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Abstract

How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to
reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of
nodes in the networks, and semi-local centrality, leaderRank and pageRank approaches can be only applied in unweighted
networks. In this paper, a bio-inspired centrality measure model is proposed, which combines the Physarum centrality with
the K-shell index obtained by K-shell decomposition analysis, to identify influential nodes in weighted networks. Then, we
use the Susceptible-Infected (SI) model to evaluate the performance. Examples and applications are given to demonstrate
the adaptivity and efficiency of the proposed method. In addition, the results are compared with existing methods.
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Introduction

It is of theoretical significance and practical value to know how

to identify influential nodes effectively in complex networks [1–

14], such as controlling rumor and disease spreading [15], electric

power supply [16], evolution of cooperation [9,17–19], game

theory [20–22], link prediction [23–25] and robust reproduction

of organisms [26].Various centrality measures have been proposed

over the years to capture network entities meanings { influence

[27], importance [28–30], popularity [6,31], controllability

[32,33] and spreading efficiency [34]. Three best known centrality

measures were developed to distinguish which nodes are more

central than others in binary networks, namely, degree, closeness and

betweenness centrality [35]. Degree centrality based on counting the

first neighbors of a node has an advantage of simplicity, ignoring

the global structure. Closeness centrality was defined as the inverse

sum of shortest distances from a focal node to all other nodes,

which means high closeness centrality score is, a node more close

to the others. However, if a node is at a dead-end, its removal will

be without any effect in contrast with the case of a cut-vertex (the

analog of a bridge for edges) which leads to disconnected

components. Another important centrality is betweenness central-

ity, It is calculated by assessing the degree to which a node lies on

the shortest path over the total number of shortest paths. These

three centrality measures have already been extended to be

applied in weighted networks. In 2011, a random-walk-based

centrality called LeaderRank is proposed in [6], which can identify

leaders in social networks better than the well-known PageRank

algorithm [36,37]. After that, Chen et al [27] developed a

centrality method called semi-local centrality as a tradeoff between

local degree centrality and other global but time-consuming

measures with limitation to unweighted networks. Besides, there

are also spectral centrality measures such as the eigenvector centrality

[38], alpha centrality [38], Katz’s centrality [39] and subgraph centrality

[40].

However, in many real networks, edges are with with some form

of attribute or weight. In addition, network can be changed

dynamically. It is necessary to develop a new method to identify

influential nodes with a adaptive manner. In 2012, an amoeboid

centrality measure called Physarum centrality is proposed in [41],

which can be used in weighted dynamic networks. Physarum

polycephalum, as an amoeboid organism, can form a dynamic

tubular network connecting discovered food sources. Furthermore,

it has been applied on many fields, such as transportation [42],

optimization [43,44]. Concretely, Physarum can only control the

flux through its body tube dynamically and then adapt itself to find

optimal paths connecting two specified nodes conveniently, which

means physarum centrality is likely to be applied in dynamically

changed large networks suitably.

However, in contrast to common belief, there are plausible

circumstances where the best spreaders do not correspond to the

most highly connected or the most central nodes [34]. It has been

proved that topology of networks plays an important role in

spreading process. For example, if a hub (a node with high degree)

exists at the end of a branch at the periphery of a network, it will

have a minimal impact in the spreading process, whereas a less

connected person who is strategically placed in the core of the

network will have more influence on other individuals through a

large network.

In this paper, a new method is proposed based on combining

Physarum centrality and the layer of nodes located in networks. By

using the K-shell decomposition analysis [45,46], the K-shell index of

nodes are obtained, which can be used to distinguish the relative

location of a node in networks. Then we use the Susceptible-Infected

(SI) model [47,48] to evaluate the performance of the top-L nodes’

spreading influence ranked by different centrality measures. Some
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existing centrality methods, such as semi-local centrality, phy-

sarum centrality, LeaderRank and PageRank approach, are used

to compared with the proposed method.

The rest of the paper is organized as follows. Section 2 begins

with a brief introduction to Physarum centrality. In Section 3 our

method is proposed. Then, we use the SI model to evaluate the

performance between previous approaches. The proposed method

applied on simple numerical example and three real-world

networks in Section 4. Finally, in Section 5, we give our

conclusions.

