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ABSTRACT Pseudomonas aeruginosa produces an extracellular biofilm matrix that con-

sists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the pro-

tein component of the biofilm matrix is poorly defined and understudied relative to the

other major matrix constituents. While matrix proteins have been suggested to provide

many functions to the biofilm, only proteins that play a structural role have been char-

acterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa bio-

films. We then focused on a candidate matrix protein, the serine protease inhibitor eco-

tin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme

produced by the host immune system during P. aeruginosa biofilm infections. We show

that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit

neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both

planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This

may represent a novel mechanism of protection for biofilms to increase their tolerance

against the innate immune response.

IMPORTANCE Proteins associated with the extracellular matrix of bacterial aggregates

called biofilms have long been suggested to provide many important functions to the

community. To date, however, only proteins that provide structural roles have been de-

scribed, and few matrix-associated proteins have been identified. We developed a

method to identify matrix proteins and characterized one. We show that this protein,

when associated with the biofilm matrix, can inhibit a bactericidal enzyme produced by

the immune system during infection and protect biofilm cells from death induced by

the enzyme. This may represent a novel mechanism of protection for biofilms, further

increasing their tolerance against the immune response. Together, our results are the

first to show a nonstructural function for a confirmed matrix-interacting protein.
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Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of

chronic infections (1). Many of these chronic infections have been linked to the

biofilm mode of growth. Such infections are difficult to eradicate because bacteria in

biofilms have a higher tolerance against antimicrobial agents than their planktonic

counterparts (2). A key feature of biofilm communities is an extracellular matrix, which

surrounds the resident bacteria and is composed of extracellular DNA (eDNA), exopo-

lysaccharides, lipid vesicles, and matrix proteins. While the three exopolysaccharides of

the P. aeruginosa biofilm matrix (Psl, Pel, and alginate) (3) have been fairly well studied,

our knowledge of the matrix proteins and their roles in the community is very limited

as such studies are technically challenging.

While global proteomic approaches have been used to study P. aeruginosa biofilms
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(4), most studies do not distinguish between proteins derived directly from resident

cells in the biofilm and proteins found in the extracellular matrix environment. Many of

these studies have characterized the proteins in the total biofilm (cellular and matrix

proteins), while others have identified the proteins in the matrix once the cells have

been removed. Since the latter requires excessive processing of the biofilm community

in order to isolate the matrix proteins from the cells, it is likely that some cells lyse

during the processing, leading to contamination by cellular proteins.

To date, studies of matrix proteins have focused primarily on the proteins that

provide structural support to the biofilm, such as adhesins, nucleoid-associated pro-

teins, and amyloid proteins (5). However, several exciting roles that extend beyond

promoting structural integrity for matrix proteins have been proposed (6). Biochemical

activities are found in the matrices of environmental biofilms (7), suggesting that

biochemically active matrix proteins may be providing important functions for the

community. However, examples of nonstructural proteins that are active while bound

to the biofilm matrix are essentially lacking in the literature. Interestingly, there is

precedence supporting this possibility in eukaryotic biology, where proteins in the

basement membrane have been shown to carry out a multitude of functions (8).

In this study, we identified 60 matrix-associated proteins using a noninvasive

proteomic approach. We hypothesized that the extracellular matrix selectively retains

biochemically active proteins that aid in the protection of the biofilm. We predict that

19 of the 60 proteins have protective functions. We focused on one candidate matrix

protein, ecotin (PA2755), a serine protease inhibitor (9). This protein is of interest

because of its ability to inhibit neutrophil elastase, an enzyme produced by the innate

immune system during P. aeruginosa respiratory infections (10). During biofilm growth,

ecotin levels within the extracellular matrix were found to increase over time. We show

that ecotin binds to the biofilm exopolysaccharide Psl and that it inhibits neutrophil

elastase when bound to a Psl matrix in a cell-free system. Finally, we show that ecotin

can protect both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-

mediated cell death. Collectively, these results suggest that the P. aeruginosa biofilm

matrix binds to and retains specific proteins that remain active in the extracellular

environment, thereby protecting the biofilm community.

