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A bio-plausible design for visual attitude stabilization 

Andrea Censi, Shuo Han, Sawyer B. Fuller, Richard M. Murray 

Abstract- We consider the problem of attitude stabilization 

using exclusively visual sensory input, and we look for a 
solution which can satisfy the constraints of a "bio-plausible" 

computation. We obtain a PD controller which is a bilinear 
form of the goal image, and the current and delayed visual 

input. Moreover, this controller can be learned using classic 
neural networks algorithms. The structure of the resulting 
computation, derived from general principles by imposing a 

bilinear computation, has striking resemblances with existing 
models for visual information processing in insects (Reichardt 

Correlators and lobula plate tangential cells). We validate the 
algorithms using faithful simulations of the fruit fly visual input. 

I. INTRODUCTION 

Biology was the original inspiration for the field which 

is now known as control theory [l], and still surpasses 

human engineering in the complexity, efficiency, robustness, 

and inherent evolvability of solutions. Many long-standing 

problems, such as artificial intelligence and "true" com

puter vision, seem still out of reach from traditional design 

paradigms. In the case of human intelligence, the deluded 

engineer can justify his failure by invoking the fact that the 

brain is composed of about 1011 neurons and 1015 synapses, 

vastly exceeding the theoretical computational power of 

current artificial systems. But this excuse does not hold 

for simple animals such as flying insects. Using only 105 

neurons, they are able to perform feats of control we are 

not yet able to explain: when a fly is startled, it leaps in 

uncontrolled fashion, tumbling through the air; yet within a 

few wing strokes, the fly stabilizes and flies away [2]. 

As engineers, we admire these behaviors because they are 

realized under severe computational constraints. In real time, 

a fly's brain must convert an enormous amount of sensor 

information, most of it being noisy and sparse visual input 

(Fig. 1), into a limited number of motor commands. This 

is realized using distributed and noisy computing elements 

(neurons) which have a bit rate on the order of 1 kbps or 

lower [3]. This noisy, distributed, slow control system is able 

to control the very fast flight dynamics: wing flapping occurs 

at over 200 Hz, and when chasing another fly during mating, 

a blowfly can make course corrections in as little as 30 ms 

after its target has changed course [ 4]. Moreover, while most 

of the system has been designed through evolution, there is 

also an element of adaptation ("learning"), as evidenced by 

the fact that flies can recover from wing damage. 

Analyzing the solutions developed under these constraints 

may provide insight into some of engineering challenges 
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(a) Outdoor naturalistic scene (image source: [6]) 

(b) Simulated fly's perception of the scene 

Fig. 1. An example of simulated insect vision. The visual scene (a) is 

perceived by the fruit fly as in (b ), according to the current physiological 

models used m biology. The two eyes sample a field of view that comprises 

nearly the entire visual sphere. 

of the moment. Information-rich robotic systems such as 

autonomous vehicles gather gigabytes of sensory input per 

second and must quickly react. Foreseeing the eventual 

demise of Moore's law, the predominantly serial nature 

of current processors must give way to parallel and even 

intentionally noisy computation [5]; learning might be an 

answer to the problem of designing systems too complex for 

a human mind to grasp. 

Biology, on the other hand, can benefit from a reverse

engineering of natural systems, because it helps transitioning 

from a purely qualitative to a quantitative analysis, which 

allows a better understanding of underlying biological lim

itations, design principles, and mechanisms for adaptation. 

Classical successes of quantitative modelling include the case 

of visual steering [7] and pitching [8] in insects. Currently, 

the focus is in tying these disparate findings together into a 

unified framework for flight stabilization and maneuvering, 

using a control-theoretic language [9]. 

The engineer who wants to get her feet wet in biology 

can take a number of approaches [10]. Usually, bio-mimetic 

refers to the direct mimicry of known biologic processes; bio

inspired refers to a design loosely based on a general idea 

from biology (e.g., genetic algorithms); in between these, 

we use the term bio-plausible to refer to an implementation 

that adheres to known biological constraints, but does not 

yet have conclusive evidence, nor has been disproved, by 

experiments. This kind of work has the potential to both 

inspire novel engineering methods and provide testable, 

quantitative hypotheses to biologists. 

In this work, we propose a bio-plausible solution for the 



task of visual attitude stabilization, a core requirement for

flying insects. We report a control law that stabilizes visual

input to a memorized “goal” image. The controller is bio-

plausible in that we limit computations to parallel operations,

the controller receives as input only luminance readings

gathered directly from visual sensors, and computations

are learned using a supervisory signal. We are especially

interested in modelling the visual processing faithfully to

biology; for simplicity, we assume ideal “torque” commands

as the controller output, while, in reality, torques are applied

by modulating the wing motion (still, biologically plausible

wing kinematics have been proposed that could give a

hovering fly full actuation according to fluid dynamics [9]).

Evidence for bio-plausibility comes from the fact that the

resulting visual processing is loosely equivalent to existing

models for the visual processing in the fly.

