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larger dataset we term ‘stem cell matrix 2’ (SCM2). The SCM2 
database contains ~450 genome-wide transcriptional profiles 
from diverse stem cell preparations from multiple laboratories, 
differentiated cell types, and developing and adult human tissues 
(Supplementary Table 1). The SCM2 dataset contains expres-
sion profiles from 223 human embryonic stem cell (hESC) and 
41 iPSC lines. We analyzed the samples for the SCM2 dataset in 
a highly quality controlled pipeline, using Illumina microarrays. 
After appropriate transformation and normalization, we used non-
negative matrix factorization (NMF) for dimension reduction and 
to identify unexpected patterns engrained in the datasets6. NMF 
is a systematic, unbiased approach to identify multigene features, 
frequently termed ‘metagenes’ in gene-expression studies7, which 
can be used to characterize stem cell phenotypes3.

We then assessed pluripotency of an unknown, potentially 
pluripotent sample by comparison of a ‘query gene expression 
profile’ from the sample to data models derived from the SCM2 
dataset (Fig. 1a and Supplementary Fig. 1). Our goals were to 
not only develop a simple test for pluripotency but also obtain 
detailed information on features of the sample that deviate from 
typical PSC lines with a normal genome or epigenome. We based 
this approach on two related classifiers that use two differently 
constructed metagene models.

For the first classifier, termed the ‘pluripotency score’, we 
used all samples, pluripotent and non-pluripotent, to identify 
the metagenes that have the capability to separate pluripotent 
from non-pluripotent samples5 in the SCM2 dataset (Fig. 1b 
and Supplementary Figs. 2 and 3). We selected the rank and 
number of metagenes by identifying those that provided the 
largest distance between margins of known pluripotent and non-
pluripotent samples in the training set (Fig. 1, Supplementary 

Fig. 4 and Online Methods). The pluripotency score is a logistic 
regression model that enables a probability-based choice between 
the two phenotypic classes.

The second classifier, termed the ‘novelty score’, measures the abi-
lity of an NMF model to approximate a given query gene expression 
profile (Online Methods)8. We compared the query sample to an 
NMF-reconstructed sample based on the well-characterized PSCs 
in the SCM2 dataset, determined model fit8 and identified devia-
tions from the expected gene expression patterns (Fig. 1c–g). The 
novelty score is a measure of technical as well as biological variations 
in the data; to de-emphasize the technical variation, we applied an 
exponential transformation to empirically weight biological over 
technical deviations from our model (Online Methods).
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Pluripotent stem cells (PSCs) are defined by their potential 

to generate all cell types of an organism. The standard assay 

for pluripotency of mouse PSCs is cell transmission through 

the germline, but for human PSCs researchers depend on 

indirect methods such as differentiation into teratomas in 

immunodeficient mice. Here we report PluriTest, a robust open-

access bioinformatic assay of pluripotency in human cells based 

on their gene expression profiles.

The current standard for demonstrating that human stem cells are 
pluripotent is based on their ability to generate a complex variety 
of tissues in tumors developed in immunodeficient mice. This 
teratoma assay is widely considered to be the most reliable and 
informative assay for pluripotency in human cells1 and its use has 
increased substantially after the report of induction of pluripo-
tency in somatic cells2. However, the generation of teratomas is 
technically challenging, resource-intensive, primarily qualitative 
and difficult to standardize, and as we have previously argued, 
may have limited value as a criterion for pluripotency3. With the 
rapid increase in generation of pluripotent human cells, especially 
induced pluripotent stem cell (iPSC) lines, there is a need for a 
cost-effective, animal-free alternative to the teratoma assay for 
assessing pluripotency in human cells4. The low cost and acces-
sibility of microarray-based gene expression datasets makes tran-
scription profiling an attractive alternative. We hypothesized that 
machine-learning methods that are capable of delineating stem 
cell phenotypes5 based on microarray data could also predict the 
presence or absence of pluripotent features for unknown samples 
of cells.

