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A Bioinformatics Guide to Plant 
Microbiome Analysis
Rares Lucaciu, Claus Pelikan, Samuel M. Gerner, Christos Zioutis, Stephan Köstlbacher, 

Harald Marx, Craig W. Herbold, Hannes Schmidt * and Thomas Rattei *

Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria

Recent evidence for intimate relationship of plants with their microbiota shows that plants 

host individual and diverse microbial communities that are essential for their survival. 

Understanding their relatedness using genome-based and high-throughput techniques 

remains a hot topic in microbiome research. Molecular analysis of the plant holobiont 

necessitates the application of specific sampling and preparatory steps that also 

consider sources of unwanted information, such as soil, co-amplified plant organelles, 

human DNA, and other contaminations. Here, we review state-of-the-art and present 

practical guidelines regarding experimental and computational aspects to be considered 

in molecular plant–microbiome studies. We discuss sequencing and “omics” techniques 

with a focus on the requirements needed to adapt these methods to individual research 

approaches. The choice of primers and sequence databases is of utmost importance 

for amplicon sequencing, while the assembly and binning of shotgun metagenomic 

sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to 

overcome the limitation of genome database resources and for covering large eukaryotic 

genomes such as fungi. In transcriptomics, it is necessary to account for the separation 

of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of 

the protein abundances within a plant tissue which requires the knowledge of complete 

and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a 

powerful tool to detect and quantify small molecules and molecular changes at the plant–

bacteria interface if the necessary requirements with regard to (secondary) metabolite 

databases are considered. We highlight data integration and complementarity which 

should help to widen our understanding of the interactions among individual players of 

the plant holobiont in the future.
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BACKGROUND AND EXPERIMENT DESIGN

The Relationship of Plants and Their Microbiomes
The relevance of the plant holobiont, inclusive of a myriad of beneficial, mutualistic, and pathogenic 
microorganisms, has been widely recognized (Sanchez-Canizares et al., 2017). Regarding the vast 
number of potential and actual combinations of plant species and microbial taxa, it is likely that we 
are far from understanding their multitrophic interactions and metabolic interdependencies.

Plant microbiomes are often separated into aboveground and belowground constituent parts. 
Leaves, stem, and reproductive organs form the phyllosphere/phyllobiome, while roots and the 
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small volume of associated soil represent the rhizosphere/
rhizobiome (Bringel and Couee, 2015; Oburger and Schmidt, 
2016). Bacterial (and to a lesser extent archaeal) populations 
within these compartments can be subdivided into epiphytes that 
colonize the exterior surface of plant tissue and endophytes that 
penetrate the outermost plant cell layer (epidermis) and colonize 
interior parts intercellularly and intracellularly. Although often 
investigated separately, individual plant compartments may not 
represent entities that restrict the transition from rhizosphere to 
leaf vice versa (Bai et al., 2015) but could be considered as systems 
with restricted accessibility for microorganisms. Classifying 
plant-associated fungi according to the site of colonization is 
straightforward. pathogenic fungi are generally subdivided into 
ectomycorrhiza that develop a mantle around root tips and 
penetrate into intercellular root spaces and endomycorrhiza 
that form arbuscules and colonize intracellularly (Venturini and 
Delledonne, 2015). however, mycorrhiza bridging those two 
subtypes have been observed (Yu et al., 2001; Navarro-Rodenas 
et al., 2012) rendering the spatial definition of colonization less 
definite. recently, a high diversity of ectomycorrizal operational 
taxonomic units (Otus) was observed for a single root system 
including a clear spatial structuring with regard to root age 
(Thoen et al., 2019). Non-mycorrizhal, the rice plant pathogen 
Magnaporthe oryzae establish epiphytic and endophytic 
associations, depending on the stage of the life/infection cycle 
(Wilson and Talbot, 2009). Owing to this variety of spatial 
interactions among plants and microorganisms, researchers 
have to be aware of microbial colonization characteristics and 
potential transitions between plant exterior and interior, and 
even organs.

Experimental Design Including Sampling 
and Replication
Planning of field and greenhouse experiments should account 
for potential spatial effects by grouping experimental units into 
blocks (e.g., randomized block design) (Clewer and Scarisbrick, 
2001). The inherent variability of biological materials, such as root 
and leaves, necessitates an adequate investment in replication 
(Prosser, 2010; Lennon, 2011). Leaf- and root-associated 
microbial populations have been shown to vary in abundance 
and community structure according to plant development stage 
(leaves, Copeland et al., 2015; roots, Wagner et al., 2016; leaves 
and roots, Edwards et al., 2018) rendering a sufficient number 
of replicates a prerequisite for sound statistical interpretation of 
sequencing data. In addition, stochastic effects, such as the timing 
of arrival of species, may have an effect on species distribution 
on roots and potentially also leaves (Kennedy et al., 2009). We 
recommend to take at least five replicate samples per plant organ 
or sample type to compensate for this inherent variability. When 
root-associated microbiota are to be investigated, we strongly 
recommend to include bulk soil samples (i.e., soil in distance 
≥ 2 cm to roots) (Kuzyakov and Razavi, 2019) and treat these 
accordingly to obtain information on the reference microbial 
communities (i.e., the microbial seed bank) from which the root 
microbiome has been most likely acquired. Moreover, the high 

variability in microbial colonization density and community 
structure among plant organs/tissues (e.g., roots, ectomycorrhizal 
root tips) of individual plants should be considered when 
young tissues are the object of comparative community analysis 
(Richter-Heitmann et al., 2016). Nevertheless, researchers 
should be aware that even a high number of replicates does not 
necessarily protect from confounding issues through unnoticed 
differences between samples and controls (Quinn and Keough, 
2002) and from stochastic effects.

