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Abstract 13 

The fast rise of aquaculture practices during the last decades has increased the 14 

need of adopting culture strategies to optimize production and guarantee the 15 

sustainability of the sector. This study aims to provide a management tool to help 16 

mussel farmers identify optimal culture strategies and use production inputs efficiently. 17 

For this purpose, we evaluated the productivity and efficiency of different stocking 18 

densities and culture lengths by the joint application of parametric and nonparametric 19 

frontier analysis at the farmscale. The translog production function outperformed the 20 

CobbDouglas model currently applied in most farmscale frontier analyses. This model 21 

estimates that the optimal culture density is ca. 700 ind/m, given that at lower densities 22 

efficiency decreases (underusage of available space) and mussel quality did not 23 

improve, and at higher densities mortality and dislodgements from the ropes led to 24 

economic losses. This work also showed that marginal analysis does not provide an 25 

accurate estimation of the economic efficiency when unitary costs and prizes are not 26 

constant. According to the Malmquist indices mussel farmers should shorten the culture 27 

period in order to improve their productivity. All these results support the joint use of 28 

parametric and nonparametric frontier analysis as management tool for optimizing 29 

input use and scheduling aquaculture production. 30 

31 
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1. Introduction36 

Aquaculture is the fastest growing food sector in the world, with production 37 

increasing at an annual rate of 7.8% between 1990 and 2010, and an expected annual 38 

growth up to 4.14% from 2014 to 2022 (FAO 2014). Nowadays aquaculture provides 39 

50% of the fishery output for human consumption, of which 23.6% is shellfish culture 40 

(14.2 million tons; FAO 2014). With 80% of the total consumed shellfish being 41 

cultured, this is an important activity in many coastal zones worldwide. The fast rise of 42 

aquaculture practices points out the need of adopting culture strategies in order to 43 

optimize production and guarantee the sustainability of the sector. Industryscale 44 

frontier analysis has been widely used to assist producers and decisionmakers in 45 

identifying optimal production system designs, operation management strategies, and 46 

alternative development and policy approaches, although its use in aquaculture is 47 

limited when compared with agriculture or other manufacturing industries (Iliyasu et al., 48 

2014). Farmscale analysis of productivity and environmental impact of shellfish 49 

aquaculture has been addressed by Ferreira et al., (2007) and Hawkins et al., (2013), 50 

which developed simulation procedures based on the interaction between suspension51 

feeding bivalves and the environment. 52 

The productivity and efficiency measures introduced by Farrell, (1957) 53 

motivated the development of several parametric and nonparametric techniques for 54 

frontier analysis. The stochastic frontier production function (SFPF) approach involving 55 

econometric estimation of parametric functions (Aigner et al., 1977; Meeusen and 56 

Broeck, 1977), and data envelopment analysis (DEA) involving linear programming 57 

(Charnes et al., 1978) are the most popular techniques used in frontier analysis. The 58 

main advantage of the SFPF is that it can decompose the deviation from the frontier in 59 

stochastic noise and technical inefficiency components. The main drawback of this 60 
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approach is the need of a functional form for the technology and the inefficiency error 61 

term, as the misspecification of the model can lead to biased estimations and wrong 62 

conclusions. DEA eliminates the need of a parametric assumption, but due its 63 

deterministic nature, this approach attributes all deviations from the frontier to 64 

inefficiency effects overlooking the stochastic noise. This drawback was partially 65 

overcame by the bootstrap procedure introduced by Simar and Wilson, (2000, 1998) to 66 

create confidence intervals for DEA scores. As neither approach is strictly preferable, 67 

MurilloZamorano and VegaCervera, (2001) suggested that the joint use of both 68 

techniques can improve the accuracy of frontier analysis. Nevertheless, as in other areas 69 

of knowledge, economic efficiency of aquaculture production has been analyzed either 70 

by stochastic frontier production functions or DEA (see Iliyasu et al., (2014) and 71 

references therein) and to our knowledge the joint use of both techniques is still lacking.  72 

The Farm Aquaculture Resource Management (FARM, Ferreira et al., (2007)) 73 

and ShellSIM (Hawkins et al., 2013) are farmscale models that simulate the 74 

interactions between suspensionfeeding bivalves and the environment in order to 75 

estimate carrying capacity, shellfish production and quantify the ecological impact of 76 

aquaculture on the ecosystem. These models can be a useful management tool for both 77 

farmers and regulators, as they allow the development of culture strategies in order to 78 

optimize economic profits and minimize the environmental impact. Both procedures use 79 

marginal analysis based on a CobbDouglas SFPF model with stocking biomass as the 80 

unique variable input, in order to determine the optimal culture density. The dynamic 81 

ecologicaleconomic model proposed by Nobre et al., (2009) also uses a Cobb Douglas 82 

model to estimate the marginal productivity of capital and labour. To our knowledge, 83 

more general parametric models, such as the translogarithmic SFPF, and nonparametric 84 

frontier analysis have not been used at farmscale level. 85 
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The extensive culture of the blue mussel (Mytilus galloprovincialis), with a 86 

production volume that ranged between 200,000300,000 tonnes and a production value 87 

that exceeded 100 million Euros in 2012 (www.pescadegalicia.com), is the main 88 

aquaculture industry in Galicia. Mussels are cultured in floating systems (rafts) 89 

consisting of a 500m
2
 wood structure anchored to the seafloor, from which culture ropes 90 

and/or seed collectors are suspended. Nowadays, the number of ropes per raft is limited 91 

to 500. Besides, the maximum number of rafts allowed in the Galician Rias (ca. 3300) 92 

has been reached. Mussel culture is scheduled according to the availability of natural 93 

resources for feeding and seed recruitment, the biological cycle of mussels and the 94 

fluctuations of market demand (Labarta et al., 2004). Subjected to all these constraints, 95 

mussel farmers have focused on optimizing the use of available space in the raft to 96 

maximize profits, following two strategies: increasing culture densities and/or 97 

decreasing the length of the culture cycle.  98 

This study aims to develop a management tool that allows mussel farmers to 99 

identify optimal farmbased culture strategies and use production inputs efficiently. To 100 

this purpose, we conducted an experiment to evaluate the performance of different 101 

culture strategies (testing different cycle lengths and mussel stocking densities) by the 102 

joint application of parametric and nonparametric frontier analysis at the farmscale. 103 

