − 02 3.7619E− 16 4.0000E − 07
F13 1.3006E − 01 8.2131E − 02 2.9022E − 04 3.8692E − 01 2.4286E− 15 6.9565E − 06
F14 8.6957E− 05 4.8347E − 02 1.1422E − 01 2.1130E − 01 9.5048E − 05 9.5652E − 03
F15 3.2565E− 07 1.1826E − 05 1.2043E − 05 1.4665E − 04 1.4286E − 05 8.6957E − 06
F16 0.0000E+ 00 1.3043E − 06 1.3043E − 06 1.3043E − 06 1.4286E − 06 6.9565E − 05
F17 4.7826E − 06 3.7391E − 06 4.9130E − 06 4.9130E − 06 5.3810E − 06 0.0000E+ 00
F18 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 8.6957E − 04
F19 1.2174E − 04 1.6696E − 04 1.2087E − 04 1.2087E − 04 — 0.0000E+ 00
F20 8.6957E− 05 1.4737E − 02 2.3330E − 03 9.6522E − 05 — 2.1739E − 03
F21 8.6957E− 06 1.3495E − 01 1.4295E − 01 1.8252E − 01 9.5238E − 06 2.0143E − 01
F22 4.3478E− 06 9.6575E − 02 8.4629E − 02 3.1240E − 02 4.7619E − 06 2.1187E − 01
F23 1.7391E− 05 5.1897E − 02 2.5352E − 02 1.7391E− 05 1.9048E − 05 1.7243E − 01

Table 7: Rank of algorithms for unimodal and multimodal problems using MAE.

Algorithm MAE Rank

DOA 5.8803E+ 01 1
GSA 7.7042E+ 01 2
PSO 1.2913E+ 02 3
WOA 1.3194E+ 02 4
DE 4.3116E+ 02 5
FEP 4.5561E+ 02 6

Table 8: Summary of exploitation/exploration rates capability results of DOA Algorithm.

DOA algorithm Exploitation (F1–F7) (%) Exploration (F8–F23) (%)

Won 57.14 50
Tied 14.29 31.25
Lost 28.57 18.75
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6.1. Cantilever beam Design Problem. A Cantilever beam
consists of five square hollow blocks, as shown in Fig-
ure 12. 0e objective is to minimize weight. In this
problem, there are five optimization variables, one for
each cantilever that represents the length of their side and
includes one optimization constraint [44]. 0e cantilever
weight optimization is formulated in the following
equation:

Consider x
→ � x1 x2 x3 x4 x5[ ],

Minimizef( x→) � 0.06224 x1 + x2 + x3 + x4 + x5( ),
Subject tog( x→) � 61

x31
+ 27
x32
+ 19
x33
+ 7
x34
+ 1
x35
− 1≤ 0,

variable range 0.01≤ x1, x2, x3, x4, x5 ≤ 100.
(9)

Some of the algorithms that are chosen for comparison
are Salp Swarm Algorithm (SSA), Symbiotic Organisms
Search (SOS), Method of Moving Asymptotes (MMA),
Generalized Convex Approximation (CGA), in its version I
and II (CGA I and CGA II, respectively), and Cuckoo
Search Algorithm (CSA). 0e results obtained by DOA and
their comparison with the aforementioned state-of-the-art
metaheuristics are reported in Table 9, where Table 9 was
taken from [44] and updated with DOA’s algorithm results.
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Figure 12: Cantilever beam design problem.
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Note that DOA outperforms other techniques when
obtaining the lowest weight and shows very competitive
results compared to SSA.

6.2.Hree-Bar Truss Design Problem. Here, the problem is to
design a truss with three bars to minimize its weight. In this
test, there are two optimization variables with three opti-
mization constraints, stress, deflection, and buckling. It is
formulated as shown in (10).0is example is reported in [44]
as a highly constrained search space. 0e overall structure of
the three-bar truss is shown in Figure 13.

Consider x
→ � x1 x2[ ] � A1 A2[ ],

Minimizef( x→) � 2
�
2

√
x1 + x2( )∗ l,

Subject tog1( x
→) �

�
2

√
x1 + x2�

2
√
x21 + 2x1x2

P − σ ≤ 0,

g2( x
→) � x2�

2
√
x21 + 2x1x2

P − σ ≤ 0,

g3( x
→) � x1�

2
√
x2 + x1

P − σ ≤ 0,

variable range 0≤ x1, x2 ≤ 1,

where l � 100, P � 2 kN
cm2

, σ � 2 kN
cm2

.