Sampling of plant material should be performed at the site 
of plant growth (e.g., field, greenhouse) to prevent changing 
environmental conditions that impact microbial community 
composition associated with plant organs (e.g., phylloplane-
colonizing bacteria). Consequently, samples should be snap frozen 
immediately or stored in commercial stabilization solutions (e.g., 
RNAlater, LifeGuard), depending on the downstream application 
and the accessibility of liquid nitrogen or dry ice in the field. 
Sample preparation steps often include washing with solutes. 
These reagents should be sterilized and sequenced separately to 
obtain information about potential contaminations that might 
affect microbiome analyses and prevent the detection of low-
abundance community members (Quinn and Keough, 2002; 
Laurence et al., 2014; Salter et al., 2014). For example, rinsing roots 
with tap water and analyzing samples via metaproteogenomics 
(Knief et al., 2012) may potentially cause the risk of adding 
artefacts/contaminations to data.

Researchers aiming to address research questions through the 
application of sequencing techniques should be aware of potential 
artefacts provoked by sampling and treatment of plant material and 
associated microbiomes. For example, studies addressing root–
microbe interactions often try to separate soil–#root interfaces 
into the rhizosphere (soil attached to roots), the rhizoplane (actual 
root surface), and endosphere (root interior). While washing-
off soil from the root and obtaining a “rhizosphere” sample is 
rather straightforward (although not all soil will be removed by 
washing), the differentiation of rhizoplane- and endosphere-
associated microbial populations is not trivial (Richter-Heitmann 
et al., 2016). Here, additional washing and shaking of roots may 
only decrease the number of cells attached to the rhizoplane. 
Consequently, the studied rhizoplane sample will not cover the 
full diversity and abundance of cells while the endosphere sample 
will be “contaminated” with remaining soil particles and cells that 
were not washed off from the rhizoplane. Instead, sonication may 
help to reduce almost all rhizoplane-associated cells (Bulgarelli 
et al., 2012; Lundberg et al., 2012) but a disruption of the outer 
cells close to the rhizodermis may also lead to significant loss of 
endophyte diversity and abundance as analyzed by downstream 
sequencing. Surface treatments with sterilizing agents (e.g., sodium 
hypochlorite) have been evaluated to yield “clean” rhizoplanes 
while allowing for a sequencing-based investigation of microbial 
populations. Although downstream complications through 
penetration of the sterilizing agent into the root/leaf interior 
cannot be excluded, this treatment represents the method of 
choice if an endosphere compartment should be investigated 
upon its microbiome (Reinhold-Hurek et al., 2015; Richter-
Heitmann et  al., 2016). To our knowledge, studies addressing 
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these questions of separating phyllosphere compartments are 
missing. Thus, it is of utmost importance to perform rigorous 
testing of potential separation strategies via microscopic 
observation and media plating of treated specimens to assess 
the nature/composition of samples that should be investigated 
by downstream sequencing.

Common Sources of DNA Contaminations
For obtaining transcriptomic and genomic data sets of plant-
associated microbes, it is necessary to set up strategies for reducing 
non-microbiome DNA to a minimum during experiments as 
well as in silico. Such DNA can originate from different sources. 
Researchers planning to extract microbial nucleic acids from plant 
material should be aware that milling and physico-chemical lysis 
will lead to the co-extraction of chloroplast and mitochondrial 
DNA (Lutz et al., 2011). As mentioned earlier, samples from 
plant roots can be highly contaminated due to the challenge in 
removing the rhizosphere. Human DNA can be also a source of 
contamination (Kryukov and Imanishi, 2016) when introduced 
during DNA preparation of the samples. Furthermore, relic 
DNA can potentially obscure estimates of soil microbial diversity 
(Carini et al., 2016) which could also impact the analysis of root 
samples (rhizosphere soil) and other plant tissue.

Recent and New Approaches to Study 
Plant–Microbe Interactions
The recent advent in high-throughput sequencing in combination 
with an array of “omics” techniques allows researchers to 
identify microbiome structure and dynamics along with host 
interactions on an unprecedented level. Modern sequencing 
techniques provide in-depth information on the identity and 
relative abundance of the microbial partners of plants. Because 
sequences are generated directly from the environmental sample, 
the cultivation of microbial isolates is not necessary (Epstein, 
2013; Hug et al., 2016). However, the freedom gained through 
sequencing technology can result in a deluge of data which must 
be countered by selecting an experimental design and sequencing 
methodology appropriate to the scientific question being asked. 
A thorough understanding of the types of expected biases and 
errors should be considered carefully when choosing a particular 
sequencing method.