RESULTS

Identification of proteins enriched in the biofilm matrix. To identify proteins

enriched in the biofilm matrix of P. aeruginosa, we modified a protocol used by Absalon

and colleagues in Vibrio cholerae (11). Briefly, the extracellular proteins of mature

P. aeruginosa PAO1 biofilms were biotinylated prior to biofilm disruption. The biotin-

ylated proteins were then purified and identified using quantitative mass spectrometry.

This “extracellular matrix proteome” was compared to the proteome of the total

biofilm, in which the cells in the biofilm were lysed prior to the biotinylation of the

proteins. In comparison to the extracellular matrix proteome, the “total biofilm pro-

teome” contains both intracellular and extracellular proteins. Therefore, matrix proteins

will be higher in abundance in the extracellular matrix proteome than in the total

biofilm proteome. For a negative control, this analysis was also performed in the

absence of the biotinylation agent for both the extracellular matrix and total biofilm

proteomes.

This analysis was conducted twice, and a total of 857 unique proteins were identi-

fied in both runs (Fig. 1). The candidate matrix proteins were identified on the basis of

the following criteria: (i) the candidate matrix proteins had greater than or equal to

two-fold spectrum counts in the extracellular biofilm proteome relative to the total

biofilm proteome analysis; (ii) the candidate proteins had at least 10 spectrum counts

in the extracellular biofilm proteome; and (iii) the candidate proteins had greater than

or equal to two-fold spectrum counts in the biotinylated extracellular biofilm proteome

relative to the biofilm proteome without biotinylation. By comparing the proteomes

using these high-stringency criteria, we identified 60 proteins that are enriched in the

biofilm matrix in both analyses (Fig. 1; see Tables S1 and S2 in the supplemental
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material). On the basis of their predicted biochemical activities, we categorized 19 of

the 60 proteins as potentially playing a role in the protection of the biofilm matrix

(Fig. 1 and Table S1). Of these 19 proteins, 12 have predicted oxidoreductase activity

based on the InterProScan software package (12), and another four proteins may play

a role in redox processes. Of the remaining three proteins predicted to play a role in the

protection of the biofilm matrix, two have functions in facilitating protein folding, and

one is a serine protease inhibitor, which we chose to further investigate. It is important

to note that our classification of these proteins as potentially playing a protective role

in the biofilm matrix has not been verified, and it is possible that these proteins provide

other functions in the matrix.

Ecotin is a candidate matrix protein. To validate our proteomic analysis, we

focused on ecotin, a serine protease inhibitor (9) that is encoded by PA2755 (referred

to herein as eco). Ecotin was enriched approximately four-fold in the matrix proteome

(Table S1). Originally identified in Escherichia coli, ecotin inhibits enzymes, such as

trypsin, chymotrypsin, and neutrophil elastase (9). While found in a wide variety of

Gammaproteobacteria, most bacteria, including P. aeruginosa, that carry an eco gene do

not produce proteases of the class that ecotin inhibits, which suggests that ecotin does

not inhibit a bacterium’s own proteases (13, 14). Instead, it has been suggested that

ecotin may protect bacteria from external proteolytic attack in metazoan hosts. Sup-

porting this hypothesis, ecotin in E. coli can protect against neutrophil elastase-

mediated cell death in vitro (15). Furthermore, ecotin and ecotin-like proteins have

been shown to be important for the virulence of Burkholderia pseudomallei (13) and the

infectivity of Leishmania major (16). We, therefore, hypothesized that ecotin in the

biofilm matrix may protect P. aeruginosa biofilms against proteases such as neutrophil

elastase, an enzyme the bacteria commonly come into contact with during chronic

biofilm-based infections (10) via the following two mechanisms: (i) ecotin may protect

proteins in the matrix from proteolytic degradation by neutrophil elastase, and (ii)

ecotin may protect biofilm cells from neutrophil elastase-mediated death. Both possi-

bilities would help preserve biofilm integrity and are not mutually exclusive.