We considerably expanded the gene expression database that 
we previously used for defining stem cell phenotypes5 to a much 
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The combination of the pluripotency score and the novelty 
score enables open-ended assessment of pluripotent features in 
a query sample when that sample is a new kind of PSC. The first 
classifier reports to what extent a query sample contains a pluri-
potent signature, and the second classifier reports how much of 
the signal measured in a query sample can be explained by the 
normal PSC lines contained in the SCM2 dataset (Supplementary 

Note 1 and Supplementary Fig. 1). To test the two-classifier 
approach, we analyzed germ cell tumor cell lines. These cells 
are pluripotent and resemble normal PSCs but have genetic and 
epigenetic abnormalities9. These cells had high pluripotency 
scores, as expected, but the novelty score indicated that they 
deviate from the normal PSCs in the SCM2 dataset (Fig. 1 and 
Supplementary Fig. 2).

We tested the combined classification approach and commu-
nication framework, which we termed PluriTest (http://www.
pluritest.org/), using several independently generated test data-
sets containing pluripotent and non-pluripotent samples: Illumina 
WG6v1 (ref. 5), HT12v3 and HT12v4 datasets (Fig. 1d–f) gener-
ated in-house on our own microarray scanner and datasets that had 
been generated in six different core facilities (Online Methods and 
Supplementary Table 1). We also used PluriTest to examine data 
from a recently published human transcriptome atlas10 based on 
Affymetrix U133A arrays (Fig. 1g).

PluriTest predicted pluripotency with excellent sensitivity and 
specificity. We set thresholds that separated pluripotent from non-
pluripotent samples in HT12v3 test datasets with 98% sensitiv-
ity and 100% specificity, and also distinguished germ cell tumor 
cell lines and parthenogenetic stem cell lines from the bulk of 

PSCs (Fig. 1d–f and Supplementary Fig. 2). A few pluripotent 
samples had unusually high novelty scores (Fig. 1e), indicat-
ing that these test samples should be additionally evaluated for 
epigenetic or genetic abnormalities or unwanted differentiation 
(Supplementary Fig. 1). For the most informative analysis, the 
query sample should be analyzed on the same platform as the 
training dataset (Illumina HT12), but acceptable results can be 
obtained with data from other platforms (Fig. 1f, Supplementary 

Fig. 3 and Supplementary Note 2).
We examined the performance of PluriTest on hESC lines 

(SIVF014, SIVF011, SIVF042, F4.2 and WA01) and human iPSC 
lines (HDF51IPS12 and HDF51IPS1), which were part of the 
training dataset; these lines grouped together and were sepa-
rated from somatic samples (Fig. 2a). PluriTest also separated 
fully and partially reprogrammed iPSC lines (samples that were 
not in the training datatset; Fig. 2b); partially reprogrammed 
cell lines clustered with non-pluripotent cells. We then applied 
PluriTest to samples from a neural differentiation time-course 
experiment that also were not in the training dataset (Fig. 2c,d). 
We differentiated WA09 cells into neural precursors and collected 
three biological replicates on day 0, day 3, day 6 and day 14 after 
neural induction. The novelty score changed after 3 d of differ-
entiation, but the pluripotency score was still high at this time 
point, whereas samples from later time points dropped out of 
the pluripotency score space and had increasingly higher novelty 
scores (Fig. 2c). In a mixing experiment in which we combined 
RNA samples from different time points (day 0 and day 14) at 
varying ratios, PluriTest could separate the differentially mixed 
samples (Fig. 2d).
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Figure 1 | A multidimensional data model for assessing PSCs. (a) Schematic for PluriTest. (b,c) Assessment of pluripotent and somatic cell samples in 
the training dataset with the pluripotency score only (b) and with both PluriTest scores (c). (d–g) PluriTest classifiers tested on datasets generated 
using four different microarray platforms: Illumina WG6v1 (d, 177 samples)5, HT12v3 (e, 498 samples), HT12v4 (f, 38 samples) and Affymetrix U133A (g, 
5,372 samples)10. Samples for these datasets were independently generated (e,f) and/or curated from published stu dies (d,e,g). In e, the lines in the 
plot indicate empirically determined thresholds for defining normal pluripotent lines.
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The PluriTest is contained in a single R/Bioconductor open-
source, open-access workspace11 (Supplementary Data and 
Supplementary Note 3) that also includes the SCM2 database–
derived NMF models. To enable easy access to PluriTest, we 
programmed a rich internet application (RIA) using Microsoft 
Silverlight 4 and C# (http://www.pluritest.org/). The RIA auto-
matically performs all data extraction and preprocessing steps 
after the upload of an unmodified microarray scanner output 
file. All data and results are stored securely in a Microsoft struc-
tured query language (MS-SQL) database. We used the binary 
microarray scanner output file (.idat file) as the most basic ‘stem 
cell query term’. After upload, the results of our PSC-prediction 
algorithm are reported back to the user via a web interface (Fig. 2 
and Supplementary Fig. 5). PluriTest can run on every recent 
(Mac OS 10.5 and Windows XP or later) operating system, and 
requires internet access and a local installation of the Silverlight 4 
plug-in. A typical online analysis with 12 samples takes less than 
10 min including data upload (Supplementary Note 2).