We applied parametric frontier analysis to determine the optimal culture density and 104 

evaluated whether marginal analysis can be applied to estimate the economic efficiency 105 

of suspended mussel culture. We estimated the nonparametric Malmquist indices to 106 

analyze the productivity change along the culture period in order to determine the 107 

optimal cycle length. 108 

109 
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2. Material and Methods110 

2.1. Experimental design 111 

The study area was located in the raft polygon of Lorbé in Ría de AresBetanzos, 112 

on the NW coast of Spain (43°22’39.20’’N, 8°12’39.77’’W). This Ría has great 113 

bioeconomical importance due to extensive mussel culture (Mytilus galloprovincialis).  114 

Data were collected during the traditional thinningout to harvest period, 115 

employing the culture and handling techniques used by the local industry (Labarta et al., 116 

2004). In late April 2008, mussels from collector ropes deployed 8 months before 117 

(September 2007) were thinned out at seven densities (treatments), encompassing the 118 

current commercial densities in Galicia (600–800 ind/m). The mean shell length of 119 

these mussels was 48.78mm (sd=1.27), which is close to the minimum commercial size 120 

(50mm). Stocking biomass (Kg/rope) was measured as rope weight at the beginning of 121 

the culture (in this case at thinningout). Production costs (€/rope) were obtained from a 122 

survey of several mussel aquaculture farms, and included labour, estimated as time 123 

spent per rope for thinningout and harvesting, boat fuel consumption for deploying and 124 

harvesting the ropes, and raft occupation costs (Table 1, Appendix I). As mussels were 125 

obtained from collector ropes, their cost (€/Kg) was estimated as the occupation cost of 126 

these collector ropes in the raft.  127 

Production data were collected monthly from late May to late November (see 128 

details in (Cubillo et al., 2012c) so that the length of growing season or cycle length 129 

(days) can be considered as an input. Density was calculated as the number of mussels 130 

per linear meter of rope (ind/m). Total production (Kg/rope) was estimated as the 131 

weight of commercial (>50 mm shell length) mussels. Production prices (€/Kg) and 132 

revenues (€/rope) were estimated taking into account the two markets: fresh sale 133 
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(mussels sold as fresh product) and industry sale (frozen, canned and processed 134 

mussels). Fresh sale prices are based on mussel size, measured as number of mussels 135 

per Kg (ind/Kg), according to the average classification used by several distribution 136 

companies (PérezCamacho et al., 2013): Extra1 (< 21 ind/Kg, 1€/Kg), Extra2 (2127 137 

ind/Kg, 0.9 €/Kg), Large (2835 ind/Kg, 0.75 €/Kg), Normal (3645 ind/Kg, 0.6€/Kg) 138 

and Small (4670 ind/Kg, 0.5 €/Kg). Industry sale prices build on mussel quality in 139 

terms of mussel size (ten categories ranging from > 276 to < 98 ind/Kg tissue), and 140 

Condition Index measured as the meat to total weight ratio of mussels (from 12% to 141 

27%), according to a pool of processing industries, so that small mussel (>276 ind/Kg 142 

tissue) prices ranged between 0.22 and 0.50 €/Kg and large mussel (< 98 ind/Kg tissue) 143 

prices between 0.35 and 0.78 €/Kg. 144 

2.2. Data analysis.145 

We first conducted an exploratory analysis of the variables involved in the 146 

mussel culture process. We applied twoway repeated measures ANOVA to test the 147 

effects of density treatment and cycle length on production and product quality. In 148 

addition, we applied generalized additive models (GAM) to estimate the effect of 149 

stocking biomass and cycle length on the profits obtained by fresh and industry sale, 150 

and to analyze the differences between both. Section 2.2.1 provides detailed information 151 

about the GAM model. Model fitting was conducted with the mgcv package of R (R 152 

Core Team, 2013; Wood, 2006a)153 

The analysis of productivity and efficiency was conducted by the joint use of 154 

parametric (SFF) and nonparametric techniques (DEA). We applied Stochastic frontier 155 

analysis, considering stocking biomass (Kg/rope) and cycle length (days) as inputs, and 156 

total production (Kg/rope) as output to determine which density is closer to the 157 
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production carrying capacity of the system without exceeding it, i.e. the optimal density 158 

treatment. In addition, we estimated the nonparametric Malmquist indices for 159 

productivity, efficiency and technology change, considering stocking biomass (Kg/rope) 160 

and culture costs (€/rope) as inputs and total production (Kg/rope) or profits (€/rope), as 161 

outputs. This analysis allows us to determine the optimal cycle length for each market 162 

and the most profitable market for each cycle length. The parametric and non163 

parametric frontier analysis were conducted with the frontier (Coelli and Henningsen, 164 

2011) and FEAR (Wilson, 2008) packages of R. Sections 2.2.2 and 2.2.3 provide 165 

information about these procedures. 166 

2.2.1. Generalized additive models (GAM) 167 

For both fresh and industry sale, we fitted the profits (P, €/rope) obtained as the 168 

difference between costs and revenues, according to cycle length (T, days) and stocking 169 

biomass (S, Kg/rope) by generalized additive models (GAM) with second order 170 

interaction (Hastie and Tibshirani, 1990; Wood, 2006b). As the response variables are 171 

normal, we  assumed a Gaussian family with identity link function (Hastie and 172 

Tibshirani, 1990; Wood, 2006a). Our model can be expressed as follows: 173 

( ) ( )1 2 12
( ) ( ) ,E P f S f T f S Tα= + + +  (1) 174 

where, for each transaction, E(P) are the estimated profits, α is the intercept, fj, j=1,2 the 175 

smooth terms for each covariate, which were represented by penalized regression 176 

splines, and f12 the smooth term for the interaction between stocking biomass and cycle 177 

length, estimated using a scaleinvariant tensor product of penalized regression splines 178 

(Wood, 2006b). Finally, we obtained 95% confidence intervals for the predicted values 179 

in order to compare profits between fresh and industry sale.   180 
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2.2.2. Stochastic frontier production function (SFPF) with a model for technical 181 

inefficiency effects and marginal analysis 182 

We applied onestep stochastic frontier analysis (see details in Appendix II) to 183 

estimate the potential production and efficiency levels of the different density 184 

treatments. Model selection was conducted by several likelihood ratio tests (Table 2). 185 