Basic Theories

Physarum Model for Path Finding
A mathematical model for cases with two food sources has

previously been proposed [49]. In brief, this model represents the

shape of physarum cell body by a graph, in which an edge

corresponds to a plasmodial tube and a node corresponds to a

junction between tubes. At the beginning, there is an undirected

weighted network which is strongly connected. Physarum can find

the shortest path between starting node s and ending node t (node

s and t correspond to food sources). Suppose that the variable Qij

means the flux through the edge Eij between nodes i and j, at

which pressures are pi and pj , respectively. According to Poiseuille

flow, the flux Qij is denoted as,

Qij~
Dij

Lij

(pi{pj) ð1Þ

where Lij and Dij are the length and conductivity of the tube

corresponding to the edge Eij , respectively. Dij is its conductivity

which is assigned with a value that belongs to (0,1] in the

initialization.

At each node i (except the nodes s and t which are presented as

two food sources), the total flow must be balanced as,

X

i

Qij~0(j=s,t) ð2Þ

Hence by considering the conservation law of flux we have,

P

i
QiszI0~0,

P

i
Qit{I0~0:

(

ð3Þ

where I0 is the flux flowing into the starting node s and out of the

ending node t, which is constant.

Then the network Poisson equation derived from Eqs. 1{3 is as

follows,

X

i

Dij

Lij

pi{pj
� �

~

{I0 f or j~s,

I0 f or j~t,

0 otherwise:

8

>

<

>

:

ð4Þ

Figure 1. The flow chart of the proposed method.
doi:10.1371/journal.pone.0066732.g001

Figure 2. A weighted example network.
doi:10.1371/journal.pone.0066732.g002

Table 1. Influence scores based on different centrality
methods for network in Figure 2.

v K(v) CC (v) CB(v) Ckp(v)

1 6 0.1714 1 0.2086

2 6 0.1714 1 0.2086

3 4 0.1607 0 0.1601

4 6 0.1978 2 0.2113

5 6 0.1978 2 0.2113

doi:10.1371/journal.pone.0066732.t001
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In order to show the positive feedback mechanism that a tube

thickens depending on increasing flux and thins with decreasing

flux, the conductivity Dij is assumed to change over time according

to the flux Qij ,

d

dt
Dij~f Qij

�

�

�

�

� �

{aDij ð5Þ

where a is a decay rate of the tube. f Qð Þ is a increasing function

with f 0ð Þ~0. More description of f Qð Þ can be found in [49,50].

The process above is just one iteration. The next is to judge

whether the termination criterion is met or not. If the specified

criterion is fulfilled, tubes without flux are cut off while others

complete optimal paths. Meanwhile, update pressure at each

node. The iteration will be stopped until the shortest path is found.

Physarum Centrality
In weighted networks, the extension of degree centrality is

defined as [51],>

Cv
D ið Þ~

X

j

vij ð6Þ

Figure 3. A weighted example network with 15 nodes and 21 weighted edges. K-shell decomposition analysis is applied to this network.
Different KS value paint in different colors. Nodes 1, 2, 3, 4, 5 and 15 colored in yellow are at the periphery of the network. Nodes 7, 10, 11 and 14
colored in blue are located at the second layer. Nodes 6, 8, 9, 12 and 13 are apparently on the core of the network.
doi:10.1371/journal.pone.0066732.g003

Table 2. Simulations of effectiveness on the network illustrated in Figure 3.