Here we demonstrated the general feasibility of a web-based 
prediction of stem cell properties12. PluriTest breaks from the 
conventional marker-based approaches to assess pluripotency of 
human cells, which typically assay a few markers by methods 
such as quantitative real-time PCR. With the lowered cost of 
whole-genome analysis, reduction of a gene expression profile to 

a few markers is no longer necessary. Using all of the expression 
 information available provides much higher discriminatory power 
and the ability to identify deviations from known patterns that 
may lead to additional insights into cellular phenotypes.

The PluriTest framework could be applied to any unbiased high-
content dataset, such as global DNA methylation analysis or RNA 
sequencing data, provided that there is sufficient representation 
of a defined target phenotype in the training dataset. Our results 
 suggest that it will be relatively straightforward to construct 
 similar models of developmental pathways such as differentiation 
along the neural, endodermal or hematopoietic lineages. Such 
databases will inform subsequent experiments and may be appli-
cable as a rapid method to quality control PSC-derived prepara-
tions for experimental and preclinical investigations.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Microarray analysis. Sample runs were analyzed in-house essen-
tially as reported previously5, except that Illumina HT12 arrays 
were used. We first filtered the probes that are present on both 
Illumina HT12v3 and HT12v4 arrays to ensure identical results 
when either of the two array versions were used with the PluriTest 
application. We filtered for probes that were detected with a  
P value of at least < 0.01 in at least ten samples of the SCM2 dataset.  
After filtering, 22,135 probes were retained and raw probe expres-
sion values were transformed and normalized with the variance 
stabilization transformation and robust spline normalization 
functions as implemented in the lumi R/Bioconductor package13. 
We normalized sample data to an in-house well-characterized 
pluripotent target sample (WA09).

Sample collection, test and training datasets. We analyzed 468 human 
samples for generating the PluriTest model. Of these, 204 were derived 
from somatic cells and tissues, 264 were pluripotent samples (223 hESC 
and 41 human iPSC; Fig. 1b,c). With these samples we trained both the 
multiclass and one-class classifiers. For our test datasets we analyzed 
samples in-house on Illumina HT12v3 (398 samples total; Fig. 1e) and 
v4 arrays (39 samples total; Fig. 1f) but also combined these samples 
with published datasets. J. Jeyakani (Genome Institute of Singapore), 
A. Tarca (Wayne State University), Toshima Parris (University of 
Gothenburg), M. Suarez-Farinas (Rockefeller University), S. Doulatov 
(Ontario Cancer Institute, Toronto), K. Gandhi and D. Booth 
(Westmead Millenium Institute, Sydney) shared the raw .idat files from 
their published studies (National Center for Biotechnology Information 
Gene Expression Omnibus (GEO) accession numbers GSE21973  
(ref. 14), GSE204628 (ref. 15), GSE170489 (ref. 16), GSE2113510  
(ref. 17) and GSE1868611 (ref. 18).

For the Illumina SCM1 dataset (GSE115081)3 we focused on 
samples from our previous study that we analyzed on the WG6v1 
platform (177 samples total; Fig. 1d).

For the Affymetrix U133A dataset (EM-Tab-6212; 5,372 sam-
ples total)10 we translated the gene identifiers from the HT12v3 
PLATFORM to the respective gene array annotation with a map-
ping table provided by Illumina (http://www.switchtoi.com/
probemapping.ilmn, accessed 6 June 2010).

In the other cases (WG6v1 (GSE115081), Illumina WG6v3, 
HT12v4), most probes targeting specific transcripts were identical 
and matched based on their specific probe nucleotide universal 
identifiers (NuIDs)13.