Ecotin is found to accumulate within the extracellular matrix of mature bio-

films. Since P. aeruginosa has been shown to have strain-to-strain differences in its

production of biofilm matrix components (17), we examined ecotin expression in a

subset of the sequenced P. aeruginosa strains in the Pseudomonas Genome Database,

all of which contain an eco gene (18) and are able to produce the P. aeruginosa

exopolysaccharides Psl and Pel (17). Via immunoblotting, we found that ecotin is
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FIG 1 Proteomic analysis of the P. aeruginosa biofilm matrix. Using quantitative mass spectrometry, the

extracellular matrix proteome of mature P. aeruginosa biofilms was compared with the total matrix

proteome. The spectrum counts of each protein identified in two separate runs of this analysis were

compared (857 total proteins; small black circles). The candidate matrix proteins are shown in gray

squares (60 total proteins). The yellow diamonds denote proteins that we predict are involved in the

protection of the biofilm (19 of the 60 total proteins).
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expressed in all nine of the tested clinical and environmental isolates. In stationary

phase, the expression levels for these strains were at a level similar to that of our

laboratory PAO1 reference strain (Fig. S1).

Next, we determined whether ecotin expression or its presence in the biofilm matrix

changes during the course of biofilm growth. Using a culturing methodology similar to

that used in the proteomic analysis, we used immunoblotting to test for the presence

of ecotin in the total biofilm and the extracellular matrix of biofilms grown for 48, 96,

and 144 h. While ecotin is present at approximately equal levels in the total harvested

biofilm biomass at all three time points of development, it was found in the extracel-

lular matrix at high levels only in the older 144-h biofilms (Fig. 2A). This increase in

ecotin in the extracellular matrix was associated with a corresponding increase in the

amounts of matrix-associated Psl exopolysaccharide (Fig. 2B).

Ecotin binds to the biofilm exopolysaccharide Psl. Because the accumulation of

ecotin in the matrix was temporally associated with the accumulation of Psl (Fig. 2), we

speculated that ecotin interacts with Psl. To test this hypothesis, we used a coimmu-

noprecipitation method previously described to identify CdrA as a Psl-binding protein

(19). Using anti-Psl antibody-coated beads, we precipitated Psl and any interacting

proteins from cell-free supernatants of eco-overexpressing strains with wild-type or psl

mutant backgrounds. Ecotin was then detected by immunoblotting. Ecotin coprecipi-

tated with anti-Psl antibodies in the presence, but not in the absence, of Psl (Fig. 3). For

a negative control, we examined whether another protein when overexpressed would

coimmunoprecipitate with Psl. While Tse1, an effector of the type VI secretion system

(20), was expressed, it did not precipitate with anti-Psl antibodies even in the presence

of Psl (Fig. 3). In addition, using the proteomic analysis that identified ecotin as a

matrix-interacting protein, we failed to identify ecotin as a protein enriched in the

matrix of a biofilm lacking Psl. In the two separate runs, only nine and two spectral

counts were obtained for ecotin in the biotinylated extracellular biofilm proteome of a

Psl-negative biofilm. Since these counts are below our threshold of 10 counts, ecotin

was eliminated from further analysis of matrix-enriched proteins for the Psl-negative

biofilm. Together, these results confirm that ecotin binds to the biofilm matrix via the

exopolysaccharide Psl and validates our screening methodology for matrix proteins.

Matrix-associated ecotin can inhibit neutrophil elastase activity. Since a protein

may lose its functionality outside the cell when interacting with the matrix, we sought

to determine whether matrix-bound ecotin is functionally active in a cell-free system.