Unweighted network Weighted network

v KS(v) LR(v) PR(v) CL(v) Ckp(v) F(tc) K(v) CC (v) CB(v) Cp(v) Ckp(v) F(tc)

1 1 0.625 0.356 32 0.011 4.81 2 0.016 0 0.021 0.009 4.39

2 1 0.625 0.356 32 0.011 4.98 2 0.016 0 0.021 0.009 5.47

3 1 0.625 0.356 32 0.011 4.74 2 0.016 0 0.021 0.009 4.77

4 1 0.625 0.356 32 0.011 5.14 2 0.016 0 0.021 0.009 4.10

gray!255 1 1.458 1.423 79 0.084 5.34 9 0.026 92 0.160 0.071 7.38

gray!256 3 1.458 0.978 188 0.265 7.94 6 0.030 120 0.157 0.209 7.76

7 2 0.833 0.432 88 0.024 9.61 6 0.022 0 0.025 0.022 6.76

8 3 1.458 0.923 177 0.113 10.01 15 0.026 32 0.067 0.089 8.10

9 2 1.042 0.617 112 0.052 8.01 4 0.022 26 0.048 0.043 8.00

10 2 0.833 0.480 37 0.031 8.10 7 0.017 0 0.035 0.031 6.31

11 2 0.833 0.469 67 0.038 7.83 7 0.018 0 0.043 0.038 6.91

12 3 1.667 1.117 185 0.182 9.99 18 0.024 70 0.162 0.215 8.65

13 3 1.250 0.762 162 0.093 10.51 25 0.022 0 0.137 0.182 7.88

14 2 1.042 0.676 97 0.064 9.77 10 0.019 26 0.060 0.054 7.37

15 1 0.625 0.308 22 0.011 6.46 1 0.015 0 0.021 0.009 3.90

The corresponding unweighted network of Figure 3 is obtained by letting the weight of all edges be 1. Initially, only one node is infected with(a= 1). For each initial
node, F(tc) is obtained by averaging over 100 steps.
doi:10.1371/journal.pone.0066732.t002
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Inspired by it, physarum centrality of a node CP ið Þ is defined as

the sum of the criticality of each edge linked to it,

CP ið Þ~
X

j

cij ð7Þ

where cij means the criticality of edge linked by node i and j. The

value of cij is calculated by using physarum model for path finding

between all pairs of nodes in undirected weighted networks.

In the abovementioned model, physarum model can find

optimal paths between any pair of nodes, by adapting the flux

through each edge and its conductivity. When the adaptation is

finished, optimal paths are reserved while other tubes fade away

since no flux is passing though them.

In order to capture this characteristic, the criticality of the edge

Eij is defined as the sum of flux through it,

cij~
X

k

Qk
ij , k~1,2,3,:::,

n(n{1)

2
ð8Þ

where Qk
ij denotes the kth final flux through edge by using the

physarum mathematical model, while different k implies different

path finding between different pairs of food sources nodes s and t.

Proposed Methods
Analyzing the definition of physarum centrality, it seems that

physarum centrality is defined as a tradeoff between the extension

of degree centrality and betweenness centrality. Physarum finds

the shortest path with flux passing through tubes. Qij is the amount

of flux on the edges. Then a node’s centrality is the sum flux of the

edges linked to it. It has been shown that physarum has advantages

of flexible self-adaptability and less computational time than

Dijkstra’s algorithm [52]. Inspired by this, physarum may show a

superiority for the adaptive dynamics of networks, in the cases of

traffic congestion or following accidents. Therefore, physarum will

quickly adapt itself to identify newly influential nodes, when some

randomly selected nodes of top-L ones in a network are removed.

Just like degree centrality and betweenness centrality, physarum

centrality only captures the characteristics in the aspects of degree,

shortest path, rather than location of the network. In contrast to

common belief, it seems to be more possible that the most efficient

spreaders are those located within the core of a network, rather

than highly connected or the most central ones on the edge

location [34]. Here we use the k-shell decomposition analysis to

identify the location of a node in the network. By using this well-

established tool, each node will be assigned with k-shell index

value, KS , to each node, representing its location in the network. If

the KS value of a node equals to 1, it means that the node is

located on the periphery of the network.

In our approach, two factors of a node { physarum centrality

and k-shell index in the network, are both taken into consider-

ation. The flow chart of the proposed method is shown in Figure 1.

Table 3. The basic topological features of the two real networks.

Network n m SkT kmax C SdT

Club 34 231 13.59 48 0.2557 2.4082

Air lines 332 2126 12.81 139 0.3964 2.7381

Citation 235 411 1.75 35 0.0994 3.1494

n and m are the total numbers of nodes and links, respectively. SkT and kmax denote the average and the maximum degree, respectively. C is the clustering coefficient.
SdT is the average shortest distance.
doi:10.1371/journal.pone.0066732.t003

Table 4. The different order of top-20 nodes at the initial
status and final status.