Formally, we consider a second-order system on SO(3):
{

ṙ = r ω×

Iω̇ = (Iω)× ω + τ
(1)

Here r ∈ SO(3) is the body attitude with respect to a fixed

world frame, ω ∈ R
3 is the angular velocity in the body

frame, ω× is the corresponding skew-symmetric matrix [0 −
ω3 ω2; ω3 0 −ω1; −ω2 ω1 0], I is the angular inertia matrix,

and τ is the input torque. The only available sensory input

for control is the visual input. At each time t, we assume to

know y(s, t), which is a function defined on the unit sphere

(s ∈ S
2). Given an environment, or “map”, m : S

2 → R, the

visual input y is given by

y(s, t) , m(r(t)s)

We assume to know a “goal” image g : S
2 → R, which

is a snapshot of y taken at a certain goal configuration r
g;

g(s) = m(rgs). We do not assume to know either r, ω, or

r
g; the only input data are the current image y and the goal

image g. We solve the following problem:

Problem 1: (Visual attitude stabilization) Choose the in-

put torque τ such that y → g.

The paper is organized as follows. Section II discusses

related work in the engineering literature. Section III con-

cerns the estimation of ω from the visual input. We show

that the least-squares estimate of ω is given by the nonlinear

function of y: ω̂LS = 〈(Sy)(Sy)∗〉
−1
〈ẏ(Sy)〉, where S is

a certain linear differential operator to be introduced, and

〈·〉 is integration over the sphere. Then, we show that such

estimator can be “chopped” to the skew-symmetric bilinear

function in y and ẏ: ω̂BL = c 〈ẏ(Sy)〉. This estimator is

not as precise as ω̂LS but is still useful as a damping term

in the control law. Moreover, we show how a smoothed

approximation to S can be learned from the data, if a

reference signal ω is available in the training stage.

Section IV considers the problem of attitude stabilization.

We show that a PD controller for the system can be written

as two bilinear forms, in g/y and ẏ/y and is arguably the

simplest solution for this particular task. Then, we show that

the information learned for estimation can be used in the

TABLE I

SYMBOLS USED IN THIS PAPER

In the following, let V be a generic vector space, C1(A, B) the set of
differentiable functions from A to B (with B = R if omitted), L1(A, B)
be the set of Lebesgue-integrable functions, X(S2) the set of vector fields
on S2.

Symbol Type Meaning

r SO(3) attitude (unknown)
r

g SO(3) goal attitude (unknown)

τ R3 torque (control input)

I R3×3 angular inertia matrix

ω TSO(3) ≃ R3 angular velocity in body frame

m C1(S2, R) environment map

y(·, t) C1(S2, R) visual input (= m ◦ r)
y Rn sampled y

g C1(S2, R) goal image (= m ◦ r
g)

〈f〉 L1(S2, V ) → V integral of f over S2; see (5)

S C1(S2) → X(S2) See Def. 1

I[ω] R3×3 FIM for ω; see (6)

P S2 × S2 → R covariance of y

⋆ L1(S2, V )×C1([0, 2π])
→ C1(S2, V )

spherical smoothing

M C1(S2) → X(S2) learned linear form used in
ω̂LBL

M Rn×n×3 discretized M

controller as well. Section V discusses the “bio-plausibility”

of these algorithms and the relation with Elementary Motion

Detectors (EMDs) [7], models used in biology to explain

the local visual processing in flying insects, as well as with

the global processing in the tangential cells [11]. Section VI

presents experiments using simulated visual input for a fruit

fly.

II. RELATED WORK

This paper considers the problem of visual stabilization

from many different angles: estimation, control, machine

learning and biology. The single aspects have been explored

in isolation in many other works; for reasons of space, we

only give representative examples. The first use in engineer-

ing of EMD-based computations has been for steering a

mobile wheeled robot [12]. In [13], EMDs and optic flow

computations were used to trigger a saccade operation for a

flying helicopter. In [14], matched filters are learned for both

attitude stabilization and velocity regulation, but no proof of

stability is given. In previous work in our group [15], [16], a

control-theoretic stability proof is given, but the input is pure

optic flow, which in general is not easy to estimate, and there

is no learning involved. In general, it is easy to use EMD

and/or optic flow computation as primitives for realizing a

particular behavior, but it is difficult to obtain formal proofs

of correctness, especially if learning is involved. On the

other hand, these works showed behaviors more complicated

than attitude stabilization. “Traditional” control laws for

stabilization of insect flights were proposed in [17] using

not vision, but the (more easily tractable) information from

the ocelli and the halteres.

We now set aside the bio-inspired literature, and briefly

consider related work for attitude stabilization as a purely

engineering problem. If the state is available for feedback,

a PD controller can be easily derived [18]. The problem is

that extracting the state from the visual input is not trivial.
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Attitude stabilization can be seen as a particular case of

visual servoing [19], which is usually formulated by using

features (or “landmarks”, or “fiducial points”); this is not

applicable to the kind of visual input we consider (Fig. 1a).