High-throughput sequencing of marker gene amplicons is 
typically used to elucidate the composition, organization, and 
spatial distribution of microbial communities in the environment 
and is increasingly used in plant microbiome studies (Knief, 2014). 
The advantage of amplicon sequencing is that it can be extremely 
specific, targeting single groups of microbes (e.g., Bacteria, 
Archaea) or even functional genes (DsrA, AmoA, etc.) (Herbold 
et al., 2015). The high specificity of amplicon sequencing allows 
it to be used to positively identify even rare organisms; however, 
the sensitive nature also renders amplicon sequencing prone to 
contamination (Glassing et al., 2016). Therefore, it is essential 
to include positive (known mock communities) and negative 
controls (reagent and extraction blanks) for any experiment that 
relies heavily on amplicon sequencing.

Shotgun metagenomics is less sensitive than amplicon 
sequencing in being able to verify the presence of rare organisms; 
however, the abundances measured are less biased (Poretsky et al., 
2014), and the data can be “binned” into draft genome sequences. 
These enable one to tie taxonomic identity to functions important 
to plants, such as nitrogen fixation, or to determine whether 
symbionts might have the ability to “communicate” with plants 
via secretion systems or effectors (Eichinger et al., 2016).

Metagenomic approaches can be complemented by other 
high-throughput molecular techniques, such as transcriptomics, 
proteomics, and metabolomics. Metatranscriptomics are well 
established in human microbiome research (Bashiardes et  al., 
2016) and can serve as a blueprint for application in plant 
microbiome research. Best practices for RNA-seq data analysis 
have been reviewed recently (Conesa et al., 2016). Metaproteomic 
data can not only be used as evidence for protein expression and 
quantification but also to refine gene models (Nesvizhskii, 2014), 
identify posttranslational modifications, frameshifts, and offer 
insights into entire microbial communities in plants (Butterfield 
et al., 2016). Studying plant metabolomes gives information on 
primary and secondary plant metabolites that may interact with 
the microbiome within the host (plant solute transport), as well 
as on the exterior surfaces (phylloplane, rhizoplane) through 
secretion as exudates (van Dam and Bouwmeester, 2016).

Bioinformatic analysis has substantially contributed to our 
understanding of microbial roles and their interaction with plants 
(Marasco et al., 2012; Koberl et al., 2013; Spence et al., 2014; Cha 
et al., 2016). For example, the identification of Pseudomonas 
spp. as the cause of sugar beet affection in soil suppressive to 
Rhizoctonia solani was initially based on metagenomic data 
analysis (Mendes et al., 2011). However, often, it is not trivial 
to test computational predictions under controlled conditions 
in the lab or in the field. Recent work toward engineered plant 
microbiomes includes computational modeling (Scheuring and 
Yu, 2012) and synthetic community experiments combined with 
multi-omics (Vorholt et al., 2017).

Aim of This Review
All approaches introduced, so far, require specific bioinformatics 
methods and tools for data reduction, analysis, and interpretation. 
Here, we give researchers a guideline for the computational 
aspects of planning and performing studies on plant–microbe 
interactions. We discuss quality of public genome data, software 
pipelines to analyze amplicon and metagenomic sequencing data, 
and present workflows of data analysis for both approaches. Data 
integration of additional “omics” techniques will be addressed to 
promote a much-needed multidisciplinary research that could 
shed light into the interlinked complexity of plant–microbiome 
interactions and their dynamics.

MICROBIOME SEQUENCES INSIDE 
PLANT GENOME ASSEMBLIES

The DNA extracted from plants for plant sequencing projects 
can, depending on plant sterilization, sampling, and DNA 
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extraction, contain other eukaryotic, microbial, and viral 
DNA. Although unintended, plant genome sequencing 
projects may include DNA from members of their microbial 
communities. This phenomenon is well known for animal 
genomes. For example, the genome sequencing project of 
Hydra magnipapillata produced an almost complete genome 
of a stably associated novel bacterium (Chapman et al., 2010). 
More recently, re-analysis of the tardigrade genome assembly for 
Hypsibius dujardini demonstrated that horizontal gene transfer 
(HGT) accounts for at most 1% to 2% of genes in the genome 
and that the original proposal that one sixth of tardigrade 
genes originate from functional HGT events was an artifact of 
undetected contamination (Koutsovoulos et al., 2016).

However, computational mining for microbial contigs in 
plant genome drafts or detection of contaminations in such 
assemblies has been limited. Intrinsic information, such as 
k-mer frequencies and sequencing coverage, indicates regions of 
unexpected characteristics, which might consist of foreign DNA, 
HGT or repeats (Delmont and Eren, 2016; Mapleson et al., 2017). 
Database searches identify regions of unexpected similarity 
between unrelated genomes, which are candidates for HGT or 
contamination (Delmont and Eren, 2016; Borner and Burmester, 
2017). Assembly evaluation tools, like REAPR (Hunt et al., 2013), 
assist in identifying potential mis-assemblies from contradictions 
between paired-end read pair alignments to contigs. However, 
none of these approaches alone allows reasonably specific 
detection of contamination in genomes assemblies. Guided by 
computational predictions, re-assembly and/or resequencing 
of questionable genomic regions is, therefore, the only reliable 
strategy to correctly assemble plant genomes.

