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Abstract— Cancer complexity and resistance is mediated by 

cell-to-cell heterogeneity, which is the consequence of the 

enormous instability of its genetic material. It is unknown how 

cancer cells are able to withstand the effects of these 

alterations, while normal cells are typically very sensitive. We 

hypothesize that cancer requires specific type of stability to 

survive the enormous chromosomal alterations. This stability 

may be mediated by a group of genes, whose expression is 

tightly regulated to maintain viability through a process called 

gene dosage compensation. This mechanism could be 

mediated by systems-level properties of complex networks of 

microRNAs (miRNA) and transcription factors (TF), 

regulating gene expression despite changes in copy number. 

Therefore, we designed a biocomputational platform to 

automatically construct large-scale mathematical models 

regulating the expression of several candidate genes under 

dosage compensation. This platform has a broader potential 

application to other scientific questions involving miRNA and 

TF networks. 

Keywords—miRNAs, gene dosage compensation, cancer, 

systems biology 

I. Introduction  

Cancer robustness is enabled at the tumor cell population level 

by heterogeneity in therapy responses, which is driven by 

genomic instability[1] , specially by aneuploidy: gains and 

losses of whole or partial chromosomes. It is unknown how 

cancer cells deal with so much aneuploidy whereas normal 

cells are very sensitive. A possible explanation is given by the 

hypothesis of gene dosage compensation, a mechanism that 

has been described for other organisms to compensate the 

negative effects of aneuploidy [2]. It has been shown for 

aneuploid cancers that messenger RNA (mRNA) levels 

generally correlate well with an increased DNA copy number 

(gene dosage) but these changes are not reflected at the protein 

levels for several genes [3]. Several lines of evidence suggest 

the existence of a gene dosage compensation mechanism that 

provides stability to cancer despite its genomic instability. 

However, this mechanism must be able to regulate the 

expression of a handful of critical genes simultaneously. We 

hypothesize the existence of a complex regulatory network 

mediated by microRNAs (miRNAs) to compensate for gene 

dosage changes in aneuploid cancer cells. miRNAs are small 

endogenous RNA molecules that bind mRNAs and repress 

gene expression [4]. Currently, 1500 miRNAs have been 

described within the human genome [5] regulating the 

expression of nearly 30% of all genes [6]. Additionally, 

miRNAs can regulate hundreds of genes and their target genes 

can be regulated by several miRNAs [7]. Furthermore, they 

form regulatory interactions with transcription factors 

including feedback and feedforward loops leading to non-

linear, systems-level properties such as bistability, 

ultrasensitivity and oscillations [8]. We suggest that the 

manipulation of specific nodes of this miRNA-based 

regulatory network could block gene dosage compensation, 

representing a specific target against cancer. Due to the 



complexity of this network, identification of optimal targets 

requires an advanced computational platform. 

II. Materials and Methods 

A. Data sources and biocomputational 

platform 
 

For the biocomputational platform we gathered data from 
several sources. The primary sources were from experiments 
on the NCI60 panel: gene copy number [17], RNA gene 
expression [18] and protein expression [11]. MicroRNA 
related data was downloaded from Mirtarbase [19] and 
MiRBase [20]. For gene regulation data we relied on several 
sources: Transmir [21], Pazar [22], TRED (Transcriptional 
Regulatory Element Database) [23], CircuitsDB [24].  

B. Gene classification using Gaussian 

Mixture Models 
In order to classify genes according to their behavior, we 

developed a computer algorithm based on the Gaussian 

Mixture Model functions in MATLAB. An increasing number 

of components (ki) of the GMM model is added sequentially 

and the GMM training is performed for several iterations 

searching for the best fit to the experimental data. The 

resulting GMM is used to classify the cells of the original data 

set. A MANOVA test is applied to the resulting clusters to 

evaluate statistically the biological significance of adding 

another component to the GMM until the new component adds 

no further significance, finding thereby the optimal number of 

components with biological meaning.  