Our data rejected the CobbDouglas model for the stochastic frontier function 186 

(Appendix II). Total efficiency, deterministic efficiency and independence between 187 

inefficiency and density treatment were also rejected. Thus, we fitted the SFPF for total 188 

production (B, Kg/rope) by a translogarithmic model with stocking biomass (S, 189 

Kg/rope) and cycle length (T, days) as inputs and density treatment as inefficiency 190 

factor (Z) (Battese and Broca, 1997; Battese and Coelli, 1995). This model can be 191 

expressed as follows: 192 

( ) ( )( )
0 1 2

2 2

11 12 22

ln ln ln

1
        ln 2 ln ln ln

2

it it it

it it it it it it

B S T

S S T T V U

β β β

β β β

= + +

+ + + + −
 (2) 193 

where Uit is the estimator of the technical inefficiency, TEit=exp(Uit), and can be 194 

expressed as    
it it itU z Wδ= + , where, zit is the vector of dummy variables associated to 195 

each density treatment, δ is the associated vector of parameters and Wit are random error 196 

terms (N(0,σw
2
)). Positive coefficients (δ > 0) indicate relative technical inefficiency 197 

while negative coefficients (δ < 0) point out relative technical efficiency. The more the 198 

estimated value differs from zero, the stronger the efficiency/inefficiency.   199 

In order to measure the effect of any input change on total production we 200 

estimated the output elasticity for each input (Appendix II). The sum of these 201 

parameters yields the return to scale (RTS), which measures the percentage change in 202 
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output from a 1% change in all inputs. When RTS > 1 (RTS < 1) the production 203 

function exhibits increasing (decreasing) returns to scale, i.e. a simultaneous increase in 204 

all inputs by a certain percentage results in greater (lower) percentage increase in 205 

output. If RTS = 1, the farm has constant returns to scale, implying that a proportionate 206 

increase in inputs will lead to the same increase in output. The crosselasticity of 207 

substitution Hjk, (Chiang et al., 2004) was estimated to measure the relationship between 208 

inputs (Appendix II). H12 > 0 indicates that the inputs are jointly complementary, i.e. we 209 

need to increase stocking biomass and cycle length together to raise total production. 210 

H12 < 0 indicates a competitive relationship between inputs, i.e. a decrease in stocking 211 

biomass could be compensated elongating the culture period, and viceversa.  212 

Finally, we analyzed the economic efficiency of the stocking biomass (S) by 213 

comparison between the incremental benefit of an additional unit (VMP) and its 214 

incremental cost (Px). If the value of the marginal product (VMP) of an input is greater 215 

than its cost (Px), profit could be raised increasing the use of that input, and conversely. 216 

The efficient use of an input is achieved when the value of its marginal product equals 217 

its price. Marginal analysis is usually built under some regularity conditions: (i) inputs 218 

are unlimited, (ii) inputs purchase and output sales are made in a perfect competitive 219 

market situation, (iii) the farm is a small production system that sells only this product 220 

and (iv) mussel seed is the unique variable input, as other cost (such that lease or 221 

labour) are fixed (Ferreira et al., 2007). These conditions are not necessarily true in 222 

mussel suspended culture. On one hand, on contrast with assumption (iv) the relative 223 

raft occupation, labour and transport costs decrease as the stocking biomass increases 224 

(see Fig. A1 in Appendix I). On the other hand, as explained in Section 2.1 mussel 225 

prices depend on mussel size and quality. In this work, we conduct the marginal 226 

analysis for each cycle length taking into account the variability of costs and prices 227 
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along the density gradient. Thus, for each density treatment and cycle length, we 228 

estimate the ratio VMP/Px and check whether these values equal 1 to indentify optimal 229 

input use. 230 

231 

2.2.3. Malmquist productivity indices 232 

Productivity change between sequential months for each density treatment was 233 

analyzed through the inputbased Malmquist productivity, efficiency and technology 234 

indices.  We obtained these indices following the estimation and bootstrap methods 235 

proposed by Simar and Wilson (1999) under the assumption of constant returns to scale. 236 

Productivity was measured in terms of total production (Kg/rope) and revenue (€/rope) 237 

for both fresh and industry sale. As we are interested in productivity change over time, 238 

we cannot consider cycle length as input, as we did above.  Thus, our inputs are 239 

stocking biomass (Kg/rope), which depend on the density treatment but remains 240 

constant over time, and culture costs (defined as the sum of labour, transport and 241 

occupation, Appendix I), which depend on both density treatment and cycle length. 242 

Given a set of density treatments (i= 1, 2, ..., 7) observed at times t1 < t2, the 243 

inputbased Malmquist index for treatment i (Färe et al., 1992; Simar and Wilson, 1999) 244 

is defined as:  245 

( ) ( ) ( )
2 2 2 1 1 1

1 1 2 2 1 2

1 2

1 2 1 2 1 2, , ,
t t t t t t

i i i
i i it t t t t t

i i i

D D D
M t t t t F t t

D D D
ε

 
= = 

 
, (3) 246 

where j kt t

iD is the Shephard input distance function for treatment i at time tj relative to 247 

the technology at time tk (Shephard, 1970). Values of ( )1 2, 1iM t t <  indicate 248 
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improvements in productivity, while values ( )1 2, 1iM t t >  indicate productivity regress 249 

from t1 to t2. When the estimated Malmquist index is 1, there is no productivity change.  250 

The Malmquist productivity index can be decomposed into an index of input251 

based efficiency, the ratio outside the bracket in (3), and an index of inputbased 252 

technology change, the geometric mean of the two ratios inside the bracket in (3), which 253 

measure the shift in the production frontier. As with ( )1 2,iM t t , values of ( )1 2,i t tε  and 254 