To get an impression of the current status of possible 
microbial contaminations on plant genomes, we adapted the 
database-centric approach used earlier the for draft assembly 
of domestic cow, Bos taurus (Merchant et al., 2014). All latest 
assembly versions of plant genomes in NCBI Genbank (Benson 
et al., 2017) were split into chunks of 10 kb, overlapping each 
other by 5 kb. We screened with the Kraken2 software (Wood 
and Salzberg, 2014) using a confidence score of 0.5 for microbial 
and viral contamination (Table S1).

For Oryza sativa and Arabidopsis thaliana (Figure 1), as well 
as several other species (Table S1), we observed that one or more 
genome assemblies had more archaeal, bacterial, fungal, human, 
and/or viral segments than typical. Such assemblies would be 
reasonable targets for assembly evaluation, reassembly or even 
resequencing.

COMMUNITY-BASED ANALYSIS BY 
AMPLICON SEQUENCING

Primers Commonly Used for Amplicon 
Generation
Phylogenetic analyses of archaeal and bacterial communities 
within the plant rhizosphere rely mainly on the gene encoding 
the small RNA subunit of the ribosome, the 16S rRNA gene. 
To date, the most widely used next-generation sequencing 
(NGS) technology for targeted gene analysis is Illumina MiSeq. 
This technique requires small fragments (250–600 bp) and 
can generate high-sequencing coverage at low costs (Kozich 
et al., 2013). For this reason, most studies target the so-called 
hypervariable regions, e.g., V3, V4, and V5 in the 16S rRNA gene, 
as they provide sufficient classification accuracy (Liu et al., 2007; 
Claesson et al., 2010). The variable region V4, which is targeted 
by the primer pair 515F/806R, was recommended by the Earth 
Microbiome Project (Gilbert et al., 2014) and has been used in 
several studies to assess microbial communities in soil (Bates 
et al., 2011) and in the plant-rhizosphere (Breidenbach et al., 
2015). Due to limited coverage of the originally designed primer 
pair 515F/806R (Parada et al., 2016), primers were updated 
and recently renamed to “515F (Parada)” (Parada et al., 2016) 
(and “806R (Apprill)” (Apprill et al., 2015), which provide the 
most comprehensive coverage of the commonly used 16S rRNA 
primer pairs (Eloe-Fadrosh et al., 2016). There are certainly other 
16S primers available that are used in plant microbiome studies, 
as shown in Table 1, but some of them have limited coverage. 
Profiling of fungi is performed with the internal transcribed 
spacer (ITS) between the small (18S) and the large (28S) subunit 
ribosomal rRNA gene and most commonly used primers are 

FIGURE 1 | Number of potential archaeal, bacterial, fungal, human and viral of min. 10kb segments in genome assemblies of Oryza sativa (A) and Arabidopsis 

thaliana (B). For these two species, it is most clear that one or few assemblies have many more potentially foreign segments than others, independent from the 

number of contigs or genome size (complete data in Table S1).
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ITS1f and ITS2 (Gilbert et al., 2014; Tedersoo and Lindahl, 
2016). The ITS2 region has recently been suggested as a better-
suited target to extend the coverage of the fungal kingdom, using 
new and improved primers (Nilsson et al., 2019).

Co-Amplification of Plastids and 
Mitochondrial DNA
Universal 16S primers come with a limitation: they can also 
amplify plastid and mitochondrial DNA. This issue is highly 
relevant for plant associated microbiome studies, considering 
the abundance of organelles in a plant derived DNA sample. 
Fortunately, the undesired amplification of organellar DNA may 
be partially overcome through primer choice. The first primer 
(799F) designed to diminish the amplification of chloroplast 
sequences was introduced by Chelius and Triplett 15 years ago 
(Chelius and Triplett, 2001). The 799F primer, combined with 
the 1391R, can reach up to 74.5% and 56.2% coverage of all 
bacterial and archaeal 16S rRNA sequences, respectively, while 
amplifying only 0.8% of sequences classified as chloroplast in the 
SILVA database (Table 1). This pair has been also experimentally 
tested in a recent study of plant-associated bacterial communities 
(Beckers et al., 2016). In addition to primer optimization, a 
promising means of limiting the unwanted amplification of 
chloroplast and mitochondria sequences is the application of 
PCR clamps. These synthetic oligomers have been reported 
to physically block the amplification of plant host DNA while 
increasing the number of microbial 16S rRNA sequences 
(Lundberg et al., 2013; Blaustein et al., 2017). A useful resource 
of 16S individual primers used for detection of plant associated 
prokaryotes has been compiled recently [Supplementary Table 2 
of (Reinhold-Hurek et al., 2015)]. To also provide the theoretical 
coverage of widely used primer pairs, we have performed an 
in silico analysis using TestPrime against the SSU 132 SILVA 
database (Klindworth et al., 2013) without mismatches and 
sequence collection “Ref ” (Table 1).