C. Ordinary differential equation 

modeling of miRNA-TF networks 
From the list of genes selected by the GMM we identified the 

miRNAs an TFs regulating each gene. We build the network 

topology using these three types of species as nodes and the 

regulation relations as edges. In the SBML model we defined 

each node as specie. For each species we defined two 

parameters:  synthesis and degradation rates. For miRNAs we 

also define the repression rate and for TFs we defined 

activation and repression rates. Finally, we added synthesis 

and degradation reactions for each species in the SBML. We 

also created experimental data files using CGH, RNA and 

microRNA expression. We imported the model into COPASI. 

Once in COPASI we included the experimental data files, 

fitted the model with the Parameter Estimation Task. 

 

 

 

 

 
 
Figure 1. Identification of candidate genes under dosage compensation. A. Input data of gene copy number (DNA), gene expression (RNA) and protein levels (protein) of 
the NCI60 panel. The absolute values are shown on the left panel and the right panel corresponds to the log2 values normalized to the averaged RNA and protein of the 

diploid cell lines for the respective gene (Normalized to diploid). B. Gaussian Mixture Model to identify a cluster of subpopulation of genes with high SD DNA and low SD 

RNA and/or low SD Protein (white arrow). C. Gene Clustering according to the model in B showing the standard deviations (SD) of the DNA, RNA and protein levels for 
each gene across the 59 cell lines of the NCI60 panel. The cyan cluster contains candidate genes under dosage compensation, characterized by high SD DNA, low SD 

Protein (middle) and low SD RNA (right). D. Absolute and Normalized values of selected candidate genes under dosage compensation. E. Examples of candidate genes 

under dosage compensation (MYC and RAB5C) compared to a non-candidate gene (SAV1). 



III. Results  

A. Candidate genes under gene dosage 

compensation are present across the 

NCI-60 panel 
In order to identify possible genes under gene dosage 

compensation, we compared copy number, gene expression 

and proteomic data of the NCI60 panel. We considered input 

data including high resolution Copy Number Variation data 

(DNA) of the NCI-60 Cancer Cell lines from 4 different 

platforms [9], the Gene Transcript  (RNA) Average Intensities 

of 5 Platforms [10], and the protein levels (Protein) of a global 

proteome analysis of the NCI-60 cell line panel [11]. Figure 

1A left shows the relative variation of these absolute DNA, 

RNA and Protein levels. However, once we normalized the 

data in the same way (log2 values normalized to the averaged 

RNA and protein of the diploid cell lines for the respective 

gene), it can be observed in Figure 1A right that the DNA 

values have a higher amplitude, followed by RNA levels and 

protein levels. 

Indeed, we are interested in those genes with high variation in 

DNA levels and low variation in RNA or protein levels, as 

candidates to study possible mechanisms of gene dosage 

compensation. Therefore, we considered the Standard 

Deviation (SD) of the DNA, RNA and Protein values across 

the 59 cell lines and classify those genes using a Gaussian 

mixture model (GMM) from the data (Figure 1B). One cluster 

was identified having high SD of DNA values and 

proportionally low SD of RNA and SD of Protein values 

(Figure 1C). The genes contained within this cluster presented 

the behaviour of interest (Figure 1D), where the corresponding 

SD of RNA and/or Protein is proportionally low compared to 

the high SD of DNA values. Moreover, we discarded those 

genes with orthologues in X/Y chromosomes since they 

cannot be differentiated using with microarray techniques. In 

addition, we discarded genes without any reported interactions 

with microRNA or Transcription Factor forming regulatory 

loops (see below). Furthermore, we discarded genes with high 

DNA variation due mostly to deletion (DNA values lower than 

-0.25) and obtained a list of 19 gene candidates under dosage 

compensation including ANKFY1, ATP1B2. PGR, 

DCUN1D5, MMP12, BIRC2, ATM, NPAT, CUL5, STAT3, 

KCNH4, RAB5C, TRIM37, ZNF217 and MTSS1, MYC, 

SEMAD3D, BIRC2, ZNF217, FOXC1 y PDCD10. Among 

those, we can highlight the presence of the oncogene MYC, 

which presents high frequency of amplifications in the NCI60 

panel without the corresponding increase in RNA levels 

(Figure 1E right). For many genes there is also protein data, 

which confirms this behaviour as is the case for RAB5C, 

which RNA and protein levels are maintained quite constant 

despite DNA variations (Figure 1E middle), compared to a 

non-candidate gene such as SAV1 (Figure 1E right).  