( )1 2,iT t t  lower (greater) than unity reflect efficiency/technology progress (regress) 255 

between times t1 and t2.  256 

257 

3 Results 258 

3.1 Exploratory analysis  259 

Fig. 1a1d shows an exploratory analysis of the population dynamics along the 260 

experiment. We observe a significant effect of cycle length, density treatment and their 261 

interaction (2way repeated measures ANOVA, p<0.001) on density (ind/m), total 262 

production (Kg/rope) and mussel size (ind/Kg), while meat yield (Condition index), 263 

which is mainly determined by the reproductive cycle of mussels, depended only on 264 

cycle length, reaching its maximum values from June to September. 265 

Total production (Fig 1b, Kg/rope) increased up to August for the higher density 266 

treatments (5701150 ind/m) and up to September for the lower (220500 ind/m). 267 

Despite the negative effects of overcrowding on mussel survivorship (Fig. 1a) and 268 

growth (Fig. 1c) total production increased along the density gradient. In June, 269 

commercial mussels (L > 50mm) accounted for 90% total rope weight, and from August 270 

onwards the percentage was over the 99%. For all density treatments, mussels reached 271 

the Medium commercial category (66mm and 37 ind/Kg) in August and the Large 272 
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category (70mm and 33 ind/Kg) in September. Only two density treatments, 220 ind/m 273 

and 700 ind/m reached the Extra2 category (73mm and 29ind/Kg) in November.  274 

Therefore, fresh sale prices (€/Kg) increased up to September (Fig 1e) and remained 275 

constant thereafter (Fig 1e). Industrysale prices (€/Kg), as expected given their 276 

dependence on the condition index, were only affected by cycle length and reached 277 

maximum values between June and September (Fig 1f). Due to the small differences 278 

found in the size and quality of mussels among density treatments, the revenues per Kg 279 

were similar (Fig. 1e and 1f), while the revenues per rope increased along the density 280 

gradient for both fresh and industry sale (Fig. 2).  281 

Figs. 2 and 3 show the estimated profits for fresh (Adjusted R2 = 0.801) and 282 

industry sale (Adjusted R2 = 0.77). For all density treatments, fresh sale profits 283 

increased over time, although this increase ameliorated from September onwards. 284 

Industry sale profits increased up to August and decreased thereafter. The higher 285 

densities (> 500 ind/m) amortized culture costs in June (L ≈57 mm) by industry sale and 286 

in July (L ≈61 mm) by fresh sale, while the lower densities needed an extra month to be 287 

profitable. Smaller mussels (up to August) provided higher profits through industry sale 288 

due to the increase in meat yield during summer, while larger mussels (>70 mm) are 289 

more suitable for fresh sale. In August, industry sale overcame at least a 15% fresh sale 290 

profits, whereas in September fresh sale overcame at least a 26% industry sale profits. 291 

3.2 Stochastic frontier function and marginal analysis292 

Table 3 shows the parameters estimated by the translog SFPF model for total 293 

production introduced in section 2.2.2. Both output elasticities are positive and close to 294 

0.5, implying that a 1% increase in any input would increase production by ≈0.5%, 295 

though the elasticity for cycle length (0.50) is significantly higher than the elasticity for 296 
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stocking biomass (0.47) (ttest, p =0.042). We obtained constant returns to scale (RTS = 297 

0.973 = 1; ttest, pvalue > 0.05), so that a given simultaneous increase in culture days 298 

and stocking biomass will give the same percentage increase in production. The Hicks 299 

substitution elasticity for stocking biomass and cycle length (H12 = 0.905 > 0) indicates 300 

a complementary relationship between inputs, i.e. they need to be increased together to 301 

raise total production. Finally, our results show that only 1.14% of the deviation from 302 

the stochastic frontier can be attributed to technical inefficiency. 303 

The lower half of Table 3 shows the estimated inefficiency effects of each 304 

culture density and the respective technical efficiencies (TE). Relative inefficiency (δ > 305 

0) was statistically significant for mussels cultured at 220570 and 800 ind/m, while 306 

relative efficiency (δ < 0) was found for 1150 ind/m. Despite densitydependent mussel 307 

losses, technical efficiency increased with stocking biomass, being 700 ind/m and 1150 308 

ind/m (which achieved total efficiency) the most efficient densities, whereas the lowest 309 

density operated 51.6% below the production frontier. 310 

The results of the economic efficiency analysis for stocking biomass are shown 311 

in Fig. 4. Marginal costs (Px) increased linearly along the culture period and decreased 312 

along the density gradient. For fresh sale, marginal benefits (VMP) increased over time 313 

(Tukey HSD, pvalue < 0.001) and decreased over the density gradient, 1150 reported 314 

the lower economic efficiency and 700800ind/m were less efficient than 220500ind/m 315 

(Tukey HSD, pvalues < 0.001).  For industry sale, the VMP stabilized in August 316 

(Tukey HSD, pvalue > 0.1) and the densities of 700, and 1150 ind/m reported lower 317 

economic efficiency than 220570 ind/m (Tukey HSD, pvalue < 0.01). For both fresh 318 

an industry sale, the ratio between VMP and the marginal costs (Fig 4, bottom) shows 319 

the same temporal pattern as the VMP and remained constant along the density gradient 320 

(Tukey HSD, pvalue > 0.05). As all ratios are below 1, optimal input use was not 321 
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reached for any market. Comparison between markets reported higher relative 322 

efficiency for fresh sale than for industry sale from September onwards for all density 323 

treatments.  324 

3.3 Malmquist productivity indices 325 

Consistent with Färe et al. (1992) we report the reciprocals of the original non326 

parametric indices (Tables 46 and Fig. 5), so that numbers greater than unity denote 327 

progress while numbers lower than unity denote regress. As expected given the low 328 

proportion of deviation from the production frontier attributed to technical inefficiency 329 

(1.14%), its effect on Malmquist productivity indices was very low, and changes in 330 

productivity over time were mainly explained by shifts in the production frontier.  331 

The estimated indices for efficiency change (Table 46, Fig 5 centre) did not 332 

show a clear pattern along culture, except for the highest density (1150 ind/m) that 333 

reported constant efficiency over time.  334 

Total production and fresh sale revenues reported technology progress up to 335 

September. The production frontier stagnated thereafter for the two lower densities, 336 

while the higher densities suffered a regress during October followed by a new increase 337 

during the last month.  For industry sale prices technology progress ceased in August 338 

(Table 46, Fig 5 right). 339 

Finally, the Malmquist indices reported productivity improvements up to 340 

September in all density treatments for total production and fresh sale revenues, while 341 

for industry sale some density treatments suffered productivity regress in September 342 