Top-20 nodes Initial Ranking Final Ranking

1 118 201

2 8 47

3 261 182

4 201 248

5 47 152

6 182 255

7 313 167

8 13 166

9 152 230

10 67 8

11 255 112

12 230 144

13 144 258

14 65 147

15 166 293

16 148 109

17 112 65

18 258 162

19 329 311

20 293 150

doi:10.1371/journal.pone.0066732.t004

Table 5. The top-5 nodes ranked by the proposed method,
degree, closeness and betweenness centrality.

Proposed method Degree Closeness Betweenness

1 34 1 1

34 1 34 34

3 33 20 20

33 3 32 32

14 2 13 33

doi:10.1371/journal.pone.0066732.t005
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Step 1. Construct a undirected weighted network. Since weights

in most weighted networks stands for tie strength, rather than the

length between two individuals. the edge weights need to be

reversed, in order to correspond to the tube length in physarum

model.

Step 2. Apply physarum model to find optimal paths between all

pairs of nodes.

(1). The conductivity of each tube Dij is assigned with 0.5.

(2). f (Q) in Eq. 5 adopts f (Q)~
(1za)Qm

1zaQm
with parameters set

a = 2, m=27.

(3). Termination criterion is is determined by maximum itera-

tions, which is 4logn.

Figure 4. Comparison of spreading ability among node 1, 3 and 34. For each node, F(t) is obtained by averaging over 100 implementations
(a= 1.2).
doi:10.1371/journal.pone.0066732.g004

Figure 5. Comparison of spreading ability among node 1, 3 and 34. For each node, F(t) is obtained by averaging over 100 implementations
(a= 1.8).
doi:10.1371/journal.pone.0066732.g005
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Step 3. Calculate the criticality of each edge by Eq. 8 with

recorded values Qk
ij .

Step 4. Calculate physarum centrality of nodes with Eq. 7.

Step 5. By using the tool of k-shell decomposition analysis, each

node will be assigned with KS value. According to its decompo-

sition process, first of all, nodes of degree one have KS index equal

to one. Then prune all these nodes and the links incident on nodes

with one connection from the network. Nodes that have degree

one on the reduced graph are assigned KS index of one and

recursively pruned. Secondly, the same is done for nodes with two

connections and so on, until all nodes are pruned from the

network. Lastly, normalization is necessary.

KS(i)~
KS(i)
P

KS

Then, the final influence value of nodes ranked by the proposed

method, Ckp(short for K-shell Physarum Centrality) is expressed as

follows,

Figure 6. Comparison of spreading ability among node 3, 33 and 20. For each node, F(t) is obtained by averaging over 100 implementations
(a= 1.2).
doi:10.1371/journal.pone.0066732.g006

Figure 7. Comparison of spreading ability among node 3, 33 and 20. For each node, F(t) is obtained by averaging over 100 implementations
(a= 1.8).
doi:10.1371/journal.pone.0066732.g007
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Table 6. The top-20 nodes ranked by different methods.

Rank KS(v) Cp(v) Ckp(v) CL(v) PR(v) LR(v)

1 7(6) 3 7 32 7 32

2 8(6) 7 32 29 32 7

3 21(6) 175 29 7 29 29

4 23(6) 32 13 54 13 30

5 29(6) 29 53 23 30 53

6 30(6) 27 11 36 14 54

7 32(6) 50 30 69 53 14

8 33(6) 187 14 33 54 13

9 35(6) 22 58 53 98 36

10 36(6) 13 71 38 36 69

11 38(6) 63 3 30 58 38

12 44(6) 2 1 118 38 98

13 53(6) 11 98 87 69 33

14 54(6) 1 38 44 11 23

15 57(6) 136 87 57 27 87

16 69(6) 67 113 35 33 118

17 86(6) 82 72 21 87 58

18 87(6) 149 36 8 72 57

19 118(6) 150 54 86 3 72

20 12(5) 184 6 108 23 44

The top-19 nodes ranked by purely K-shell index are assigned with KS 6.
doi:10.1371/journal.pone.0066732.t006

Figure 8. Simulation of top-5 nodes with initial infected to appear by our method with other four methods respectively (but not
both). For each node, F(t) is obtained by averaging over 100 implementations (a~1:2).
doi:10.1371/journal.pone.0066732.g008
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Ckp(i)~CP(i)|KS(i)

Hence, nodes located in the core of networks have larger Ckp

value than ones in the periphery of a network.