In addition to 16S rRNA and fungal ITS, amplicon 
sequencing studies consider functional genes as phylogenetic 
marker which are normally enzymes that are involved in major 
biogeochemical processes in soils and the plant rhizosphere. Of 
particular importance are pmoA for methanotrophs (Suddaby 
and Sourbeer, 1990), amoA for ammonia oxidizers (Pester et al., 
2012), nxrB for nitrite oxidizers (Pester et al., 2014), nifH for 
diazotrophs (Collavino et al., 2014; Angel et al., 2018), mcrA for 
methanogens (Zeleke et al., 2013), and dsrB for sulfite/sulfate 
reducers (Zeleke et al., 2013; Pelikan et al., 2016; Jochum et al., 
2017; Liu and Conrad, 2017; Vigneron et al., 2018). A quite 
comprehensive overview of functional genes is provided at the 
Fungene database (Fish et al., 2013).

Amplicon Sequencing Protocols
Once a proper primer pair is selected, compatibility with the 
respective sequencing platform (e.g., Illumina Miseq) has to 
be ensured. For example, Illumina’s adaptors are added to the 
primer sequence and short barcodes in primer sequences enable 
sequencing of many samples in parallel. This can be achieved 
either by a single PCR step with primers that already incorporate T
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the barcode and the adapter (Caporaso et al., 2011) or by a 
workflow in which the template is first amplified, and barcodes 
are later added in a second-step PCR before the ligation of the 
adaptors (Herbold et al., 2015). In the latter approach, the same 
barcode can be combined with different primers.

Alternative strategies for sequencing amplicons also exist. 
For instance, PacBio sequencing, which can be sufficient for 
sequencing the entire 16S gene or in general fragments up to 30 
kb (Armanhi et al., 2016; Singer et al., 2016). All sequence data 
are a useful resource for the scientific community, and archiving 
such data ensures reproducibility in research. Hence, it is required 
that all sequences are submitted to the INSDC Sequence Read 
Archive (SRA) (Cochrane et al., 2016).

Processing of Amplicon Sequencing Data
To obtain biologically meaningful results from NGS data, it is 
necessary to thoroughly process sequences to denoise reads into 
amplicon sequence variants (ASVs) and/or group them into 
reliable OTUs. OTUs were originally proposed as a pragmatic 
alternative to species-level classification to aid in quantitative 
ecological comparisons (Sokal & Sneath: Principles of Numerical 
Taxonomy, San Francisco: W.H. Freeman, 1963) and are a 
common feature of modern microbial ecology. A handful 
of tools exist for forming OTUs, e.g., Mothur (Schloss et al., 
2009), QIIME (Caporaso et al., 2010), and UPARSE (Edgar, 
2013). All three pipelines contain similar processing steps, 
e.g., quality and length filtering of sequencing reads and OTU 
generation and classification of microbial 16S rRNA amplicons. 
For processing of ITS amplicons, PIPITS (Gweon et al., 2015) 
represents a collection of commands that require software, such 
as VSEARCH (Rognes et al., 2016), an open-source software 
analogue to USEARCH (Edgar and Flyvbjerg, 2015). For a more 
in-depth review of ITS amplicon sequencing we refer the reader 
to (Nilsson et al., 2019).

An evaluation of the available tools and parameters for read 
processing is beyond the scope of this review but can be found 
elsewhere (e.g., Kopylova et al., 2016). Here, we attempt to 
provide recommendations for optimal sequence processing into 
OTUS. (I) Employ paired-end sequencing and merge reads into 
contigs. Due to a drop in quality in Illumina sequencing reads 
from 5’ to 3’, error may accumulate and give rise to false diversity. 
Paired-end reads may allow for a correction of these sequencing 
errors in the overlapping regions (Schirmer et al., 2015). (II) 
Remove singletons. The removal of singletons was recommended 
to further improve data quality, e.g., to remove spurious OTUs 
(Zhou et al., 2011). (III) Pre-cluster. Pre-clustering prior to OTU 
clustering simplifies the data, reduces memory requirements 
and was shown to help in denoising (Huse et al., 2010). (IV) 
Remove chimeras. PCR and sequencing chimeras are a common 
problem, and their removal is essential (Quince et al., 2011). 
Typically used pipelines include multiple chimera detection 
and removal strategies, which can generally be done with and 
without reference databases. (V) Contaminant removal. One 
critical aspect of amplicon data analysis is to track down and 
remove any contamination inherent to the experimental setup. 
Therefore, it is obligatory that negative controls are included in 

the study design. Common sources of contamination are the 
PCR reagents used in the preparation of the sequencing libraries 
and barcode crosstalk. Decontam is a statistical framework for 
detecting contaminants that is available as an R package (Davis 
et al., 2018) (VI) Normalize library size. The total reads per 
sample (sequencing library) can vary by orders of magnitudes 
within a single sequencing run. Therefore, OTU tables have to 
be normalized for a range of statistical applications. To date, 
it is standard to rarefy the data, e.g., randomly subsample the 
reads at the smallest library size (Schloss et al., 2009; Caporaso 
et al., 2010, REF). However, this method does not acknowledge 
the zero-inflated data structure and potentially excludes useful 
information. Other suitable normalization strategies are based 
on a negative binominal distribution model (McMurdie and 
Holmes, 2014; Weiss et al., 2017) or by rarefying multiple times 
(see supplement in McMurdie and Holmes, 2014). (VI) Consider 
alternatives to OTUS.