To obtain matrix-bound ecotin, we immunoprecipitated Psl from cell-free supernatants

of cells that were overproducing both ecotin and Psl. As a control, Psl was immuno-

IB: Ecotin

48 96 144 Biofilm (h)

Total biofilm

48 96 144

Extracellular 
matrix

A

B

Matrix-
associated Psl

Biofilm (h)48 96 144P
os

 c
trl

N
eg
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FIG 2 Ecotin accumulates within the extracellular matrix of mature biofilms. Biofilms were prepared

similarly to biofilms prepared for the proteomic analysis and harvested at the indicated time points. (A)

An immunoblot (IB) of ecotin in the total biofilm and the extracellular matrix at different points in biofilm

development. (B) The corresponding immunoblot of the matrix-associated Psl of the samples in panel A.

The two leftmost lanes are a positive control (Pos ctrl) and negative control (Neg ctrl).
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precipitated from cell-free supernatants of Δeco cells that were overproducing only Psl.

The activity of neutrophil elastase was then tested in the presence of ecotin-bound or

ecotin-free matrix material. With the ecotin-bound matrix, neutrophil elastase activity

was inhibited 52.1% � 10.2% (mean � standard deviation [SD]; n � 5; P � 0.01)

compared to that with the ecotin-free matrix (Fig. 4A). This partial inhibition is likely due

to experimental technicalities: the immunoprecipitated ecotin-bound matrix contained

only 16.5 � 3.2 nM ecotin (n � 3) compared to the 100 nM neutrophil elastase added

to the experiment. Furthermore, this inhibition is likely not due to the release of ecotin

+ – +

Input

IP: Psl

Psl

IB: Ecotin IB: Tse1

A

Psl

B

FIG 3 Ecotin binds to the exopolysaccharide Psl. Psl was immunoprecipitated from cell-free superna-

tants of stationary-phase cultures with anti-Psl antibodies, and coprecipitating proteins were eluted and

detected by immunoblotting. For ecotin, the supernatants were from strains overexpressing ecotin in

wild-type (�) or psl mutant (�) backgrounds. For Tse1, the supernatant was from a ΔretS mutant strain.

Input and Psl immunoprecipitation (IP: Psl) are shown. (A) Immunoblots (IB) for ecotin and Tse1. (B) The

corresponding Psl immunoblot of the samples in panel A.
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FIG 4 Matrix-bound ecotin inhibits neutrophil elastase. Psl was immunoprecipitated (IP) from superna-

tants obtained from cells overexpressing either Psl alone (Δeco; PBAD-psl) or both Psl and ecotin (Δeco;

PBAD-psl; PBAD-eco). Human neutrophil elastase and a fluorogenic substrate were added. Enzymatic activity

was monitored via cleavage of the substrate. (A) Elastase activity in the presence of ecotin-free and

ecotin-bound matrix material. Elastase activity is shown in the change in arbitrary units (ΔAU) per change

in time (in minutes). The error bars show 1 standard error of the mean (SEM) (n � 5). Values that are

significantly different (P � 0.01) by Student’s t test are indicated by the bar and asterisk. (B) Immunoblot

of ecotin before and after the elastase activity assay in panel A. Samples contained either ecotin-free

matrix or ecotin-bound matrix. IN, input for immunoprecipitation; IP, immunoprecipitated matrix

material.
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from the matrix, since approximately equal amounts of ecotin were bound to the

matrix before and after the elastase activity assay by immunoblotting (Fig. 4B). None-

theless, these results show that matrix-associated ecotin can inhibit neutrophil elastase,

suggesting that ecotin in the biofilm matrix can protect other matrix proteins from

proteolytic degradation.