Recently, new methods have been proposed that do not rely

on features [20], [21], [22]. The resulting algorithms have

many of the desirable characteristics of the gradient flow

that we use. However, these works do not concern either

learning of the control law, or motion estimation.

III. ESTIMATION OF ANGULAR VELOCITY

In this section we will investigate how to estimate ω, the

angular velocity in body frame, from the visual input y alone.

The immediate motivation is to construct a damping term

for the control law. In this context, we are not interested

in a perfect recovery, but in the best that can be achieved

under the constraints that we discussed; in particular, by

constraining the computation to be bilinear in y and ẏ.

A. Least-squares estimation of ω

Estimating ω from the visual input is a particular case of

estimating the optic flow. Because under purely rotational

motion all the optic flow is coherent, we can derive a closed

form formula for ω. We now state some preliminaries.

Lemma 1: The relation among y, ẏ and ω is

ẏ(s, t) = (s×∇sy(s, t))
∗
ω(t). (2)

(Proof omitted). The operator y 7→ s×∇sy(s) turns out to

be very useful, and is worthy of the following abbreviation.

Definition 1: Define S : C1(S2, R)→ X(S2) as

(Sy) (s) , s×∇sy(s).

Equation (2) can now be written as

ẏ = (Sy)∗ω. (3)

In practice, both y and ẏ are corrupted by noise. By elemen-

tary signal processing considerations, we can assume that

the noise on y is negligible with respect to the noise on ẏ.

Assuming a statistical model of the kind ẏ = (Sy)∗ω + ǫ,

with uniform independent noise, the least-squares estimate

of ω is

ω̂LS , 〈(Sy)(Sy)∗〉
−1
〈ẏ(Sy)〉 . (4)

The notation 〈f〉 stands for the integral of f over the sphere

with respect to the unique rotational-invariant measure dS:

〈f〉 ,

ˆ

S2

f dS. (5)

Equation (4) requires the inversion of what can be identified

as the Fisher Information Matrix [23] for ω:

I[ω] , 〈(Sy)(Sy)∗〉 . (6)

If such matrix is singular, then there is not enough contrast in

all directions to disambiguate ω exactly. In that case, using

the pseudo inverse gives the solution with minimum norm.

B. Bilinearly constrained estimation of ω

The least-squares estimator ω̂LS is a complicated non-

linear function of y. In this context, we consider what is

possible to do with less computation. It is evident that no

useful linear (in y and ẏ) estimator of ω can be found. The

next simplest thing is looking for a bilinear form in y and ẏ.

One approach would be to just chop off the (I[ω])
−1

factor

from (4) and substitute it with a simple constant c > 0, thus

obtaining

ω̂BL , c 〈ẏ(Sy)〉 . (7)

This, indeed, is the best bilinear estimator of ω, in the sense

specified by the following proposition.

Proposition 1: The estimator (7) is the unique bilinear

estimator such that, for all ω, Em,r{ω̂BL} = ω. Moreover,

the constant c is the inverse of the average image contrast:

c =
(

Em{||∇y||2
2
}
)

−1

.

Proof: Suppose we are looking for a generic bilin-

ear estimator for ω, of the form ω̂BL = 〈(My)ẏ〉 for

some linear operator M : C1(S2, R) → X(S2). Imposing

Em,r{〈(My)ẏ〉} = ω leads to Em,r {〈(My)(Sy)∗ω〉} =
ω and hence Em,r {〈(My)(Sy)∗〉} = Id. By substitu-

tion, the solution to this linear equation in M is My =

Em,r

{〈

(Sy) (Sy)
∗
〉}

−1

Sy. The factor Em,r

{

(Sy) (Sy)
∗
}

is the average Fisher Information Matrix over all possible

environments and orientations. To evaluate this term, we

must make some assumptions about the environments. If

we assume that r is uniformly distributed on SO(3), then

by symmetry considerations Em,r

{

(Sy) (Sy)
∗
}

must be a

multiple of the identity matrix. In particular, we would

have Em,r

{

(Sy) (Sy)
∗
}

= Em{||∇y||2}I and therefore the

optimal c in (7) is c =
(

Em{||∇y||2}
)

−1

.

We now investigate the properties of the estimator ω̂BL. It is

apparent that ω̂BL is arbitrarily inaccurate in terms of scale,

without more constraints on the environment. Suppose that

ω̂BL = ω in a certain environment y. If we consider an

environment which is twice as bright, by letting y′ = 2y,

then the resulting ω̂BL will be off of a factor of 4 in the new

environment. This is the cost to pay for chopping off the

normalizing factor 〈(Sy)(Sy)∗〉
−1

from (4). Fortunately, we

can easily see that, while the scale can be arbitrarily wrong,

the direction of ω̂BL cannot be more than 90◦ off from ω.

Proposition 2: ω
∗
ω̂BL ≥ 0.