The commonly used 97% identity level for de novo clustering 
has been defined to compensate for sequencing errors but may 
fail to capture sequence diversity of ecological importance in 
some cases. Fine- or strain-resolved analysis of amplicon data 
could instead be based on 100% sequence resolution, so-called 
amplicon sequence variants (Callahan et al., 2017), which 
requires specific error–correction algorithms and is an emerging 
field in bioinformatics for amplicon analysis. Currently utilized 
methods include SWARM(v2) (Mahe et al., 2014; Mahe et al., 
2015), minimum entropy decomposition (MED) (Eren et al., 
2015b), and DADA2 (Callahan et al., 2016). These methods differ 
in the algorithm used to identify ASVs, but all produce a set of 
sequences and an occurrence table that is analogous to OTUs 
defined at 100% identity, but free from sequencing error. This 
approach can differentiate between distinct ecologically relevant 
taxa that would be otherwise be overclustered into a common 
OTU at a 97% identity threshold (Eren et al., 2015b).

Data normalization as well as compositional nature of relative 
abundance data dictate what statistical methods should be 
applied downstream (Gloor et al., 2017). Multivariate analysis 
includes methods to explore variance, interpret relationships 
in the light of constraint variables and even define discriminant 
functions (Paliy and Shankar, 2016). Detailed overview of the 
statistical methods for the analysis of amplicon data has been 
described previously (Hugerth and Andersson, 2017).

Databases and Methods for Sequence 
Classification
To facilitate data interpretation, OTUs and/or ASVs need 
to be classified into recognized taxonomic groups. A widely 
applied software for this purpose is the Ribosomal Database 
Project (RDP) classifier (Wang et al., 2007), which uses k-mer 
fragments of an OTU sequence to identify the closest matching 
organism in a reference database. This classifier is implemented 
in the mothur and QIIME software packages and can be used for 
classification of NGS amplicons generated from 16S rRNA genes 
(e.g., Breidenbach et al., 2015) as well as from ITS genes (Gweon 
et al., 2015). One of the most recent and supposedly faster k-mer 
based database search tool is IDTAXA (Murali et  al., 2018). 
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Useful alternatives to k-mer based search tools are least common 
ancestor-based methods, such as SINA (Pruesse et al., 2012) or 
CREST (Lanzen et al., 2012) and tools based on phylogenetic 
placement, such as the evolutionary placement algorithm (EPA) 
(Berger et al., 2011) and pplacer (Matsen et al., 2010). These tree 
reconciliation methods generally have a higher classification 
accuracy at a higher phylogenetic level and are, therefore, suitable 
for detection of novel taxa (Matsen et al., 2010; Lanzen et al., 
2012; Pelikan et al., 2016; Angel et al., 2018).

For 16S rRNA gene classification, the databases Greengenes 
(DeSantis et al., 2006), Silva (Quast et al., 2013), and RDP (Cole 
et al., 2014) are most widely used. Databases for ITS sequence 
classification are UNITE (Abarenkov et al., 2010) and WARCUP 
(Deshpande et al., 2016). As chloroplasts are likely co-amplified 
with the plant microbiome (Lundberg et al., 2012), sequences 
that are classified as chloroplasts by any of the above-mentioned 
tools should therefore be removed from the sequence data set.

Analysis of Amplicon Sequencing Data 
(Including Online Resources)
Once OTUs are generated, their abundance matrix has to be 
analyzed. A good overview for microbial ecologists about the 
available statistical analysis methods and their usability was 
compiled earlier (Ramette, 2007), which later resulted in a useful 
online resource called GUSTAME (Buttigieg and Ramette, 2014). 
Tools for statistical analyses mainly rely on the R software (R Core 
Team, 2017) and specifically on the vegan software package 
(Oksanen et al., 2017). Tools for non-expert users can be divided 
into interactive R-based online resources, such as phyloseq shiny 
(McMurdie and Holmes, 2015) and Calypso (Zakrzewski et al., 
2017), easy-to-use and well-documented software packages for 
commandline R, such as phyloseq (McMurdie and Holmes, 
2013) and Rhea (Lagkouvardos et al., 2017); and standalone 
programs, such as mothur and QIIME.

Limitations
Despite its popularity in characterization of microbial 
communities, known biases of amplicon sequencing should not 
be neglected. Universal primers amplify genes from different 
taxonomic lineages with different efficiency (Hong et al., 2009; 
Schloss et al., 2011; Mao et al., 2012). 16S genes with long introns 
might be missed by typical PCR design due to their length 
(Salman et al., 2012; Brown et al., 2015). Different numbers of 
rRNA gene clusters per genome have direct impact in estimating 
the relative abundance of individual bacterial taxa (Vetrovsky 
and Baldrian, 2013). Furthermore, unless specific functional 
genes are being used, where there is a congruence between the 
function and phylogeny, amplicon sequencing is not ideal for 
inferring community function, although there are available 
methods (Langille et al., 2013).