Ecotin can protect planktonic P. aeruginosa from neutrophil elastase-mediated

killing. Since ecotin has previously been shown to protect planktonic E. coli from

neutrophil elastase-mediated killing (15), we looked at whether ecotin could protect

P. aeruginosa planktonic and biofilm cells from neutrophil elastase. Using planktonic

cells, we compared the effect of neutrophil elastase treatment on the viability of

wild-type versus Δeco cells (Fig. 5). While wild-type cells decreased in viability when

treated with neutrophil elastase (a decrease of 0.93 � 0.14 log10-transformed CFU/ml

[mean � SD]; n � 3), Δeco cells had significantly more cell death (a loss of 2.47 � 0.25

log10-transformed CFU/ml; n � 3; P � 0.01). This difference in viability is due to

neutrophil elastase, since wild-type and Δeco cells grew to similar levels in the absence

of neutrophil elastase (Fig. 5). Furthermore, this defect in Δeco cells could be rescued

by complementing the strain with an ectopic copy of eco driven under its native

promoter. When treated with neutrophil elastase, the complemented strain had a

decrease in viability that was indistinguishable from that of wild-type cells (a decrease

of 1.48 � 0.47 log10-transformed CFU/ml; n � 3; P � 0.10).

Ecotin can protect P. aeruginosa in a biofilm from neutrophil elastase-mediated

killing. While our data (Fig. 4 and 5) support our hypothesis that ecotin in the biofilm

matrix can protect the biofilm against neutrophil elastase, to more directly test this

hypothesis, we treated static glass-grown biofilms with neutrophil elastase and deter-

mined the percentage of cells killed by the treatment based on viability (propidium

iodide) staining. As expected, we saw that indeed Δeco biofilms were more susceptible

to killing by neutrophil elastase than wild-type biofilms were (Fig. 6A). In the absence

of neutrophil elastase treatment, Δeco biofilms had an equivalent number of dead cells

as that in wild-type biofilms (P � 0.57; n � 3). In comparison, after neutrophil elastase

treatment, Δeco biofilms had significantly more cell death than wild-type biofilms did

(P � 0.01; n � 3). Furthermore, complementation of eco rescued the biofilm suscep-

tibility defect (P � 0.70; n � 3). These results show that ecotin can protect the biofilm

from neutrophil elastase-mediated killing. This experiment, however, does not separate

the contribution of the cellular ecotin in the periplasm from that of the extracellular

matrix-bound ecotin.

WT ∆eco
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* *

FIG 5 Ecotin protects planktonic P. aeruginosa cells from neutrophil elastase-mediated killing. Planktonic

cells were grown to stationary phase (OD600 of ~2.0) and then treated with neutrophil elastase for 2 h

before cell viability was determined for wild-type (WT) cells, cells lacking ecotin (Δeco), and Δeco cells

complemented ectopically with ecotin (Δeco � eco). Log-transformed CFU/ml after treatment was

subtracted from the value before treatment to obtain the log kill. Positive numbers represent cell death,

and negative numbers represent cell growth. Error bars show 1 SEM (n � 3). Values that are significantly

different (P � 0.01) by analysis of variance (ANOVA) with a posthoc Tukey test are indicated by a bar and

asterisk.
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To isolate the contribution of the extracellular matrix-bound ecotin, we examined

whether exogenous addition of ecotin can protect Δeco biofilms from neutrophil

elastase-mediated cell death (Fig. 6B). We first purified recombinant ecotin and con-

firmed that this protein was capable of inhibiting neutrophil elastase in vitro (Fig. S2),

similar to that previously seen by Eggers and colleagues (15). We then tested the ability

of this protein to rescue neutrophil elastase-mediated killing of the Δeco biofilm by

exposing the biofilms to this recombinant ecotin and then rinsing the biofilms to

remove any ecotin that did not bind to the matrix before neutrophil elastase treatment.