Proof: ω
∗
ω̂BL = ω

∗ 〈ẏ(Sy)〉 = ω
∗ 〈(Sy)(Sy)∗〉ω ≥ 0

This property allows to use ω̂BL in a damping control law.

Lastly, we show that ω̂BL is actually a skew-symmetric

bilinear form of y and ẏ.

Lemma 2: Let a, b ∈ C1(S2). Then the bilinear form

(a, b) 7→ 〈a (Sb)〉 is skew-symmetric: 〈a (Sb)〉 = −〈b (Sa)〉.
Proof: Given a, b ∈ C1(S2), consider the function

〈a(b ◦ r)〉 =
〈

(a ◦ r
−1)b

〉

. Compute the gradient with re-

spect to r at r = Id for both sides to obtain the thesis.

C. Learnable, bilinearly constrained estimation of ω

The preceding section showed how to compute analytically

the bilinear estimator ω̂BL to use in the damping term in the
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control law. This section shows how an analogous estimator

can be learned from the data, if the reference signal ω is

available during training. For the purpose of analysis, it is

convenient to stick in this section to considering y as a

continuous function defined on the sphere. In Section VI,

we will give the formulas again for the discrete case and we

will discuss the implementation details.

We look for a linear operator M : C1(S2, R) →
X(S2) that minimizes the expected estimation error

Em,r,ω

{

‖〈ẏ (My)〉 − ω‖
2

2

}

. Fortunately, we can consider

the three components of ω separately, and write for each of

the three “slices” of M the error function

Em,r,ω

{

(〈

ẏ
(

Mky
)〉

− ωk
)2

}

, k = 1, 2, 3. (8)

Given a particular training sample (ω, ẏ, y), Mk can be

updated according to a stochastic gradient descent rule,

which consists in minimizing (8) only with respect to the

particular sample. The update rule is

Ṁk = α
(〈

ẏ
(

Mky
)〉

− ωi

)

ẏy∗, k = 1, 2, 3. (9)

The factor α > 0 is the learning rate. The term
(〈

ẏ
(

Mky
)〉

− ωk
)

∈ R is a global error correction term.

The structure of the learning rule is essentially a perceptron,

with the flavor of a Hebbian rule in the product ẏy∗.

D. Properties of the learning rule

The following is a statistical analysis of the learning rule.

More precisely, we consider the estimator

ω̂LBL , 〈ẏ(E{M}y)〉 ,

where E{M} is the expected value of the learned M over

sufficiently many random training samples (“LBL” stands for

Learned BiLinear). In practice, as detailed in the experiments

section, we observe that the learning rule produces skew-

symmetric operators (up to noise and oscillation). At the

moment, we can prove this mathematically only in the two-

dimensional case (y : S
1 → R, r ∈ SO(2), ω ∈ R).

Proposition 3: In the two-dimensional case, the expected

value of the operator M is proportional to SP, where P is

the covariance of y: E{M} ∝ SP.
Proof: Given the update rule (9), we can write for M:

M(T ) = α

ˆ T

0

(〈ẏ(t) (M(t)y(t))〉 − ω(t)) ẏ(t)y(t)∗dt

If we assume that the training samples were exhaustive, we

can substitute the integral with the expectation:

E{M} ∝ Ey,ω {(〈ẏ (M(t)y)〉 − ω) ẏy∗} ,

and by expanding and neglecting the scalar factors, we obtain

E{M} ∝ Ey,ω

{(

(ωSy)
∗
M(t)y − ω

)

(ωSy)y∗
}

= Eω{ω
2}Ey

{(

(Sy)
∗
M(t)y − 1

)

Syy∗
}

∝ Ey {Syy∗} = S(y2
11

∗ + P) = SP.

In the last passage, y is the average of y and 1 represents

the constant function of the sphere, for which S1 = 0.

We conjecture that this result holds also in the 3D case, as we

find in the experiments (compare Fig. 3), and continue with

this assumption. The operator SP is essentially a smoothed

version of S. To see this, consider that, if y is assumed to

be a uniform isotropic spatial process, then the covariance

between y(s1, t) and y(s2, t) is a function of the geodesic

distance d(s1, s2). Thus P (s1, s2) = p(d(s1, s2)) for some

function p. When P is used as a linear operator, the result is

akin to a smoothing operator. Formally, define the smoothing

operation on the sphere in the following way:

Definition 2: Given a function f : L1(S2, V ) and a kernel

ϕ ∈ C1([0, π]), define the smoothed function ϕ ⋆ f as:

(ϕ ⋆ f)(s) =

ˆ

S2

ϕ(d(s, u))f(u) du.

With this notation, if P(s1, s2) = p(d(s1, s2)), SPy can

be written as S(p ⋆ y), thereby evidencing the smoothing

properties of SP. To prove that E{M} can be used for

estimation, and to prove the equivalent of Proposition 2

for ω̂LBL, we must introduce a new hypothesis on the

covariance P.