These data suggest the existence of 19 candidate genes under 

dosage compensation across the NCI60 panel, partially related 

by common chromosomal locations or other functional 

interactions.  

B. A putative network of miRNA-

transcription factor regulatory loops 

links all candidate genes under 

potential dosage compensation  

miRNAs and transcription factor networks have been 

implicated in regulation of gene expression [12], including 

gene dosage compensation by regulatory feed-forward loops 

[13]. Since there is expression data available of miRNA [14] 

and transcription factors (TF)[10] for the NCI60 panel, we 

asked whether there is a connection between our 19 candidate 

genes and miRNA/transcription factor regulation. In order to 

explore this connection, we calculated the correlation 

coefficients between the Z-scores of copy number variations 

of the candidate genes and the Z-scores of miRNA/TF 

expression data across the NCI60 panel. As depicted in figure 

2A, there are both miRNAs and TF with high positive or 

negative correlation. This result suggests the existence of 

miRNAs and TFs that potentially regulate the expression of 

clusters of candidate genes simultaneously. To evaluate 

whether there are any reported or predicted connections 

between these candidate genes and miRNAs/TF, we 

constructed a network of putative regulatory interactions based 

on the information available at the databases Mirtarbase, 

MiRBase, Pazar, TRED and the study of Neph et al [15]. In 

addition, we included the interactions between miRNAs and 

TFs using the information available at Transmir and 

CircuitsDB 2. This generated a network with 540 nodes and 

 

Figure 2. The workflow starts by analizing CGH and ARN 
variation of the genes. Those genes with high CGH variation and 
low ARN variation are selected. These genes, along with regulation 

relations between transcription factors/microARNs and genes as 

well as to each other are assembled together to conform the 
topology of the gene dosage compensation network. Finally, the 

SBML model of the network is constructed using the list of nodes 

and edges of the network, converting each node into a species and 
using the edges for the reactions of synthesis and degradation in the 

SBML model.  
 



2848 interactions, which connect all 19 candidate genes 

(targets) (Figure 3B). In order to examine the 

target/miRNA/TF network for the presence of regulatory 

interactions with potential activity on gene dosage 

compensation, we searched for motifs with systems-level 

properties including positive and negative feedback loops 

(between miRNAs and TFs), coherent feed-forward loops and 

incoherent feed-forward loops [8]. We identified a total 

number of 2500 putative regulatory motifs. For example, 

miRN15A participates in a coherent feed-forward loop 

inhibiting both SEMAD3 and BRCA1, a positive regulator of 

BRCA1. Also, BRCA1 forms an incoherent feed-forward 

loop, activating the transcription of SEMAD3 but also 

miR195, a negative regulator of SEMAD3. In addition, 

miR15A forms a negative feedback loop with BRCA1 (Figure 

2C). In total, this network includes 78 negative feedback loops 

but no positive feedback loops between TFs and miRNAs, 

1422 coherent feed-forward loops and 1000 incoherent feed-

forward loops formed by the interaction of TFs and miRNAs 

with the target genes. MYC, ZNF217 and STAT3 are the genes 

involved in the majority of regulatory motifs. 

To gain insight into these target/miRNA/TF interactions, we 

calculated the correlation coefficients among the values of the 

elements for each regulatory loop including miRNA levels 

(miR), target copy number (CN) and transcription factor 

 
Figure 3. A putative regulatory network is automatically constructed from available TF and miRNA interaction data. Correlation coefficients of 

candidate target genes with miRNAs and transcription factors (A). Putative network topology of target-miRNA-TF interactions (B) including examples 
of coherent feedforward, incoherent feed-forward and negative feedback loops (C). The correlation coefficients from A are employed to choose those 

forward loops with the highest likelihoods to be real interactions (D). 



expression (TF). The correlations between miR/CN, TF/CN 

and TF/miR displayed a high density around zero for both 

coherent and incoherent feed-forward loops. However, several 

interactions are separated from that central core, suggesting 

that they could participate in real regulatory loops (Figure 2D). 