After neutrophil elastase treatment, Δeco biofilms exposed to recombinant ecotin had

significantly fewer dead cells compared to Δeco biofilms not exposed to recombinant

ecotin (P � 0.05; n � 3) and had an equivalent number of dead cells to that of Δeco

biofilms that were not treated with neutrophil elastase (P � 0.90; n � 3). This rescue of

neutrophil elastase-mediated cell death in Δeco biofilms via the addition of recombi-

nant ecotin is dependent on Psl. Unlike Δeco biofilms, biofilms of a mutant strain that

lack both ecotin and Psl production (Δeco ΔpslD mutant) that were exposed to

recombinant ecotin had significantly more cell death after neutrophil elastase treat-

ment compared to biofilms not exposed to neutrophil elastase (P � 0.05; n � 3).

Therefore, Psl is required for the supplemented ecotin to protect the biofilm against

neutrophil elastase-mediated cell death. This requirement for Psl is likely only for the

extracellular portion, and not the periplasmic cellular portion, of ecotin in wild-type

P. aeruginosa biofilms, since endogenous cellular ecotin in other bacteria protects

against neutrophil elastase independent of Psl. These results further support our
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FIG 6 Ecotin protects P. aeruginosa biofilm cells from neutrophil elastase-mediated killing. (A) Static

biofilms of the wild-type (WT) strain, Δeco mutant, and Δeco mutant complemented with ecotin (Δeco �

eco) were grown on glass slides for 20 h and then treated with neutrophil elastase for 30 m. (B) The

indicated biofilms were exposed to recombinant ecotin (rEco) for 15 min and then rinsed before elastase

treatment. The adherent biomass was then stained with Syto9 to visualize the living cells (green) and

propidium iodide to visualize the dead cells (magenta). Representative images are shown with the

percentage of cells that are dead � 1 SEM (n � 3). Bars, 25 �m.
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conclusion that ecotin is a Psl-interacting protein in the biofilm matrix and that

matrix-associated ecotin is functional. Together, our results show that ecotin in the

matrix can protect not only other matrix proteins but also biofilm cells from proteolytic

attack.

DISCUSSION

While matrix proteins have been suggested to provide several nonstructural func-

tions to the biofilm community (6), examples of such proteins in the literature are very

limited. We, therefore, undertook a proteomic approach to identify matrix proteins in

P. aeruginosa biofilms (Fig. 1; also see Table S1 in the supplemental material). As a proof

of principle, we characterized one candidate matrix protein, ecotin. This protein was of

interest because it inhibits neutrophil elastase, a bactericidal enzyme produced by the

innate immune system during P. aeruginosa respiratory infections. Our data strongly

suggest that this matrix protein is active when bound to the exopolysaccharide Psl

(Fig. 4A and 6), and our data show that it can protect P. aeruginosa in a biofilm from

neutrophil elastase-mediated killing (Fig. 6). While recombinant ecotin has been pre-

viously shown to inhibit neutrophil elastase (15), our data strongly suggest that not

only does the endogenous P. aeruginosa ecotin inhibit neutrophil elastase but that it

does so when bound to the biofilm matrix. This is not an inherently obvious result, as

binding to the matrix, or any other molecule, could have impaired ecotin function. We

propose that matrix-associated proteins play a crucial role in biofilm-mediated resis-

tance to host defenses.

The major advantage of our proteomic approach is its selectivity. First, biofilms were

grown under continuous flow. Since cell lysis is a natural part of biofilm formation, the

flow allows proteins that do not interact with the matrix to be continuously washed

away. This flow-based growth method is, therefore, more stringent for identifying

matrix-interacting proteins than the static methods for biofilm growth that have been

used in the past, in which a limited number of washes are used to remove noninter-

acting proteins (21–23). Second, for the extracellular matrix proteome, the proteins in

the biofilm matrix are labeled prior to mechanical/physical disruption of the system,

limiting the effects of experimentally introduced cell lysis and greatly reducing the

probability of cellular protein contamination. Third, the extracellular matrix proteome is

compared to the total biofilm proteome at the same point in biofilm development,

eliminating the effects of general proteome changes that are known to occur over

biofilm development (24). It should be noted, however, that we have confirmed only

one protein, ecotin, in our list of candidates (Table S1) as a bona fide matrix-interacting

protein. While outside the scope of this work, the other candidates still need to be

individually verified.