Condition 1: (Factorization property of P) The covariance

operator P can be decomposed as P = Q2 where Q has a

spatial dependent kernel (Q(s1, s2) = q(d(s1, s2)) for some

kernel q).

Examples of covariance kernels that allow this factorization

are the Gaussians and exponentials (a Gaussian can be

written as the convolution of two Gaussians, and likewise for

exponentials) — see [24] for more information about spatial

processes and kernels. This is a condition on the statistical

properties of the environment. Naturalistic images, which are

usually assumed to have 1/f power spectra and exponential

covariance kernel [25], satisfy this condition.

Proposition 4: If Condition 1 holds, then E{M} is skew-

symmetric and ω
∗
ω̂LBL ≥ 0.

Proof: In this proof we use the following commu-

tation properties of ⋆ (the proof of which is omitted):

1) 〈g(ϕ ⋆ f)〉 = 〈(ϕ ⋆ g)f〉; and 2) S(ϕ ⋆ f) = ϕ ⋆ (Sf).
Suppose that P satisfies Condition 1. To show that (a, b)→
〈a(SPb)〉 is skew-symmetric, note that 〈a(SPb)〉 =

〈a(SQQb)〉 = 〈a (S(q ⋆ q ⋆ b))〉 = 〈(q ⋆ a)S(q ⋆ b)〉 .

From this, skew-symmetry follows from skew-symmetry of

S. To show that ω
∗
ω̂LBL ≥ 0, note that from the previous

equation, ω
∗
ω̂LBL = ω

∗
〈

S(q ⋆ y) (S(q ⋆ y))
∗
〉

ω ≥ 0.

Note that the “ideal” bilinear form is skew-

symmetric (Proposition 2) and that the expected value

of the learned operator E{M} is skew-symmetric as

well (Proposition 2). Given these results, it makes sense

to limit the search space to skew-symmetric operators, by

modifying the learning rule (9) to

Ṁk = α
(〈

ẏ
(

Mky
)〉

− ωk
)

(ẏy∗ − yẏ∗) , k = 1, 2, 3.
(10)

IV. VISUAL ATTITUDE STABILIZATION

We now consider the problem of attitude stabilization.

Without loss of generality, choose the world reference frame

such that the goal attitude r
g is the identity matrix. One
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possible candidate for an error measure to be minimized is

J(r) = 1

2
‖g − y‖

2

2
. It is easy to see that the gradient of J

can be expressed through the operator S.

Proposition 5: The gradient flow that minimizes
1

2
‖g − y‖

2

2
is ω = 〈g(Sy)〉.

Proof: Recalling that y = g ◦ r, and the fact that

rotations are unitary operators, we can write that

J(r) = 1

2
‖g − g ◦ r‖

2
= −〈gy〉+ const.

Given (3), the time derivative of J is

J̇(r) = −〈gẏ〉 = −〈g(Sy)∗ω〉 = −〈g(Sy)〉
∗
ω. (11)

and thus ω = 〈g(Sy)〉 minimizes J(r).
From this, it follows that ω = 〈g(Sy)〉 would stabilize y
to g for a first-order system. For a system with inertia, we

must include a damping term. Using the results developed in

Section III, we know that 〈ẏ(Sy)〉 can be used as a damping

term.

Proposition 6: Let kp, kd > 0. If 〈(Sy)(Sy)∗〉 |r=r
g > 0,

the control law

τ = kp 〈g(Sy)〉 − kd 〈ẏ(Sy)〉

makes r = r
g , ω = 0 locally asymptotically stable.

Proof: Consider the candidate Lyapunov function

V (r,ω) = kp
1

2
||y − g||2

2
+ 1

2
ω

∗
Iω

= −kp 〈gy〉+ 1

2
ω

∗
Iω + const.

Note that V (r,ω) ≥ 0 and V (rg,0) = 0. Moreover, if

I[ω] = 〈(Sy)(Sy)∗〉 > 0, then V (r,ω) is locally positive

definite: (rg,0) is an isolated minimum. This can be checked

by showing that I[ω] is the Riemannian Hessian of ||y−g||2
2

at r = r
g [26]. We can prove that V̇ ≤ 0 as follows:

V̇ (r,ω) = −kp 〈gẏ〉+ ω
∗
Iω̇

= −kp 〈g(Sy)〉
∗
ω + ω

∗ ((Iω)× ω + τ)

= −kp 〈g(Sy)〉
∗
ω + ω

∗ (kp 〈g(Sy)〉 − kd 〈ẏ(Sy)〉)

= −kdω
∗ (〈ẏ(Sy)〉) = −kdω

∗ 〈(Sy)(Sy)∗〉ω ≤ 0

By Lyapunov’s theorem, this implies that the equilibrium is

locally stable. By LaSalle’s invariance principle, the orbits

of the system will eventually stay in the largest invariant set

such that V̇ = 0. Because I[ω]|r=r
g > 0, then I[ω] > 0

also in a neighbourhood of r
g . Therefore, V̇ → 0 implies

that ω → 0. Thus the system approaches an equilibrium

point (r,0). From ω → 0 it follows that ω̇ → 0 and

thus τ → 0. This implies the gradient of 〈yg〉 vanishes.