SHOTGUN METAGENOMIC APPROACHES

Whole genome sequencing utilizes sequence information 
from the entire genome, which represents different levels of 

conservation. Compared to amplicon sequencing this provides 
better phylogenetic resolution and enables function prediction. 
However, to leverage the richness of metagenomic data sets 
to answer targeted scientific questions, it is first important to 
consider how much sequencing data is necessary. Unfortunately, 
this is not a straightforward task. Plant-associated communities 
tend to be complex, with a high level of strain diversity that can 
result in lower coverage of specific genomes and poorer assembly 
(Sczyrba et al., 2017). Strategies to estimate how much sequencing 
is necessary to recover information for a target genome require 
existing 16S rDNA amplicon data (Tamames et al., 2012; Ni et al., 
2013) and/or a preliminary metagenomic data set (Rodriguez 
et al., 2018). Although very small metagenomic data sets may 
be suitable for assessing taxonomic richness (Kwak and Park, 
2018), it should also be kept in mind that the sequencing depth 
will have a direct impact on what scientific conclusions can be 
drawn (Sczyrba et al., 2017; Zaheer et al., 2018). Therefore, it is 
important to carefully evaluate the reason a metagenomic data 
set will be generated and determine the necessary sequencing 
depth according to the type of analysis that will be conducted.

Four techniques are typical for the computational analysis 
of shotgun metagenomes: 1) taxonomic binning, 2) taxonomic 
profiling, 3) target–gene reassembly, and 4) genome binning.

Taxonomic Profiling and Binning
Taxonomic profilers and taxonomic binners use existing databases 
to assign unassembled sequence data into known taxonomic 
groups. Numerous methods aimed at producing taxonomic 
profiles and taxonomic bins have been developed (Table S2). 
For extensive performance-based reviews, please see Lindgreen 
et al. (2016) and Sczyrba et al. (2017). Taxonomic profilers and 
taxonomic binners use existing databases to assign unassembled 
sequence data into known taxonomic groups. Taxonomic 
profilers produce tables of abundances per taxa, either based on 
presence/absence or relative abundance of taxonomic groups, 
similar to taxonomic marker-based amplicon analyses. Profiling 
tools map read data against a database of single-copy gene 
markers (e.g., MetaPhlAn2; Truong et al., 2015), match k-mers 
to genomic databases (e.g., CLARK; Ounit et al., 2015) or match 
gene composition against the gene composition found in genomic 
databases (e.g., Taxy-pro; Klingenberg et al., 2013). These 
procedures assign a taxonomic lineage to each read, tabulating 
relative abundance profiles of microorganisms across a set of 
metagenomic samples. Methods relying on databases of single-
copy gene markers use a small fraction of the total read data, since 
single-copy markers represent a small proportion of an organism’s 
total DNA. Methods that instead use a database of whole genomes 
assign many more reads to taxonomic groups resulting in greater 
recall of rare taxa, however, do not ensure that greater precision 
or accuracy is achieved for the calculated relative abundances 
(Sczyrba et al., 2017). Taxonomic binners work in a similar 
fashion as taxonomic profilers, however, aim to collect reads or 
contigs into taxonomic groups rather than produce a taxonomic 
profile of presence/absence or abundance. Reads assigned to 
taxonomic groups can subsequently be mined for function or 
assembled independently from reads assigned to other taxonomic 
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groups (Cleary et al., 2015). Taxonomic bins can be specified at 
any taxonomic level (species, genus, order, etc.), however, tend to 
perform poorly at the genus and species level. These methods also 
suffer from the assignment of data into mixed small bins, which 
should be discarded (Sczyrba et al., 2017).

Target Gene Assembly
Another popular method for characterizing the taxonomic 
composition of a metagenome is the reconstruction of partial to 
full-length rDNA sequences directly from raw metagenomic data 
sets (Miller, 2013; Gruber-Vodicka et al., 2019). This technique 
differs from taxonomic profiling. Although both techniques rely 
initially on mapping raw data to a database, the aim of target-
gene assembly is to reconstruct full-length genes that can be 
directly used in downstream applications, such as detailed 
phylogenetic analysis, the identification of novel taxa and precise 
taxonomic classification (Soergel et al., 2012). Furthermore, 
this procedure is free from the PCR bias inherent to amplicon-
based techniques and thus may better estimate ribosomal 
gene abundances in the environment. The procedures used to 
reconstruct full-length rDNA sequences have also been adapted 
to allow the reconstruction of protein-coding functional genes 
(Orellana et al., 2017). These targets include functional process 

marker genes such as ammonia monooxygenase (Rotthauwe 
et  al., 1997), dissimilatory (bi)sulfite reductase (Wagner et al., 
2005) and dinitrogenase reductase (Widmer et al., 1999), which 
can act as both taxonomic and process markers.

Binning Genomes From Metagenomic 
Data Sets
Genomic bins, known as metagenome-assembled genomes 
(MAGs) obtained from metagenomic data sets have 
revolutionized our understanding of the tree-of-life (Hug et al., 
2016). The workflow for generating MAGs is shown in Figure 2. 
Here, we outline the overall approach and provide lists of specific 
tools available in Table S3.