(10)

Table 10 was taken from [44] and updated with DOA’s
algorithm results. Some of the algorithms that are chosen for
comparison are Salp Swarm Algorithm (SSA), Differential
Evolution with dynamic stochastic selection (DEDS),
Hybridsced Particle Swarm Optimization with Differential
Evolution (PSO-DE), Mine Blast Algorithm (MBA), Swarm
with intelligent information (Ray and Sain), Tsa Method
(Tsa), and Cuckoo Search Algorithm (CSA).0e comparison
with the aforementioned algorithms shows that the DOA
algorithm provides very competitive and very close results
compared to SSA and DEDS (the discrepancy is equal to
1E − 7) and outperforming the rest of the algorithms.

6.2.1. Pressure Vessel Design Problem. 0e goal of this
problem is to minimize the total cost. 0is includes material,
forming, andwelding of a cylindrical pressure vessel [38]. Here,
there are four optimization variables and four optimization

constraints, which are the thickness of the shell (Ts), the
thickness of the head (0), the inner radius (R), and the length
of the cylindrical section without considering the head (L), by
which the pressure vessel is to be fabricated, as shown in
Figure 14. Ts and0are discrete variables inmultiples of 0.0625
in., while R and L are real variables. 0e mathematical for-
mulation of the optimization problem is described as follows:

Consider x
→ � x1 x2 x3 x4[ ] � Ts Th R L[ ]

Minimizef( x→) � 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x21x4 + 19.84x
2
1x3,

Subject tog1( x
→) � − x2 + 0.0193x3 ≤ 0

g2( x
→) � − x1 + 0.00954x3 ≤ 0

g3( x
→) � − πx23x4 −

4

3
πx33 + 1, 296, 000≤ 0

g4( x
→) � − x4 − 240≤ 0

variable range 0≤ x1 ≤ 99,

0≤ x2 ≤ 99,

10≤ x3 ≤ 200,

10≤ x4 ≤ 200,
(11)

Some of the algorithms that are chosen for comparison
are Differential Evolution (DE), Genetic Algorithm (GA),
Whale Optimization Algorithm (WOA), Particle Swarm

Table 9: Comparison results for the cantilever design problem, taken from [44] and updated with the DOA’s algorithm results.

Algorithm [44]
Optimal values for variables

Optimum weight
x1 x2 x3 x4 x5

DOA 5.98102 4.87800 4.46766 3.47786 2.13461 1.30325
SSA 6.01513 5.30930 4.49501 3.50143 2.15279 1.33996
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
MMA 6.0100 5.3000 4.49000 3.49000 2.15000 1.34000
GCA_I 6.0100 5.3000 4.49000 3.49000 2.15000 1.34000
GCA_II 6.0100 5.3000 4.49000 3.4900 2.15000 1.34000
CSA 6.0089 5.3049 4.50230 3.50770 2.15040 1.33999

1 2 3

4

D

D

P

A1

A1 = A3

A2

A3

Figure 13: 0ree-bar truss design problem.
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Optimization (PSO), among others [38]. Table 11 was taken
from [38] and updated with DOA’s algorithm results. In this
table, the comparison results show that the DOA algorithm
is ranked as the first best solution obtained.

6.3. Discrete Engineering Problem-Gear trainDesign Problem.
Here, the objective is to find the optimal number of the teeth
of a four gear train while minimizing the gear ratio, as shown
in Figure 15, where its four parameters are discrete [21]. In
order to handle discrete values, each search agent was
rounded to the nearest integer number before the fitness
evaluation. 0e design engineering constraint is defined as
the number of teeth on any gear that should only be in the
range of [12, 60]. Accordingly, the optimization problem can
be formulated as follows:

Consider x
→ � x1 x2 x3 x4[ ] � nA nB nC nD[ ],

Minimizef( x→) �
1

6.931
− x2x3
x1x4

( )2,
variable range 12≤ x1, x2, x3, x4 ≤ 60,

(12)
Some of the algorithms that are chosen for comparison

are Ant Lion Optimizer (ALO), Cuckoo Search Algorithm
(CSA), Mine Blast Algorithm (MBA), Interior Search Al-
gorithm (ISA), Genetic Algorithm (GA), Artificial Bee
Colony (ABC), and Augmented Lagrange Multiplier (ALM)
[21]. Table 12 was taken from [21] and updated with DOA’s
algorithm results. It shows that the DOA algorithm gives
competitive results for numbers of function evaluations and
is suitable to solve discrete constrained problems.