Because I[ω] > 0 is the Hessian, in a neighbourhood of

r
g the gradient vanishes only at r = r

g , which is then an

asymptotically stable equilibrium.

The control law used in Proposition 6 has some drawbacks.

The technical disadvantage is that S is a differential operator,

hence it can be used only on smooth functions y, and it

must be approximated if the function y is sampled at a finite

number of points. The other problem is that the domain of

convergence might be quite small. Consider an environment

which is composed of by a dark background and a few

very small, very bright spots. In that case, the gradient of

||y − g|| is zero almost anywhere, and so it cannot be used

in the control law. These two problems can be mitigated

by smoothing g and y. Instead of ‖g − y‖
2

2
, we consider

the error function ‖(ϕ ⋆ g)− (ϕ ⋆ y)‖
2

2
for some smoothing

kernel ϕ. This is equivalent to a smoothed environment m′ =
ϕ ⋆m. Therefore, the proof of Proposition 6 could be adapted

for a control law such as

τ = kp 〈(ϕ ⋆ g)S(ϕ ⋆ y)〉 − kd 〈(ϕ ⋆ ẏ)S(ϕ ⋆ y)〉 . (12)

By Proposition 3, the learned M is a smoothed version

of S, and therefore using M in place of S is equivalent

to using a control law in the form of (12). The following

proposition establishes that we can use M not only as

part of a learnable estimator of ω, but also as part of a

learnable controller of r that solves the problem of attitude

stabilization.

Proposition 7: If Condition 1 holds, the control law

τ = kp 〈g(E{M}y)〉 − kd 〈ẏ(E{M}y)〉 (13)

makes r = r
g , ω = 0 locally asymptotically stable if

〈(S(q ⋆ y)S(q ⋆ y)∗〉 |r=r
g > 0.

Proof: Omitted; adapt the proof of Proposition 6 using

the considerations about E{M} in the proof of Proposition 4.

V. BIO-PLAUSIBILITY

This section investigates the bio-plausibility of the pro-

posed control law. We briefly review basic information about

the fly. Then we discuss the traditional models used for

characterizing its visual processing, with particular regard

to the estimation of angular velocity. Finally we compare

our proposed algorithm to those models.

The fruit fly: The fruit fly (Drosophila melanogaster) is a

small (2.5 mm) dipteran used as a model organism in many

branches of biology. Its notable agility comes from the com-

bination of large eyes, relatively large brains for their size,

and halteres, which are a pair of vestigial wings that act as

vibratory gyroscopes [27]. The fly has two compound eyes,

which comprise 1398 small lenses (ommatidia) that sample

the image across most of the visual sphere (Fig. 1b) [9].

Each is able to detect luminance intensity with a certain

angular span ∆φ (typically 4.5–6 deg) by focusing light

via a tiny lens onto underlying photodetectors. Because of

optical diffraction, the luminance sensitivity profile can be

modeled as a Gaussian with σ2 ≃ (1.1∆φ)2. The temporal

response can be modeled as a low-pass filter with a time

constant of 20 ms [28]. After local processing, the visual

information is passed to a special class of neurons known

as the lobula plate tangential cells (LPTCs), of which there

are only a few, numbering in the tens. These cells integrate

optic flow patterns across large areas of the visual field and

are thought to encode information pertaining to self-motion

in the fly such as rotation or translation [11]. They synapse

onto downstream neurons that lead to motor commands.

Elementary Motion Detectors: The fly is thought to ex-

tract information about its state of motion in large part by

observing patterns of optic flow across the retina. Behavioral
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Fig. 2. Diagram of an EMD, the fly’s “elementary motion detector”.
A pair of visual sensors, such as the ommatidia of the fly, observe a
moving luminance signal (shown here as a sinusoid). Opposing delay (τ ) and
correlate (×) operations compare nearby visual sensors to give a response
corresponding to the direction of visual motion.

experiments on turning response in tethered insects inside

rotating drums have suggested a correlator-type model for

visual motion detection (Fig. 2) [7]. In its simplest form,

the correlator is known as an “elementary motion detector”

(EMD) and consists of opposed delay-and-multiply opera-

tions operating on the output of a pair of nearby visual

sensors.

While EMDs were thought to act as estimators for the

rate of visual motion across the eye, their performance is

quite poor in comparison to computational approaches such

as the gradient method [29]. Formally, the optic flow v(s) ∈
X(S2) is the apparent motion of objects on the retina due to

the egomotion of the sensor. In the case of purely rotational

motion, the optic flow at the retinal point s satisfies v(s) =
ω × s. To report the classical analysis, we restrict ourselves

to the 2-dimensional case (r ∈ S
1, ω ∈ R, v(s) ∈ R),

as common in neurobiology. In that case v(s) = ω, which

simplifies the analysis (or complicates it, according to the

point of view).