Our list of 60 candidate matrix proteins is likely far from exhaustive. As a control,

abundant intracellular proteins that are not expected to be in the matrix, such as

subunits of RNA polymerase, were identified in the total biofilm proteome, but not in

the extracellular matrix proteome. However, due to the high-stringency criteria and

comparison approach used, the number of false-negative results is likely high. For

instance, proteins that are high in abundance in the cell, such as nucleoid-associated

proteins (25), or that are identified in the sample without the biotinylation agent, such

as flagellin, were eliminated as potential candidates. Furthermore, our purification

method likely selected against proteins in outer membrane vesicles (OMVs), as we saw

only five such proteins of the 60 proteins identified (Table S2). These results are in

contrast to previously published work for P. aeruginosa (21, 23), in which larger

percentages of outer membrane proteins were identified. However, the many differ-

ences in the methodologies used likely explain this discrepancy. For instance, since our

study involved more purification steps, outer membrane-associated proteins, especially

adhesins such as LecA (26), LecB (27), and CdrA (19), may have been selected against,

hence the lower percentage of these proteins in our data set.

A majority of the candidate matrix proteins we identified, including ecotin, are not

predicted to be exported outside the cell (Table S2). It is unclear whether these proteins
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become extracellular through nonclassical protein secretion mechanisms (28) or via cell

lysis, which is a natural part of biofilm formation (29). Independently of how these

proteins become extracellular, we hypothesize that matrix proteins are selectively

retained by the biofilm via their interaction with structural matrix polymers (e.g., eDNA,

polysaccharides, and amyloid proteins) and that non-matrix-interacting proteins are

lost to the environment via diffusion. Supporting this hypothesis, our data show that

ecotin binds to Psl both in a cell-free system (Fig. 3A) and in the biofilm (Fig. 6B).

Furthermore, we would expect that the presence of any specific matrix protein should

temporally correlate with the presence of its interacting structural matrix component,

which we also see for ecotin and Psl (Fig. 2).

While very different fields, there are parallels between the basement membrane of

metazoans and the bacterial extracellular biofilm matrix. Similar to the biofilm matrix,

the basement membrane was once considered to be simply a passive scaffold for

polarized epithelial cell attachment, but the basement membrane has become a major

area of study due to its many roles and associations with human disease (8). While both

matrices clearly provide structural support to the cells interacting with them, the

interaction of cells with specific components of both matrices also leads to complex

signaling within the cells (30, 31). While speculative, it is tempting to draw other

parallels. For instance, enzymes within the basement membrane that remodel the

matrix are important for proper tissue development (32, 33). This may also be true for

biofilms and the predicted enzymatic matrix proteins that we identified. Additionally,

the basement membrane contains matrix components that when processed can pro-

tect the host (34–36), similar to how ecotin and other matrix proteins may be protecting

the biofilm.

Components of the biofilm matrix are known to protect the resident bacteria against

the host innate immune response (37). For instance, eDNA increases the resistance of

P. aeruginosa against the cationic antimicrobial peptides secreted by leukocytes (38),

and the P. aeruginosa exopolysaccharides alginate and Psl inhibit phagocytosis by

neutrophils and macrophages (39–41), as well as limit complement activation (41, 42).

Adding to the repertoire of the protective mechanisms in the biofilm, our results

suggest that ecotin in the biofilm matrix can protect matrix proteins and the resident

cells from proteolytic attack. This is a novel mechanism by which the biofilm may

protect itself against a key mediator of the host innate immune response. Our pro-

teomic analysis also identified multiple proteins with oxidoreductase activity, suggest-

ing that there may be matrix proteins that can mitigate the stress induced by the

neutrophil oxidative burst in the extracellular space of biofilms. Therefore, the protec-

tive effects of P. aeruginosa biofilms against the innate immune response via its matrix

are potentially multifaceted and likely more complicated than currently envisioned.