Details on all samples used for training and testing PluriTest 
are available in Supplementary Table 1.

Partially reprogrammed cell preparations. Human dermal 
fibroblasts (HDFs; Sciencell) were cultured in DMEM, 2 mM 
GlutaMax, 10% FBS and 0.1 mM non-essential amino acids (Life 
Technologies). HDFiPS cells were generated and maintained in 
standard hESC medium containing DMEM/F12 supplemented 
with 20% Knockout Serum Replacement (Life Technologies),  
2 mM GlutaMax, 0.1 mM non-essential amino acids, 0.1 mM  
2-mercaptoethanol and 12 ng ml−1 of bFGF (Stemgent). HDFiPS 
cells were cultured on irradiated mouse embryonic fibroblasts 
(MEFs) in hESC medium and mechanically passaged once a week. 
The hESC medium was changed daily.

PLAT-A packaging cells were plated onto six-well plates coated 
with poly(D-lysine) at a density of 1.5 × 106 cells per well without 

antibiotics and incubated overnight. Cells were transfected with  
4 µg pMXs retroviral plasmids, which carry human POU5F1 (also 
known as OCT4), SOX2, KLF4 or MYC (Addgene 17217, 17218, 
17219 and 17220, respectively), using Lipofectamine 2000 (Life 
Technologies) according to the manufacturer’s instructions. Viral 
supernatants were collected at 48 h and 72 h after transfection, 
and filtered through a 0.45-µm pore size filter.

HDF cells were seeded onto a well of a six-well plate at a den-
sity of 1.5 × 106 cells per well 1 d before transduction. Cells were 
transduced (day 0) with equal volumes of fresh viral supernatants 
from all four transfections on day 2 and day 3, supplemented with 
6 µg ml−1 of Polybrene (Sigma). On day 4, the transduced cells 
were split onto MEFs at a density of 104 cells per well of a six-well 
plate in hESC medium supplemented with 0.5 mM valproic acid  
(VPA; Stemgent). Cells were fed every other day with VPA- 
supplemented hESC medium for 14 d before VPA was withdrawn. 
The iPSC colonies were manually picked 3 weeks after transduc-
tion and transferred to MEF plates.

Twenty to thirty days after transduction the partially and fully 
reprogrammed cells were identified based on morphology and 
live staining with antibodies to TRA1-81 (1:200, R&D system, 
MAB1435) and SSEA4 (1:100, Stemgent 09-0011) as described 
previously19 (Supplementary Fig. 6). Colonies that stained pos-
itive for TRA1-81 and SSEA4 and had hESC-like morphology 
(fully reprogrammed cells) were expanded on MEF feeders. Cells 
were collected for microarray analysis at passage 4 and passage 57. 
Colonies that showed no SSEA4 staining and very faint TRA1-81 
staining (partially reprogrammed cells) were collected at passage 4.  
Before the cells were collected for whole-genome transcription 
microarrays they were again stained to confirm that the cells still 
expressed the correct surface cell marker.

Neural differentiation. We used a standard protocol for gen-
erating neural precursors from hESCs. hESCs were grown on 
Matrigel in StemPro medium (Life Technologies) until they were 
30% confluent. We changed the medium then to DMEM/F12 
(Life Technologies), 20% Knockout Serum Replacement with  
5 mM dorsomorphin and 5 mM SB431542. Over the next 6 days, 
cells differentiated along a neuroectodermal lineage; on day 6 
(Fig. 2), the population was ~95% PAX6+, OTX2+ and NES+, 
and POU5F1− and Tra1-81− as assessed with flow cytometry 
(parallel cultures were analyzed by flow cytometry to estimate 
percentages). The cells were then passaged with Accutase (Life 
Technologies) onto a plate coated with Matrigel (BD Biosciences) 
and cultured in DMEM/F12 supplemented with N2/B27 media 
supplements (Life Technologies) and basic fibroblast growth  
factor (bFGF) for 8 d; during this time the primordial neural 
progenitor cells expanded and differentiated into more mature 
neural cells that were PAX6+ and OTX2− (Fig. 2).