6.4. Tuning of a Proportional-Integral-Derivative (PID)
Controller: Sloshing Dynamics Problem. Sloshing dynamics
is a well-studied phenomenon in fluid dynamics. It is related
to the movement of a liquid inside another object, altering
the system dynamics [45]. Sloshing is an important effect on
ships, spacecraft, aircraft, and trucks carrying liquids, as it
causes instability and accidents. Sloshing dynamics can be
depicted as a Ball and Hoop System (BHS). 0is effect il-
lustrates the dynamics of a steel ball that is free to roll on the
inner surface of a rotating circular hoop. 0e ball exhibits an
oscillatory motion caused by the continuously rotated hoop
through a motor. 0e ball will tend to move in the direction
of the hoop rotation and will fall back, at some point, when
gravity overcomes the frictional forces. 0e BHS behavior
can be described by seven variables: hoop radius (R), hoop
angle (θ), input torque to the hoop (T(t)), ball position on
the hoop (y), ball radius (r), ball mass (m), and ball angles
with vertical (slosh angle) (ψ). A schematic representation is
shown in Figure 16.0e transfer function of the BHS system,
taken from [46,47], is formulated in equation (13), where θ is
the input and y is the output of the BHS system.

GBHS(s) �
y(s)
θ(s) �

1

s4 + 6s3 + 11s2 + 6s
. (13)

Pareek et al. studied the optimal tuning of a Propor-
tional-Integral-Derivative (PID) controller using meta-
heuristic algorithms [47], specifically by using Bacteria
Foraging Optimization (BFO), Particle Swarm Optimization
(PSO), and Artificial Bee Colony Algorithm (ABC). In this
study, we updated Tables 13 and 14, taken from [47], with
the DOA algorithm’s results.

0e transient response parameters of the Proportional-
Integral-Derivative (PID) controller are Rise time, Settling
time, Peak time, and Peak overshoot [48].0e PID controller

Table 10: Comparison results for the three-bar truss design problem, taken from [44] and updated with the DOA’s algorithm results.

Algorithm [44]
Optimal values for variables

Optimum weigth
x1 x2

DOA 0.788675095 0.40824840 263.8958434
SSA 0.78866541 0.40827578 263.8958434
DEDS 0.78867513 0.40824828 263.8958434
PSO-DE 0.78867510 0.40824820 263.8958433
MBA 0.78856500 0.40855970 263.8958522
Ray and sain 0.79500000 0.39500000 264.3000000
Tsa 0.78800000 0.40800000 263.6800000 (infeasible)
CSA 0.78867000 0.40902000 263.9716000

Ts

L
Th

R R

Figure 14: pressure vessel design problem.
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Table 11: Comparison results for pressure vessel design problem, taken from [38] and updated with the DOA’s algorithm results.

Algorithm [38]
Optimal values for variables

Optimum weight
Ts Th R L

DOA 0.812500 0.437500 42.09845 176.6366 6059.7143
ACO (Kaveh and Telataheri) 0.812500 0.437500 42.103624 176.572656 6059.0888 (infeasible)
DE (Huang et al.) 0.812500 0.437500 42.098411 176.637690 6059.7340
WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410
ES (Montes and Coello) 0.812500 0.437500 42.098087 176.640518 6059.7456
GA (Coello and Montes) 0.812500 0.437500 42.097398 176.654050 6059.9463
PSO (He and Wang) 0.812500 0.437500 42.091266 176.746500 6061.0777
GA (Coello) 0.812500 0.434500 40.323900 200.000000 6288.7445
GA (deb and gene) 0.812500 0.500000 48.329000 112.679000 6410.3811
Improved HS 1.125000 0.625000 58.290150 43.6926800 7197.730
Lagrangian multiplier (Kannan) 1.125000 0.625000 58.291000 43.6900000 7198.0428
Branch-bound (Sandgren) 1.125000 0.625000 47.700000 117.701000 8129.1036
GSA 1.125000 0.625000 55.9886598 84.4542025 8538.8359

A

B

C
D

Figure 15: Gear train design problem.

Table 12: Comparison results of the gear train design problem, taken from [21] and updated with the DOA’s algorithm results.