Illustrative Examples
In this section, two simple examples and two applications in real

networks are used to evaluate the performance of centrality

measures. Here, a comparison with another several centrality

measures (degree, closeness, betweenness and physarum in

weighted networks and semi-local centrality, LeaderRank and

PageRank in unweighted networks) is also provided to shown the

differences among them.

Two numerical Examples
The first simple example is a weighted network with 5 nodes

and 6 weighted edges, which is adopted from [53], as illustrated in

Figure 2.

Due to symmetry of the network, the influence scores of node 1

and 2, or node 4 and 5 should be the same, regardless of which

centrality measure is taken. However, the results listed in Table 1

show that degree centrality ranks the node 1, 2, 4 and 5 as the

same ranking score, while betweenness centrality, closeness

centrality and our method have consistent results as node 4 and

5 have greater centrality value than node 1 and 2.

To further illustrate the difference between our method and

other centrality measures in weighted and unweighted networks,

respectively, we develop another example from [54]. As illustrated

in Figure 3, node 1, 2, 3, 4, 5 and 15 colored in yellow are located

at the periphery of the network and assigned with KS value 1.

Node 7, 10, 11 and 14 with KS value 2 are on the second layer.

Node 6, 8, 9, 12 and 13 are at the core of the network.

To evaluate the performance, we use a variant of the SI model

adopted from [55] to study the dynamical evolution of epidemic

spreading process in weighted networks. In this model, individuals

can be in two discrete states: (i) Susceptible S(t) represents the

number of individuals susceptible to the disease, not yet infected;

(ii) Infected I(t) denotes the number of individuals that have been

infected and are able to spread the disease to susceptible

neighbors. At each step, one node is set to be infected initially

and Then each infected node spreads disease or information to

randomly one of its susceptible neighbors with probability lij in

weighted networks (such a model is usually to mimic the limited

spreading capability of individuals),

lij~(
vij

vmax

)a, aw0 ð9Þ

where a is a positive constant and vmax is the largest value of vij

in the network. For weighted networks, we assume that weight vij

denote connection strength through link Eij . For example, more

familiar two individuals (with larger weight) may infect each with

greater probability. Since
vij

vmax

ƒ1, the smaller a is, more quickly

the disease or information spreads. Here we use the total number

of infected nodes at time t, denoted by F(t) as an indicator of

influence evaluation. Larger F(t) value of a node is, larger

spreading ability the node has. The process stops when there is

Figure 9. Simulation of top-20 nodes with initial infected to appear by our method with other four methods respectively (but not
both). For each node, F(t) is obtained by averaging over 100 implementations (a~1:2).
doi:10.1371/journal.pone.0066732.g009
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no susceptible node to be infected, namely, at a stable state,

denoted by F(tc).

According to the results in Table 2, regardless of unweighted

network or weighted network, node 6 have a larger F(tc) value

than node 5 due to its core position in the network, but physarum

centrality (Cp) ranks node 5 higher than node 6. After taking the k-

shell index into consideration, node 6 ranked by the proposed

method is more central than node 5, which is consistent with

ranking order by the SI spreading model. In the weighted network,

the top-1 ranked by the proposed method is node 12 which has the

largest F(tc) (larger than node 6 ranked by closeness centrality and

betweenness centrality as the top-1 node, node 13 by degree

centrality). In addition, all the nodes with KS value 3 have larger

spreading ability than others. This demonstrates the k-shell index

of nodes plays an important role of ranking influential nodes in

networks.