We profiled samples from this time course experiment in two 
ways: biological replicates (3 replicates) were collected on day 0 
(undifferentiated hESCs), day 3 (differentiating hESCs) and before 
splitting the cells on day 6 (differentiating hESCs). Finally, three 
more biological replicates were collected after an additional 8 d in 
culture after the passage (day 14; neurally differentiated hESC).

In a second experiment we used the RNA obtained from the 
day 0 and day 14 cultures and mixed pooled RNA from those 
time points at seven ratios: 100% undifferentiated hESC RNA; 
75% undifferentiated hESC RNA plus 25% neurally differentiated 
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RNA; 66% undifferentiated hESC RNA plus 33% neurally differ-
entiated RNA; 50% undifferentiated hESC RNA plus 50% neurally 
differentiated RNA; 33% undifferentiated hESC RNA plus 66% 
neurally differentiated RNA; 25% undifferentiated hESC RNA 
plus 75% neurally differentiated RNA; and 100% neurally dif-
ferentiated RNA.

For each of the experiments shown in Figure 2 (different PSC 
lines, partially and fully reprogrammed iPSC samples, neural dif-
ferentiation and RNA mixing experiments), we ran 12 samples on 
a single HT12v3 chip, which can be used to analyze 12 samples in 
parallel to minimize batch effects.

Model construction. We used a previously described dimension 
reduction algorithm6 to compute NMFs.

Briefly, V is a data matrix from our microarray data. Each of 
the m columns contains gene expression values of one sample. 
Each of n rows in V contains the intensity values of a single gene 
probe across all samples. 

V W H≈ × f  

The NMF algorithm approximates a non-negative matrix V by 
the product of an n × r matrix W and an r × m matrix H with 
non-negative values with the variable n representing the number 
of rows, m the number of columns as above. r denotes the rank of 
the NMF decomposition. The column vectors of W can be seen as 
a basis that allows the approximation of V by linear combinations 
of the basis vectors. The H matrix contains the coordinates of the 
sample in the W basis6.

The columns in W are standardized to sum to 1. We used the 
previously proposed procedure6 to minimize the Euclidian dis-
tance between V and as implemented in the NMF R/Bioconductor 
package20. To compute the coordinates of a new sample in the 
basis W we implemented a multiplicative update algorithm6 with 
a fixed matrix W. 

H H
W V

W WH
ij ij

t
ij

t
ij

=
( )

( )

Wt denotes W transposed. The update process is iterated until 
either convergence or a maximum of 2,000 cycles.

We constructed two classifiers based on two different data 
subsets: a multiclass classifier based on all samples in the SCM2 
dataset (tissues, somatic cells, PSCs and cells differentiated from 
PSCs, and a one-class classifier based on all PSC samples).

Selection of rank k and maximum number of features l. We used 
two different criteria to estimate the optimal number of factors 
determined by NMF for each of two classifiers. For the two-class 
classifier, we used NMF to find a low dimensional representa-
tion of all of our array data. Given a factorization of rank k we 
decided the optimal number of features l < k to select for our 
classifier (rows in the H matrix). We calculated the area under 
the receiver operating characteristic (AUC) for each row of the  
H matrix using the sample information (pluripotency experimen-
tally demonstrated or not) provided in the annotation file. The 
features hi were ordered by the AUC and used to train a logistic 
regression model in R. 

s p c c h c hl l= = +log ( ) ( ) ( )it 0 1 1 

With the variable p representing the probability of pluripotency 
and the variable c denoting the logistic regression coefficients. 
Next, this information was used to compare the quality of differ-
ent choices of k and l. We defined a quality measure r based on 
the margin between the pluripotent and non-pluripotent samples. 
As we were interested in a model that generalized well to new 
samples, logistic regression coefficients c < 0 were prohibited. 
This prevents the classifier from using the absence of specific 
non-pluripotent signatures, such as genes expressed specifically 
in fibroblasts, which may lead to inferior generalizability of our 
classifier and over-fitting to our training dataset. PSC is the set 
of samples defined as pluripotent: 
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To allow comparison between different NMF factorizations we 
scaled r by the range of s: 


r r s s= −(max( ) min( ))

 

In a more general setting a more robust quality measure may be 
required. We suggest using the other suitable quantiles instead the 
maximum minus minimum quantiles used in this case.