Algorithm [21].
Optimal values for variables

fmin Max. eval
nA nB nC nD

DOA 43 16 19 49 2.7009e − 12 130
ALO 49 19 16 43 2.7009e − 12 120
CSA 43 16 19 49 2.7009e − 12 5000
MBA 43 16 19 49 2.7009e − 12 10000
ABC 19 16 44 49 2.78e − 11 40000
GA 33 14 17 50 1.362e − 9 N/A
ALM 33 15 13 41 2.1469e − 8 N/A

Ant Lion Optimizer (ALO), Cuckoo Search Algorithm (CSA), Mine Blast Algorithm (MBA), Artificial Bee Colony (ABC), Genetic Algorithm (GA), and
Augmented Lagrange Multiplier (ALM).

ψ

θ

R

Ball

Hoop

y

Figure 16: Schema of the ball and hoop system.
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is designed to minimize the overshoot and settling time so
that the liquid can remain as stable as possible under any
perturbance and if it moves, it can rapidly go back to the
steady state. It is to be noticed that the DOA outperforms
the aforementioned algorithms, obtaining the lowest
rising and settling time value, as well as the peak over-
shoot, see Table 14. In addition, in Figure 17, we can see
the PID controller step response for the four algorithms.
Note that the DOA-PID (blue line) is more stable with
very fine control without exceeding the setpoint (dotted
line).

7. Conclusions

0is study presented a novel population-based optimiza-
tion algorithm based on three different hunting strategies
of the Canis lupus dingo. 0ese strategies, attacking by
persecution, grouping tactics, and scavenging behaviors,
were carefully designed to guarantee the exploration and
exploitation of the search state and evaluated by 23
mathematical benchmark functions. 0e DOA showed an
exploitation and exploration accumulated rate of 71.43%

and 81.25%, respectively, that outperforms or ties the other
algorithms. DOA uses two parameters, P and Q, to indicate
the probability of the algorithm to choose between the
hunting or scavenger strategy. It is to be noticed that re-
gardless of P and Q values, the algorithm converges to the
solution due to the incorporation of the survival strategy.
0e DOA performance was compared with five well-known
state-of-the-art metaheuristic methods available in the
literature: Whale Optimization Algorithm (WOA), Particle
Swarm Optimization (PSO), Gravity Search Algorithm
(GSA), Differential Evolution (DE), and Fast Evolution
Programming (FEP). 0e statistical analysis mean absolute
error (MAE) was conducted to measure the performance of
the DOA and the previously mentioned algorithms. DOA
was found to be highly competitive in the majority of the
test functions. 0e capabilities of DOA were also tested
with classical engineering problems (design of a cantilever
beam, design of a three-bar truss and design of a pressure
vessel). 0e results obtained by DOA in most cases over-
comes several well-known metaheuristics Additionally, the
DOA demonstrated its capability to find the optimal tuning
parameters of a PID controller, which is the rise time, the
settling time, the peak time, and the peak overshoot, which
were efficiently optimized for the sloshing dynamics
problem. In order to expand the algorithm scope, it was
also tested with an engineering discrete problem (design of
a gear train), showing competitive results. Finally, this
paper opens up several research directions for future
studies. 0ey include the incorporation of self-adaptive
parameters, a method to handle multiobjective optimiza-
tion problems with large problem instances using paral-
lelization strategies, e.g., GPU computing and multicore
resources.

Data Availability

0e source code used to support the findings of this study
have been deposited in the Mathworks repository (https://
www.mathworks.com/matlabcentral/fileexchange/98124-
dingo-optimization-algorithm-doa).

Table 13: Comparison results of optimized PID parameters, taken from [47] and updated with the DOA’s algorithm results.

Algorithm [47]
Parameter

Kp Ki Kd

DOA 3.6677 0.01 4.9852
BFO 3.6616 0.3112 3.7334
PSO 4.0993 0.0325 2.9844
ABC 8.5164 0.0043 9.3419

Table 14: Comparison results of transient response parameters, taken from [47] and updated with the DOA’s algorithm results.

Algorithm [47]
Transient parameters

Rise time (sec) Settling time (sec) Peak time (sec) Peak overshoot (%)

DOA 2.0044 3.2900 10.6541 0.3452
BFO 2.0419 23.4616 5.2414 16
PSO 2.0135 72809 4.5558 14
ABC 1.0013 7.4979 2.4653 29
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Figure 17: Comparative results of step response for the PID
controller.
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