Therefore, we selected the regulatory loops that could play a 

role in gene dosage compensation, having at least one of its 

correlations separated from the central core. For coherent 

feed-forward loops (where a miRNA inhibits a TF) we 

included loops with a positive miR/CN correlation (higher 

than 0.25), a negative TF/CN correlation (lower than -0.25), or 

a negative miR/TF correlation (lower than -0.25). For the 

incoherent feed-forward loops (where a TF activates a 

miRNA) we selected those with positive miR/CN correlations 

(higher than 0.25), negative CN/TF correlations (lower than -

0.25) or positive TF/miR correlations (higher than 0.35). 

These putative regulatory loops generated a simplified 

regulatory network of the interactions with the highest 

correlations expected for gene dosage compensation (Figure 

3A). 

These results indicate that several putative regulatory loops 
link all the candidate target genes. These regulatory motifs 
with potential systems-level properties are widely present 
within this putative network. The high 
correlation/anticorrelation for the copy number variations of 
some target genes and the expression levels of some 
miRNA/TFs suggests that some of these regulatory motifs 
may be involved in gene dosage compensation. However, the 
assessment of the complexity of this regulatory network 
requires a systems-level approach. 

C. A large scale mathematical model of 
miRNA-transcription factor 
interactions with the candidate genes 

The simplified network includes 434 nodes and 2745 arcs 

(Figure 4A). Due to the high complexity of miRNA/TF 

regulatory netwoks, we proceeded to a systems-level approach 

in order to gain insight into the complexity of the gene dosage 

compensation mediated by miRNAs and TFs. Therefore, we 

constructed a mathematical model using COPASI using our 

automated biocomputational platform considering basic 

network motifs for the target gene, miRNA and TF (Figure 

4B). The biochemical model includes 182 species, 364 

reactions and 823 parameters and was fitted using the 

Parameter Estimation function of COPASI. The resulting 

model presents a good fitting of the data. This result indicates 

that we have now the first large-scale mathematical model to 

perform future studies on gene dosage compensation. 

Taken together, these results indicate that several genes with 

high copy number variations have very low changes in 

expression, suggesting that they are under the influence of 

gene dosage compensation. Those candidate genes are highly 

interconnected with miRNAs and transcription factors leading 

to the formation of different types of regulatory loops that 

could contribute to the mechanism of gene dosage 

compensation. The high complexity of the resulting network 

required a dedicated computational platform for the automatic 

construction of a large-scale mathematical model of gene 

regulation that can be used to perform studies on gene dosage 

compensation. 

IV. Discussion 

We developed a computational platform to automatically 

construct large scale models of miRNAs and TF interactions 

with a novel approach. The classical approach starts with those 

disregulated miRNAs followed by the identification of gene 

targets, which is very inefficient because each miRNA can 

alter the expression of hundreds of genes by only 1.5 to 4 fold 

[8] and it is the cooperative effect of miRNA networks that 

makes them robust regulators [16]. It is therefore very hard to 

identify single miRNA-target interactions with relevant 

biological function, requiring extensive molecular biology 

work for validation. Therefore, we propose the first systems-

level approach in the opposite direction, identifying first 

targets under gene dosage compensation and second, 

identifying their regulating miRNAs. 

To our knowledge, previous bioinformatic work focused on 

miRNA networks based on differential expression data 

between tumoral and normal tissues. Those differences are a 

consequence of genetic instability and as such, highly 

heterogeneous among cancer types, because they arise from 

different evolutionary trajectories of cancer. In contrast, our 

work is the first to explore the core stability of gene 

expression in cancer, which mediates its survival despite its 

genetic instability. This stability core presumably would be 

homogeneous among cells and cancer types; and it might be 

represented by a set of genes tightly regulated by stable 

miRNA networks to ensure gene dosage compensation. 

miRNA networks are robust regulators of gene expression 

upon environmental changes [16] and they show adaptation to 

gene dosage through the formation of regulatory circuits with 

transcription factors [13]. Thus, we hypothesize that cancer 

has a robust Achilles-Heel due to an increased sensitivity to 

perturbations in these circuits, which is not necessarily 

reflected as differences in miRNA expression levels but at 

systems-level properties. 

 In conclusion, the present work led to the construction of a 

complex mathematical model to study gene dosage 

compensation and formulated model-driven hypothesis for the 

identification of novel targets against aneuploid cancer.  
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