(Table 46, Fig 5 left). The productivity losses observed in October for the higher 343 
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densities (≥500 ind/m) and November for the lower (≤570) were caused by reductions 344 

in potential production and efficiency, respectively.  345 

346 

4. Discussion and conclusions 347 

This work provides a productivity analysis for suspended mussel aquaculture at 348 

the farmscale, based on monitoring of mussel growth and survivorship. Prior studies 349 

have focused on industryscale analysis (see Iliyasu et al., (2014) and references therein) 350 

or have conducted farmscale productivity analysis based on simulation models for 351 

mussel growth (Ferreira et al., 2007; Hawkins et al., 2013). Most research works on the 352 

production frontier in aquaculture have focused on efficiency measurement using either 353 

Stochastic Production Frontier (SPF) or Data Envelopment Analysis (DEA). This work 354 

incorporates empirical data to productivity analysis and evaluates the performance of 355 

different culture strategies (defined as mussel density and cycle length) through the joint 356 

application of parametric (SFPF) and nonparametric frontier analysis (Malmquist 357 

indices). 358 

This study shows that both parametric (SFPF) and nonparametric (Malmquist 359 

indices) approaches reflect the effect of mussel population dynamics (intraspecific 360 

competition, mussel growth and mortality) on production. Population dynamics were 361 

previously described on the same data set by Cubillo et al., (2012b) and FuentesSantos 362 

et al., (2013). The former found a negative effect of stocking rate on mussel growth 363 

rates, and the later found significant mussel losses at higher density (>500 ind/m), being 364 

1150ind/m the treatment with the highest mortality. Both studies concluded stronger 365 

competition effects at higher densities.   366 
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The current farmscale productivity analyses use the CobbDouglas model 367 

(Ferreira et al., 2007; Hawkins et al., 2013; Nobre et al., 2009) to estimate the stochastic 368 

frontier function. However, when the effects of the inputs on production are not 369 

independent, we need more general models. Following the methodology applied at 370 

industryscale level (Battese and Broca, 1997; Chiang et al., 2004; Iliyasu et al., 2014) 371 

we fitted a translog stochastic frontier function with density treatment as efficiency 372 

factor, which improved the understanding of multiple dependency and interaction 373 

between production inputs (stocking biomass and cycle length) and estimates the effect 374 

of the density treatment on technical efficiency. The likelihood ratio tests confirmed that 375 

the translog model is more accurate than the Cobb Douglas frontier function. 376 

Most of the industryscale studies in aquaculture have focused on technical 377 

efficiency and total production (Iliyasu et al., 2014). However, maximizing biological 378 

production does not lead to maximize profits, and management tools should rely on 379 

economic instead of technical efficiency. Following Ferreira et al., (2007), which stated 380 

that the profit maximization rule is based on marginal principles; we applied marginal 381 

analysis to determine the optimal stocking biomass. However, we should note that 382 

suspended mussel culture violates the principle of constant production costs 383 

(occupation, labour and transport), as these values depend on the density treatment. To 384 

estimate the marginal cost of the stocking biomass (Kg/m) we need to decompose each 385 

production cost into a constant part and a part that varies with the density treatment, and 386 

sum the latter to the cost of mussels (or mussel seed). However, in practice we cannot 387 

determine which proportion of each production cost depends on the density treatment. If 388 

we just consider the cost of mussel seed to estimate PX we shall underestimate the 389 

marginal cost and obtain wrong conclusions in the comparison between density 390 

treatments. Estimating PX as the sum of mussels, labour and occupation costs provides a 391 
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proper comparison between density treatments, but overestimates the marginal cost. 392 

Therefore we cannot rely on the comparison between VMP and PX to determine the 393 

optimal input use in either case. Taking into account these drawbacks and that 394 

comparison between markets did not provide further information than that provided by 395 

the GAM models, we do not recommend the use of marginal analysis in suspended 396 

mussel aquaculture. 397 

The use of the Malmquist productivity indices to measure productive growth at 398 

the industryscale in aquaculture has gained popularity in recent years (Iliyasu et al., 399 

2014). These works focus on optimizing total production, but did not considered 400 

economic capacity. Given that culture strategies should focus on maximizing profits 401 

instead on maximizing total production, we proposed to estimate the Malmquist 402 

productivity indices considering revenues as output. We point out that the variability in 403 

output prices regarding the quality of the product and the market (fresh or industry sale) 404 

should be taken into account in the economic analysis. These indices measured the 405 

change in economic capacity and efficiency along culture and allowed us to determine 406 

the optimal cycle length.  407 

The parametric stochastic frontier analysis determined that 700 ind/m is the 408 

optimal culture density. The relative inefficiency observed at lower densities, which did 409 

not suffered mortality due to intraspecific competition but did not provide better mussel 410 

quality than higher densities, indicates an underuse of the available resources. The 411 

relative efficiency of 1150 ind/m, which suffered the strongest competition effects on 412 

mussel growth and survivorship (Cubillo et al., 2012a; FuentesSantos et al., 2013), 413 

indicates that this density exceeded the carrying capacity of the rope. Apart from the 414 

economic losses, mussel mortality also implies the increase of biodeposits beneath 415 

culture leases that alter the physical and chemical conditions of the bottom sediments, 416 
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and thus affect the natural biodiversity. As in (Ferreira et al., 2007; Hawkins et al., 417 

2013) models, the environmental effects of mussel culture should be taken into 418 

consideration to develop decision making tools that guarantee the sustainability of 419 

suspended mussel culture. 420 

The Malmquist productivity, efficiency and technology indices allowed us to 421 

determine the optimal cycle length. The risk of productivity regress from October 422 

onwards suggests that it is not worth extending the culture beyond September, i.e. when 423 

individuals reach lengths of ≈70 mm. In addition, the economic analysis points out that 424 

farmers would maximize profits in August (L = 66 mm) by industry sale and September 425 

(L = 70 mm) by fresh sale, due to the differences in the type of product that these two 426 

markets demand. These results together with the recent shift to smaller sizes (L ≤ 427 

75mm) in mussel market, highlights the suitability of shortening the current cycle 428 

length.  429 

Thus, this work provides a suitable management tool for optimizing input use in 430 

aquaculture practices and scheduling production according to market demand. Our 431 

results indicate that the current stocking densities in Galician mussel aquaculture (600432 