Applications in Real-world Networks
In this section, applications to three real networks are given to

demonstrate our the flexible adaptability and efficiency of the

proposed method. (i) The US Air line network { it has 322 air

ports and the air line between two air port can be denoted as a

connection between two nodes in the network. The data can be

downloaded from http : ==pajek:imfm:si=doku:php?id~data :

pajek : vlado&s½�~air. (ii) Club network [56] { the undirected

Zachary’s ‘‘karate club ’’ networks of 1977. The data are collected

from the members of a university karate club by Wayne Zachary

over two years. Zachary constructed a weighted network by

denoting each member in the club as a node. Each edge in the

network represents the connected two members are friends outside

the club activities and its weight indicates the relative strength of

the associations (number of situations in and outside the club in

which interactions occurred). (iii) Citation network [57] { this

data set consists of paper and citation relationship chosen from

Arnetminer. There are 235 nodes and 411 edges in this

unweighted network. The basic topological properties of these

three networks are shown in Table 3.

In the US Air lines network, the initial ranking of top-20 air

ports by the proposed method are listed on the 2nd column in

Table 4. Then, three air ports of the top-10 are randomly selected

to be removed { node 118, 261 and 313. In our common belief,

after topology is changed, the ranking orders will not change at all.

Actually, node 8 is ranked as second order at the initial state. After

randomly removing three nodes, node 8 drops to the 10th place,

rather than top 1. In this case, Dijkstra’s algorithm needs to

traverse the whole nodes network again, which leads to high

computational complexity, while physarum can just adapt the flux

though tubes dynamically and finally new influence score of each

node will be obtained. The adaptivity of the proposed method is

very useful to identify the influential node when the topology of

networks is changed dynamically.

In the Club network, the top-5 nodes ranked by the proposed

method, degree centrality, closeness centrality and betweenness

centrality are listed Table 5. Obviously, we need to distinguish the

spreading ability among node 1, 3, 20 and 34 in order to efficiency

of the proposed method. Here, we let infecting probability a be 1.2

Figure 10. Simulation of top-20 with initial infected to appear by our method with k-shell index (but not both). For each node, F(t) is
obtained by averaging over 100 implementations (a~1:2).
doi:10.1371/journal.pone.0066732.g010
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or 1.8 in order to slow down the spreading process. In Figures 4, 5,

6, 7, node 1 has greater F(t) value than node 3 regardless of a’s

value. There is subtle difference between node 1 and 34 in the

aspects of spreading speed and stability. Besides, it is obvious that

node 3 have much greater F(t) value than node 33 and 20 which is

ranked by closeness and betweenness centrality as the third best

influential node. Hence, the proposed method correctly identifies

the most influential nodes in the Club network.

Furthermore, when considering the Citation network, we set the

initial infected to be the nodes either appear as the top-L (top 5

and top 20) by the proposed method or each of the four measures

(such as physarum centrality, but not appear in both), as shown in

Table 6. In Figure 8 and 9, no matter what the top-L nodes are,

both show that the proposed method performs a quicker and wider

spreading than purely physarum centrality. The top-5 ranked by

semi-local centrality is little faster than the proposed method, but

in turn, the top-20 nodes ranked by our method perform much

better than semi-local centrality. Besides, LeaderRank can

perform better than the proposed method when comparing top-

20 nodes. However, it is notable that there is little difference

between the proposed method, PageRank and LeaderRank in

Figure 8. Furthermore, in Figure 10, due to the same KS of the

top-19 nodes ranked by purely K-shell index, there is no strictly

top-5 in the condition. Therefore, we only compare the proposed

method with purely K-shell index in the case of top-20. Obviously,

top-20 nodes ranked by the proposed method have much more

spreading ability than purely K-shell index.

Conclusions

Identifying the most influential nodes in a weighted network has

great physical and theoretical meanings. In this paper, a bio-

inspired measure is proposed for identifying influential nodes in

weighted networks. We have made a tradeoff between the

physarum centrality and the k-shell index obtained by the k-shell

decomposition analysis. To evaluate the performance, the SI

model is used to distinguish the difference of top-L nodes ranked

by different centrality measures. Compared with existing methods,

experiment results show that the proposed method can well

identify influential nodes, even in dynamic complex networks.
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