Consider the response of an EMD like that in Fig. 2

to a moving sinusoid. Thus the first sensor senses y1 =
A sin(2πfvt) and the second y2 = A sin(2πf(vt + ∆φ)),
where f is the spatial frequency (cycles/rad) of the sinusoid

projected onto the eye and ∆φ is the angular displacement

between the two sensors. If the delay block is a first-order

low-pass filter with time constant τ with output y′ satisfying

τ ẏ′ + y′ = y, with τ ≈ 35 ms in flies, it can be shown that

the steady-state response is [7]

R =
1

2πτ
A2

2πfv

(2πfv)2 + 1/(2πτ)2
sin(2πf∆φ). (14)

Because f/τ ≪ 1, the response is nearly linear in v (and

thus ω) for low values, though it incurs aliasing as v is

increased. Equation (14) shows the two main limitations

of EMDs as optic flow/angular velocity estimators: i) the

response is dependent on the spatial frequency f to the

same degree as v; and ii) the response is contrast-dependent

because it is proportional to A2. Because the system is

nonlinear, the superposition effect does not hold, and this

analysis does not hold for arbitrary signals other than sinu-

soids. It has been shown that if the input to the EMD is a a

moving naturalistic image, the noise in the response may be

orders of magnitude larger than the averaged signal R̄ [25].

The contrast sensitivity problem — intrinsic in the bilinear

computation — can be mitigated by employing saturating

nonlinearities [25].

Nevertheless, numerous behavioral and electrophysiologi-

cal studies have demonstrated insect behavior consistent with

the use of EMDs, along with all of their shortcomings, for

visual motion detection and control [30]. A striking example

is the behavior exhibited when a flying insect is placed at

the center of a drum that is rotated about a vertical axis.

When different spatial frequencies are presented on the drum,

the torque applied by the insect to reduce visual slip is not

dependent on the drum’s rotation rate, but rather on the

temporal frequency experienced by the fly, as predicted by

the EMD model.

Bio-plausibility: We now examine the bio-plausibility of

our algorithm. The control law makes no questionable as-

sumptions about biology and, in principle, could be imple-

mented using neurons. The computations constitute a direct

sensory-motor cascade that is one-shot parallel, without

internal state, assuring a rapid computation by neurons. We

use only luminance readings from visual sensors, rather than

idealized measures such as optic flow [16].

Moreover, the computations bear striking resemblance the

local computations of EMDs plus a global computation in

the LPTCs, as follows. In comparing EMDs and our bilinear

estimator ω̂LBL, the first formal difference is that ω̂LBL uses

the pure derivative ẏ and the EMD uses the low-pass filtered

version y′(t). The difference is only superficial. For temporal

frequencies (2πfv) below the cut-off frequency 1/τ of the

filter, one can use the approximation ẏ(t) ≃ 1

τ
(y(t)− y′(t)).

Substituting this into our bilinear estimator, we obtain that

〈ẏ(Sy)〉 ≃ 1

τ
〈(y − y′)(Sy)〉 = − 1

τ
〈y′(Sy)〉, where we used

the fact 〈y(Sy)〉 = 0 (Lemma 2). Thus the pure derivative

ẏ and the filtered y′ can be used interchangeably in the

estimator.

Switching to the discretized form of S, note that the

response R = y2y
′

1
−y1y

′

2
of an EMD can be written as R =

y′T
My, with M =

[

0 −1

1 0

]

being a skew-symmetric matrix.

Because ω̂LBL is also a skew-symmetric bi-linear form of y
and ẏ (or y′), we can write ω̂LBL as a linear combination of

a series of EMDs. Looking back at the biology, we can map

this further computation to global LPTCs. The factorization

of the computation in a local nonlinear computation and

a global linear weighting can be considered energetically

efficient as it reduces the neural cabling.

Thus our algorithm is compatible with the current models

of visual information processing in the fly. Moreover, the

theory developed in the previous sections offers some addi-

tional insights. i) Our analysis concerns the full 3D rotation

case, which has not been considered in the biology literature.

In this context, Propositions 2 and 4 could be interpreted as

the “performance guarantee” of an EMD computation in the

3D case. ii) While the EMD computation is thought to be

a fixed neural mechanism, the LPTCs neural weight must

come from adaptation. We have found a means to derive the

optimal weighting for EMDs and LPTCs (tangential cells)

without any pre-existing condition such as foreknowledge of

the orientations of the various EMD pairs. Learning requires

only a supervisory signal ω which could come from the

halteres. iii) Finally, we described a way in which the weights
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that are learned for estimation can be used for control as well

(see the use of E{M} in the control law (13)).