800ind/m) are close to the optimum culture density (700ind/m) and their technical 433 

efficiency is above 85%. However, according to the Malmquist indices mussel farmers 434 

should shorten the thinningout to harvest period in order to improve their productivity. 435 

In addition to optimizing profits, this reduction of cycle length results in a more 436 

efficient use of the available space. 437 

438 

439 
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APPENDIX I  551 

Culture costs 552 

Figure A1 shows total (€/rope) and marginal costs (€/Kg) for each density treatment 553 

along the culture period. Total and occupation costs increase linearly over time, while 554 

labour and transport can be considered constant over time. Total, labour and transport 555 

costs increased with stocking density, while occupation costs remain constant along the 556 

density gradient. However, marginal costs decreased with stocking density.    557 
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 558 

Fig A 1: Total (€/rope) and marginal (€/Kg) production costs by months and density treatment. 559 

 560 

 561 

Page 26 of 40Reviews in Aquaculture



For R
eview

 O
nly

27 

APPENDIX II 562 

Parametric approach: Stochastic frontier production function (SFPF) with a model for 563 

technical inefficiency effects 564 

In order to estimate the potential production and efficiency levels of the different 565 

density treatments we applied onestep stochastic frontier analysis assuming a translog 566 

frontier function with a model for inefficiency, which is assumed to depend on the 567 

density treatments (Battese and Broca, 1997; Battese and Coelli, 1995)  Our model can 568 

be expressed as follows 569 

exp( ( ) )it it it itY f X v u= + −  (4) 570 

where Yit is the output expressed as harvest production (Kg/rope) for the ith density 571 

treatment at time t, Xit: is the vector of inputs, in our case stocking biomass (X1) and 572 

cycle length (X2), Vit is the stochastic error term and Uit is the estimate of the technical 573 

inefficiency TEit=exp(Uit). The stochastic error term are assumed to be independent 574 

and identically distributed N(0,σv
2
) and independent of Uti. The distribution of the 575 

inefficiency error term is a truncation (at zero) of the normal distribution with mean  =576 

it
z δ and variance σu

2
, i.e  

it it itU z Wδ= + , where, zit is the vector of variables that may 577 

affect technical inefficiency, δ is the associated vector of parameters and Wit are random 578 

error terms (N(0,σw
2
)). Positive coefficients (δ > 0) indicate relative technical 579 

inefficiency while negative coefficients (δ < 0) point out relative technical efficiency. 580 

The more the estimated value differs from zero, the stronger the efficiency/inefficiency. 581 

In this study, initial density was introduced as dummy variable to account for 582 

differences in efficiency across the density gradient. 583 
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The most common parametric model for the stochastic frontier function, ( )itf X584 

, is the translog production frontier function: 585 

( ) ( )( )
0 1 1 2 2

2 2

11 1 12 1 2 22 2

ln ln ln

1
        ln 2 ln ln ln

2

it it it

it it it it it it

Y X X

X X X X v u

β β β

β β β

= + +

+ + + + −
 (5) 586 

where the interaction between stocking biomass and cycle length implies nonneutral 587 

technical change. If all βjk = 0, then the previous model reduces to a Cobb–Douglas (C–588 

D) SFPF model:  589 

The parameters of the stochastic frontier and the model for the technical 590 

inefficiency effects were simultaneously estimated by maximum likelihood. The 591 

likelihood function is expressed in terms of the variance parameters σ
2
=σv

2
+σu

2
 and 592 

γ=σu/σ, which measures the proportion of deviation from the frontier due to technical 593 

inefficiency (Battese and Coelli, 1993). Model selection for the frontier function and the 594 

inefficiency effects were performed by oneside generalized likelihoodratio tests (LR):595 

596 

( ) ( ){ }{ } ( ) ( ){ } 2

0 1 0 12 ln 2 ln ln ~LR L H L H L H L H χ= − = − −        (6) 597 

Where L(H0) and L(H1) are the likelihood functions under the null and alternative 598 

hypotheses, respectively. The stochastic frontier model selection was conducted testing 599 

the null hypothesis: H0: βjk = 0, i.e. testing whether the translog SFPF (eq. 3) can be 600 

reduced to a CobbDouglas SFPF. The inefficiency model selection was conducted by 601 

the following multistage hypothesis test: 602 

1. H0: γ = δ0 = δ1 = . . . = δ7 = 0, which implies total efficiency, i.e. the model can be 603 

reduced to the traditional mean response function, without the inefficiency error 604 

term ui. 605 
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2. H0: γ = 0, which implies that the inefficiencies are not stochastic. 606 

3. H0: δ1 = . . . = δ7 = 0, which implies that the inefficiency effects are independent of 607 

the density treatment. 608 

609 

The output elasticity for each input factor, Xj (j=1, 2), defined as the percentage 610 

change of the ith output at time t for a 1% change in the jth input, is given by: 611 

( )
( ) 1

ln
ln( )

ln

m
jitit it

jit j jk kit

kjit itjit

XY Y
EX X

X YX
β β

=

∂ ∂
= = = +

∂∂
∑  (7)612 

613 

Since for the translog SFPF, EXjit is different for each treatment and time, we use the 614 

sample mean of each input factor across all treatments and times, EXj to represent EXjit. 615 

The sum of these parameters is the return to scale (RTS), which measures the 616 

percentage change in output from a 1% change in all input factors. When RTS > 1 (RTS 617 

< 1) the production function exhibits increasing (decreasing) returns to scale, i.e. a 618 

simultaneous increase in all inputs by a certain percentage results in greater (lower) 619 

percentage increase in output. If RTS = 1, the farm present constant returns to scale, 620 

implying that a proportionate increase in inputs will lead to the same increase in output. 621 