MATERIALS AND METHODS
Full, detailed descriptions of all the methods used are described in Text S1 in the supplemental

material.

Bacterial strains, growth conditions, and antibiotics. The bacterial strains, plasmids, and primers

used in this study are listed in Tables S3 to S5, respectively. Construction of the strains used in this study

are described in Text S1. Unless otherwise noted, bacteria were grown at 37°C in lysogeny broth (LB) or

in Vogel-Bonner minimal medium (43).

Antibodies and immunoblots. Primary antibodies were diluted in 5% milk in phosphate-buffered

saline (PBS) with 0.05% Tween 20: anti-ecotin sera (raised against AKLDEKVPYPKADC; Covance) diluted

1/400, anti-Psl antibodies (MedImmune) (44) diluted 1/3,000, and anti-Tse1 antibodies (20) diluted

1/2,000. Psl immunoblotting was performed as previously described (45). For SDS-PAGE, proteins were

separated on an 18% Tris HCl gel and transferred to nitrocellulose for immunoblotting.

Identification of proteins enriched in the matrix. Tube biofilms were grown as previously

described (46) in amine-free medium [60 mM trisodium citrate, 15 mM K2HPO4, 50 mM (NH4)2SO4,

1.33 mM MgSO4, 140 �M CaCl2, 8.5 �M ZnSO4, 3.9 �M FeSO4, pH 7.5] for 6 days at 25°C. For the total

biofilm proteome analysis, the cells in the biofilm biomass were first lysed before the proteins in the

sample were biotinylated. For the extracellular biofilm proteome, the extracellular proteins in the biofilm

were biotinylated before the biomass was collected and the cells were removed from the matrix material.

The biotinylated proteins were purified and digested with trypsin. The resulting peptides were then

identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).
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Psl coimmunoprecipitation. Psl coimmunoprecipitations were performed as previously described

with the following modifications (19). Briefly, anti-Psl antibodies (MedImmune)-conjugated magnetic

protein A Dynabeads (Life Technologies) were incubated with cell-free supernatants from stationary-

phase cultures. Proteins coprecipitating with Psl were eluted with Laemmli buffer and analyzed by

immunoblotting.

Ecotin expression profiling. For planktonic expression experiments, cells were resuspended in

Laemmli buffer at 1010 CFU/ml and analyzed by immunoblotting. To determine when ecotin is associated

with the biofilm matrix, tube biofilms were grown as described above to the desired time point. Half of

the sample was lyophilized to obtain the dry weight. In the other half of the sample, the cells were

removed from the matrix. The proteins in the supernatant were normalized based on their dry weight

measurements and analyzed by SDS-PAGE.

Neutrophil elastase inhibition assay. Psl was precipitated on the magnetic beads as described

above, and neutrophil elastase (Millipore) at 100 nM and the fluorogenic substrate (MeOSucAAPV-AMC;

Millipore) at 0.25 mM were then added. Cleavage of the substrate was measured at an excitation

wavelength of 380 nm and an emission wavelength of 460 nm (Ex380/Em460). After the experiment, the

beads were recovered, and the proteins were analyzed by SDS-PAGE as described above.

Neutrophil elastase killing assay. For planktonic experiments, cells at an OD600 of ~2.0 were treated

with neutrophil elastase (Oxford Biomedical Research) at 250 �g/ml at 37°C for 2 h before viable-cell

counts were determined. For biofilm experiments, biofilms grown for 20 h on glass slides were treated

with 100 �M ecotin and 2 �M neutrophil elastase (Millipore) for 30 min. The biomass was stained with

5 �M Syto9 (Molecular Probes) and 30 �M propidium iodide (Sigma-Aldrich) for 15 min before imaging

with a Zeiss LSM 510 confocal laser scanning microscope (Carl Zeiss).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00543-18.
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