To select the optimal k and l values, we randomly split the training 
dataset (468 samples) in subtest and subtraining sets. NMF factori-
zations in the range from k = 2 to 25 were generated from the train-
ing set, with 8 random initializations for each k value. Classifiers 
with l values in the range 1:4 were trained. Supplementary Figure 2 
shows a plot of the mean r scaled by the range of s on the training 
set for the training (50% of samples chosen randomly from the 468 
training samples) and test data (the remaining training  samples). 
Classifiers with k-ranks lower than 10 achieved a good separation 
on the training set but did not generalize well to the test dataset. 
k-ranks of 13–17 resulted in classifiers that performed well on the 
training data. We therefore choose k = 15 and l = 3, and recalculated 
the classifier using the best out of 100 randomly initialized NMF 
approximations on the whole training dataset (468 samples). We 
tested the classifier on several independently generated datasets 
(Fig. 1 and Supplementary Figs. 3 and 4).

We also derived a one-class novelty detection classifier on the 
samples in the training dataset based on a factorization of only the 
pluripotent samples in the SCM2 dataset, by using a previously 
described consistency approach8 to limit the risk of over-fitting. We 
chose a rejection rate of 5% in a fivefold cross-validation setting. 
Well-characterized pluripotent samples in the SCM2 dataset were 
randomly assigned to one of five groups. Four of the randomly 
selected groups were used to train a NMF factorization, and the 
cutoff on the reconstruction error was set to reject the top 5% of 
samples with the biggest root mean squared error (RMSE).

The rejection of a sample can therefore be modeled as a bino-
mial experiment. Given the number of test samples n we can com-
pute the expectation and variance of the rejected samples based 
on the n repeated binomial experiments8. The samples in the test 
group were fitted to the Wmodel matrix and the number of rejected 
samples was counted. This procedure was repeated for all five 
groups. A classifier was considered consistent if the mean rejec-
tion rate did not exceed the 2 s.d. (σ) bounds around the expected 
rejection rate. Rank k = 12 was the highest NMF decomposition 
that lead to a consistent classifier.
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For the novelty classifier, we gauged the ability of the one-class 
NMF model to reconstruct a given query gene expression profile 
by the Wmodel basis. We first considered RMSE as suitable mea-
sure for estimating model fit. We noticed that the RMSE detected 
not only new biological features but also flagged some arrays 
analyzed in other core facilities as diverging from the one class 
classifier model; these particular samples were from the same PSC 
lines that we had analyzed in-house that did not diverge substan-
tially from our PSC model. On the basis of such observations, 
we concluded that the RMSE as a novelty detection mechanism 
was more sensitive to technical variation than the pluripotency 
score. We observed in these cases that laboratory-specific vari-
ation changed most features on these arrays by a small distance, 
but biological variation (such as that observed in germ cell tumor 
cell lines) changed a restricted number of features in a sample by 
a large distance.

We therefore generalized the RMSE score to the P-weighted 
mean deviation (P-WMD) to empirically accommodate for tech-
nical variations across microarray core facilities. In the case P = 2 
the P-WMD equals the RMSE and setting N = 1 the P-weighted 
mean deviation is reduced to a one-dimensional p-norm.

We defined the P-WMD as a distance between the reconstructed 
vector u and the measured vector v. 

P-WMD( , )
| |

u v
u v

N
i
N

i i
p

p= −=Σ 1

where |ui − vi| denotes the component’s absolute distances for  
N vector components and P the weighting exponent. As a result, 
for P > 2, components < 1 are reduced and those larger >1 gain 
more influence in P-WMD.

We determined that a P value in the range from 6 to 10 was optimal 
to increase the weight of biological variation over the technically 
induced deviations. Choosing P = 8 allowed us to reliably compare 
samples from several different core facilities without calibration.

To enable a probability-based assessment of the output score by 
PluriTest, we trained a logistical regression model for the novelty 
score as implemented in R/Bioconductor11.

All model matrices and operations which are necessary 
to use PluriTest on novel query samples are contained in an 
R/Bioconductor workspace, which is available as Supplementary 

Data, and used on a local R/Bioconductor instance.
All offline computations were performed on a Cray CX1 16-

core cluster with SUSE11 Enterprise and a custom compiled 64-bit 
R/Bioconductor implementation.
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