The crosselasticity of substitution (Chiang et al., 2004) for factors j and k under 622 

the translog SFPF (eq. 3) model is defined as:  623 

1
jk

jk

j k

H
EX EX

β
= −

+
 (8) 624 

H12 > 0 indicates that the inputs are jointly complementary, i.e. we need to increase 625 

stocking biomass and cycle length together to raise total production. Hjk < 0 indicates a 626 
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competitive relationship between inputs, i.e. a decrease in stocking biomass could be 627 

compensated elongating the culture period.  628 

The economic efficiency of an input can be analyzed by comparison between the 629 

incremental benefit of an additional unit and its incremental cost. Assuming constant 630 

unit input cost, Px, and output price, Py, the value of marginal product (VMP) is defined 631 

as: 632 

it it yVMP MPP P= ⋅  (9) 633 

where MPP is the marginal physical product, which according to Ferguson, (2008) is 634 

equal to the elasticity of scale. If the value of the marginal product (VMP) of an input is 635 

greater than its price (Px), profit could be increased by increasing the use of that input, 636 

and conversely. To achieve efficient use of an input, the value of its marginal product 637 

should be equal to its price.   638 

639 

  640 
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Table 1: Summary of production costs included in the efficiency models. 641 

€/rope Min (220 ind/m) Mean (sd) Max (1150 ind/m)

Mussel 10.5 23.43 (8.77) 39.9 

Labour 6.7 11.62 (3.02) 18.67 

Transport 2.2 3.81 (0.99) 6.13 

Occupation 1.38 €/month 

642 

643 

Table 2: Hypothesis test for stochastic production function and inefficiency models. 644 

HO loglik H0 loglik H1 df LR pvalue 

CD vs translog 93.374 106.316 3 25.883 1.01E05 ***

γ = δ1 = … =δ7= 0 76.699 106.316 8 59.235 2.88E10 ***

γ = 0 76.699 83.901 3 14.406 0.001 ** 

δ1 = … =δ7= 0 76.718 106.316 6 59.196 6.55E11 ***

   (***) pvalue < 0.001, (**) pvalue < 0.01, (*) pvalue < 0.05. 645 

646 

Table 3: Model parameters, output elasticities and technical efficiencies for the translog 647 

SFPF. 648 

 Parameter pvalue   

Elacticies 

    Stocking rate 0.473 <2.2e16 ***

    Days 0.500 <2.2e16 ***

    RTS 0.973 0.057

σ
2 0.0198 <2.2e16 ***

γ 0.0114 <2.2e16 ***

Inefficiency factors (δ) TE 

220 0.725 7.67E10 *** 0.484

370 0.347 0.0002 *** 0.707

500 0.164 0.0429 * 0.850

570 0.163 0.0187 * 0.850

700 0.084 0.1502  0.921

800 0.132 0.0026 ** 0.877

1150 1.025 1.68E06 *** 1.000

(***) pvalue < 0.001, (**) pvalue < 0.01, (*) pvalue < 0.05. 649 

650 
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Table 4: Changes in productivity, efficiency and technology for total production. 651 

Number greater (lower) than 1 indicate progress (regress).652 

Total production (kg/rope) 

Malmquist indices 

 MJn  JnJl  JlAu  AuS  SO  ON  

220 1.788 ** 1.294 ** 0.986 ** 1.253 ** 1.219 ** 0.989 ** 

370 1.555 ** 1.323 ** 1.141 ** 1.216 ** 1.113 ** 0.911 ** 

500 1.500 ** 1.327 ** 1.202 ** 1.181 ** 0.917 ** 1.077 ** 

570 1.800 ** 1.147 ** 1.273 ** 0.992  1.001  0.911 ** 

700 1.458 ** 1.156 ** 1.202 ** 1.168 ** 0.860 ** 1.381 ** 

800 1.454 ** 1.371 ** 1.208 ** 1.032 ** 0.831 ** 1.312 ** 

1150 2.041 ** 1.037 ** 1.208 ** 1.207 ** 0.852 ** 1.094 ** 

Efficiency 

 MJn  JnJl  JlAu  AuS  SO  ON  

220 1.107 ** 1.042 ** 0.819 ** 1.051  1.183 ** 0.955  

370 0.963  1.065 ** 0.947 ** 1.021  1.096  0.880 ** 

500 0.929 ** 1.082 ** 1.000  1.000  0.981  0.957  

570 1.114 ** 0.982  1.031  0.864 ** 1.099 ** 0.756 ** 

700 0.903 ** 1.045 ** 0.983 ** 0.997  0.965 * 1.121 ** 

800 0.814 ** 1.285 ** 0.994  0.858 ** 0.952 ** 1.137 ** 

1150 1.087  1.000  1.000  1.000  1.000  1.000  

Technology 

 MJn  JnJl  JlAu  AuS  SO  ON  

220 1.615 ** 1.242 ** 1.205 ** 1.192 ** 1.030  1.036  

370 1.615 ** 1.242 ** 1.205 ** 1.192 ** 1.015  1.036  

500 1.615 ** 1.227 ** 1.202 ** 1.181 ** 0.935 ** 1.125 ** 

570 1.615 ** 1.168 ** 1.235 ** 1.148 ** 0.911 ** 1.205 ** 

700 1.615 ** 1.106 ** 1.222 ** 1.171 ** 0.891 * 1.233 ** 

800 1.787 ** 1.067  1.215 ** 1.202 ** 0.873 ** 1.154 * 

1150 1.878 ** 1.037  1.208 ** 1.207 ** 0.852 ** 1.094  

  (***) pvalue < 0.001, (**) pvalue < 0.01, (*) pvalue < 0.05. 653 
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Table 5: Changes in productivity, efficiency and technology for fresh sale revenues. 654 

Number greater (lower) than 1 indicate progress (regress).655 

Fresh sale (€/rope) 