For reasons of space, we did not comment in detail about

the fly’s visual attitude control, because such analysis should

also concern ocelli and halteres, which, like vision, measure

rotation rates. Initial analysis reveals that a control law such

as τ = 〈g(My)〉 is compatible with the yaw torque profiles

obtained in the experiments with tethered flies that tend to

orient themselves toward vertical stripes [31].

VI. SIMULATIONS

We used fsee [32] to simulate the visual input of the

the fruit fly Drosophila. Such software has already been

used to model fly flight control and implements realistic

spatial blurring and temporal filtering according to current

knowledge in visual physiology [9]. The software, given

a 3D virtual world description, produces monochromatic

luminance readings (y(s, t) ∈ [0, 1]). We choose as our

environment model a cylindrical arena with panoramas of

naturalistic scenes on its wall, in addition to a background

showing the sky and clouds. This reproduces the statistical

properties of the actual input experienced by a fly. Fig. 1b

shows a typical rendering of the visual stimulus. In this paper,

we are mainly interested in the processing of visual input,

therefore we use a simple unconstrained second-order system

on SO(3) to represent the fly dynamics. More accurate

models of the flight dynamics have been studied in [9].

Learning algorithm: We now rewrite using finite-

dimensional notation the learning rule explained in Sec-

tion III-C in the case of an infinite-dimensional operator

(for which analysis was simpler). Let y ∈ R
n, ẏ ∈ R

n,
be the visual input sampled at the direction of the n eyes:

yi , y(si, t) for some direction si. Because the learning rule

is adaptive, we do not need to know the actual directions si.

The operator M becomes a finite-dimensional tensor M ∈
R

n×n×3. We consider each “slice” M
k ∈ R

n×n, for k =
1, 2, 3, separately. With this notation, our learned bilinear

estimator is ω̂
k
LBL , ẏ

T
M

k
y for k = 1, 2, 3. Given a tuple

(ω, ẏ,y), the learning rule (10) is discretized as M
k ←

M
k +α(ωk− ẏT

M
k
y)(ẏyT−yẏT), where α is the learning

rate. If α is properly chosen and tuned accordingly during

the learning stage, M
k will converge to a local minimum

of the quadratic cost function
∑

n(ωk − ẏT
M

k
y)2 [33]. To

obtain proper convergence, it is important that the learning

tuples be representative of all the possible inputs.

Learning simulations: A characteristic feature of the

fly’s visual system is that the low-level computation, as

discussed in Section V, is local, concerning only first-

and second-neighbors. Hence we constrain Mij = 0 if

d(si, sj) > 30◦. This makes the M matrices very sparse,

with about 73,000 non-zero elements out of about 2 million.

Because through the algorithm we enforce skew-symmetry,

the effective number of entries is half of that.

Another way to motivate the sparsity is that, by Propo-

sition 3, M is supposed to approximate SP, which has a

sparse pattern. The covariance operator P is sparse because

distant parts of the environment are uncorrelated, as shown

in Fig. 3b; S, a local differentiation operator, preserves

the sparseness; thus SP is sparse. Incidentally, pruning the

matrix also helps with the numerical convergence, because

otherwise estimating all the 2 million entries would be prone

to overfitting.

In the 2D case, the tensor M can be easily visualized

(Fig. 3a) and it clearly appears to be the derivative of a

smoothing operator. In the 3D case, the 3 matrices M
k

cannot be easily visualized because they are large and sparse.

Therefore, we consider only the important statistics by plot-

ting ‖Mij‖ against d(si, sj) in Fig. 3d, for different values

of simulated spatial blurring. As predicted by Proposition 3,

the learned M is shaped by the derivative of the covariance

kernels (Fig. 3b and 3c).

Attitude stabilization experiments : We conducted simu-

lations to evaluate the domain of convergence for the control

law in Proposition 7 (we only proved local results). In the

simulations, we set the inertia matrix I equal to the identity

matrix. Fig. 4b shows an example of convergent behavior.

The system starts with an initial error of about 30◦. Fig. 4c

shows the corresponding input torque. While the torque does

not evolve monotonically due to inaccurate estimate of the

velocity, it eventually goes to zero as the system converges,

which is guaranteed by Proposition 4. Fig. 4d plots the

percentage of convergence, averaged over 350 random initial

conditions, against the initial displacement. Runs that did

not converge typically settled on a local minimum. The

percentage of convergence drops significantly after 30◦; this

is speculated to arise from the locality of M, which only

allows ommatidia connections within 30◦.

VII. CONCLUSIONS

In this paper, we considered the problem of purely vi-

sual attitude stabilization. We applied a rigorous control-

theoretic geometric analysis to a bio-plausible learnable

algorithm. The algorithm derived from general principles,

by constraining the computation to be skew-symmetric, has

striking similarities to Elementary Motion Detectors (EMDs)

and lobula plate tangential cells (LPTCs) in the fly. These

results encourage us to think that such an approach can be

successful on two fronts: I) rigorous design of control laws

to be implemented on novel computational substrates; and

II) reverse engineering of complex animal behavior.
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