Malmquist index 

MJn  JnJl  JlAu  AuS  SO  ON  

220 NA  1.498 ** 1.279 ** 1.253 ** 1.330 ** 0.997 ** 

370 6.014 ** 1.403 ** 1.291 ** 1.672 ** 1.003  1.093 ** 

500 2.807 ** 1.413 ** 1.361 ** 1.403 ** 0.963 ** 1.074 ** 

570 NA  1.214 ** 1.546 ** 1.116 ** 1.040 ** 0.910 ** 

700 NA  1.320 ** 1.331 ** 1.367 ** 0.858 ** 1.581 ** 

800 NA  1.335 ** 1.437 ** 1.239 ** 0.823 ** 1.447 ** 

1150 NA  1.340 ** 1.452 ** 1.500 ** 0.722 ** 1.291 ** 

Efficiency 

MJn  JnJl  JlAu  AuS  SO  ON  

220 NA  1.122 ** 0.893 ** 0.876 ** 1.303 * 0.831 ** 

370 2.004 ** 1.051  0.901 ** 1.177 ** 1.000  0.911 * 

500 0.935  1.069 ** 0.950  1.026  1.025  0.810 ** 

570 NA  0.955  1.047  0.843 ** 1.186 ** 0.620 ** 

700 NA  1.000  0.944 * 0.991  1.049 ** 1.019  

800 NA  1.005  1.015  0.853 ** 1.078 ** 0.966  

1150 NA  1.000  1.000  1.000  1.000  0.886 ** 

Technology 

MJn  JnJl  JlAu  AuS  SO  ON  

220 NA  1.335 ** 1.432 ** 1.429 ** 1.021  1.200 ** 

370 3.001 ** 1.335 ** 1.432 ** 1.420 ** 1.003  1.200 ** 

500 3.001 ** 1.322 ** 1.432 ** 1.367 ** 0.939 ** 1.325 ** 

570 NA  1.271 ** 1.476 ** 1.323 ** 0.877 ** 1.469 ** 

700 NA  1.320 ** 1.409 ** 1.379 ** 0.818 ** 1.551 ** 

800 NA  1.329 ** 1.415 ** 1.452 ** 0.763 ** 1.499 ** 

1150 NA  1.340 ** 1.452 ** 1.500 ** 0.722 ** 1.456 ** 

  (***) pvalue < 0.001, (**) pvalue < 0.01, (*) pvalue < 0.05. 656 
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Table 6: Changes in productivity, efficiency and technology for industry sale revenues. 657 

Number greater (lower) than 1 indicate progress (regress).658 

Industry (€/rope) 

Malmquist indices 

MJn  JnJl  JlAu  AuS  SO  ON  

220 2.986 ** 1.374 ** 1.023 ** 1.138 ** 1.011 ** 0.957 ** 

370 2.649 ** 1.399 ** 1.083 ** 1.180 ** 0.965 ** 0.811 ** 

500 3.133 ** 1.418 ** 1.210 ** 1.003 ** 0.892 ** 0.960 ** 

570 4.087 ** 1.219 ** 1.341 ** 0.782 ** 0.900 ** 0.890 ** 

700 2.378 ** 1.168 ** 1.128 ** 1.093 ** 0.772 ** 1.321 ** 

800 3.281 ** 1.464 ** 1.187 ** 0.982 ** 0.703 ** 1.314 ** 

1150 4.588 ** 1.122 ** 1.171 ** 1.160 ** 0.633 ** 1.193 ** 

Efficiency 

MJn  JnJl  JlAu  AuS  SO  ON  

220 1.174 ** 1.035  0.813 ** 1.172 ** 1.032  1.003  

370 1.042 * 1.054 ** 0.862 ** 1.216 ** 1.000  0.849 ** 

500 1.232 ** 1.080 ** 0.962 * 1.039  1.000  0.926 * 

570 1.607 ** 0.972  1.029  0.816 ** 1.112 ** 0.775 ** 

700 0.935  0.980  0.903 ** 1.068  1.042 ** 1.086 ** 

800 1.166 ** 1.271 ** 0.977 ** 0.891 ** 1.037 ** 1.091 ** 

1150 1.551 ** 1.000  1.000  1.000  1.000  1.000  

Technology 

MJn  JnJl  JlAu  AuS  SO  ON  

220 2.544 ** 1.328 ** 1.257 ** 0.971  0.980  0.955  

370 2.544 ** 1.328 ** 1.257 ** 0.970  0.965  0.955  

500 2.544 ** 1.313 ** 1.257 ** 0.965  0.892 ** 1.036  

570 2.544 ** 1.254 ** 1.303 ** 0.959  0.809 ** 1.148 ** 

700 2.544 ** 1.191 ** 1.249 ** 1.024  0.740 ** 1.217 ** 

800 2.815 ** 1.152 ** 1.214 ** 1.102 ** 0.678 ** 1.204 ** 

1150 2.958 ** 1.122 * 1.171 ** 1.160 ** 0.633 ** 1.193 ** 

  (***) pvalue < 0.001, (**) pvalue < 0.01, (*) pvalue < 0.05.  659 
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Figure  captions 660 

Fig. 1. Interaction plots of density (ind/m), total production (Kg/rope), individuals per 661 

kilogram of mussels (ind/Kg), individuals per kilogram of tissue (ind/Kg of tissue), 662 

condition index (%), fresh and industry sale prices (€/Kg) and costs (€/rope). 663 

Fig. 2: GAM fit showing the effect of stocking biomass (Kg/rope) and cycle length 664 

(days) on fresh sale and industry sale profits (€/rope). 665 

Fig. 3: GAM fits for the temporal evolution of profits obtained by fresh (black) and 666 

industry sale (red) by density treatment. 667 

Fig. 4: Top: Marginal costs (Px left) and VMP indices for total production of stocking 668 

biomass for fresh (centre) and industry (right) sale. Bottom: ratio between VMP and 669 

marginal costs for fresh and industry sale.  670 

Fig. 5: Malmquist productivity, efficiency and technology indices for total production 671 

(top), fresh sale revenues (centre) and industry sale revenues (bottom).672 
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(ind/Kg), individuals per kilogram of tissue (ind/Kg of tissue), condition index (%), fresh and industry sale 
prices (€/Kg) and costs (€/rope).  

151x154mm (150 x 150 DPI)  

Page 36 of 40Reviews in Aquaculture



For R
eview

 O
nly

Fig. 2: GAM fit showing the effect of stocking biomass (Kg/rope) and cycle length (days) on fresh sale and 
industry sale profits (€/rope).  
99x55mm (300 x 300 DPI)  
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Fig. 3: GAM fits for the temporal evolution of profits obtained by fresh (black) and industry sale (red) by 
density treatment.  

239x479mm (300 x 300 DPI)  
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Fig. 4: Top: Marginal costs (Px left) and VMP indices for total production of stocking biomass for fresh 
(centre) and industry (right) sale. Bottom: ratio between VMP and marginal costs for fresh and industry 

sale. 
160x137mm (150 x 150 DPI) 
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Fig. 5: Malmquist productivity, efficiency and technology indices for total production (top), fresh sale 
revenues (centre) and industry sale revenues (bottom).  

219x241mm (300 x 300 DPI)  

Page 40 of 40Reviews in Aquaculture