Robust binning is dependent on a reliable assembly. To generate 
a high-quality assembly, raw sequencing reads are first trimmed 
and filtered to improve quality. Reads with overall low quality 
are usually discarded, while the remaining reads are trimmed to 
remove low-quality ends and adaptor sequences. Reads are then 
assembled using programs that have been optimized specifically 
for complexity and varying genome coverage which is typical in 
metagenomic data. Systematic evaluation of typical assemblers 
(Sczyrba et al., 2017) showed that complex data sets result in 
poorer assemblies. User-defined parameters should be explored 

FIGURE 2 | A flowchart outlining steps taken in a typical metagenome analysis. Specific tools, which can be used to carry out each step can be found in 

Supplemental Tables S2 and S3.
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and adjusted to obtain the optimum assembly. A useful tool for 
evaluating assemblies constructed under different parameter 
settings is MetaQUAST (Mikheenko et al., 2016).

Genomic binning algorithms rely on two different types of 
information, composition, and coverage, for differentiating 
genomes. Compositional information, such as GC content or 
tetranucleotide frequency, has long been exclusively used to 
separate MAGs from one another. Contigs or scaffolds below 
some length are usually excluded, as composition-based statistics 
are weaker, and accuracy of classification quickly declines 
(Sandberg et al., 2001). To calculate coverage, raw or quality-
checked reads are mapped against assemblies using any one of 
several programs. Binning algorithms measure tetranucleotide 
frequency patterns contained within scaffolds and, in 
combination with the information on coverage across samples, 
classify scaffolds into individual MAGs. A crucial step is then to 
evaluate the quality of the obtained MAGs. The contamination 
and completeness level should be measured to characterize the 
MAG as a single genome or a set of closely related genomes 
(Parks et al., 2015; Waterhouse et al., 2017). These statistics 
are important when making arguments regarding absence or 
co-occurrence of genes (e.g., inferring pathways). Several tools 
have been developed to evaluate the quality of MAGs (see 
Table S3) and a detailed set of standard guidelines [minimum 
information about a metagenome-assembled genome(MIMAG)] 
has been developed by the Genomic Standards Consortium for 
reporting and evaluating MAGs (Bowers et al., 2017). Once a 
MAG passes the necessary quality assessment, it can be treated 
nearly the same as a draft genome from culture. Gene prediction 
and functional annotation of predicted protein sequences within 
each bin can be computed using available automated pipelines. 
Automated tools with predefined workflows, like ATLAS 2.1.4 
(https://metagenome-atlas.readthedocs.io/en/latest/) or Anvi’o 
(Eren et al., 2015a), are useful aids for metagenomic data analysis 
without requiring extensive bioinformatics skills. Also, the in situ 
replication rate of MAGs can be estimated using iRep (Brown 
et al., 2016), giving insight into which organisms may have been 
replicating at the time of sampling.

Publicly Available Plant-Associated 
Metagenomes
Many studies may benefit from a comparison of newly generated 
data to existing data and several databases host publicly 
available data to enable such comparisons. The availability of 
plant-associated metagenomic data from three resources is 
summarized in Table 2. It should be noted that these data may be 
redundant between the three resources. They are not necessarily 
mutually exclusive, and a single data set can be hosted by one or 
more resource.

An extensive resource of publicly available metagenomic data 
is hosted at the Short Read Archive (SRA) of the International 
Nucleotide Sequence Database Collaboration (INSDC) 
(Cochrane et al., 2016). A requirement for deposition into this 
resource is the inclusion of minimum information about a 
metagenome sequence (MIMS) (Field et al., 2008) enabling an 
efficient path to identify and download raw data for comparative 

analysis. Data deposited in the SRA has been minimally processed, 
so that it can be processed alongside newly generated data using 
any chosen pipeline to ensure maximum comparability. A 
second resource of raw metagenomic data is the MG-Rast server 
(Meyer et al., 2008). Although not as comprehensive as the SRA, 
MG-Rast processes raw reads through a standardized pipeline 
to produce taxonomic and functional profiles and calculate 
diversity statistics. Users can upload their newly generated 
data sets and analyze them with the standard pipeline. Pipeline 
standardization coupled with periodic re-analysis of existing data 
sets, ensures that newly deposited data can be compared directly 
to previously deposited data. A third resource for metagenomic 
data is IMG/M (Markowitz et al., 2014). Instead of raw data, 
IMG/M primarily hosts assembled data (contigs, scaffolds, 
MAGs). IMG/M also uses a standardized pipeline to compare the 
newly deposited data sets to the existing IMG/M database, which 
includes an extensive collection of complete and draft genomes 
as well as a metagenome to infer taxonomy and function.

A potential hurdle to a meaningful comparison of newly 
generated metagenomic data to pre-existing data is the lack of 
consistently applied ontology in metadata entries. For each 
of the aforementioned databases, scientists are responsible 
for uploading data which can result in non-uniform usage of 
metadata terms. For instance, the separation of samples into 
rhizoplane and rhizosphere compartments is experimentally 
difficult (Reinhold-Hurek et al., 2015; Richter-Heitmann 
et al., 2016) and no data sets found in the SRA or in MG-Rast 
possess a “rhizoplane” label (Table 2). Researchers interested in 
comparative metagenomics of the rhizoplane would need to use 
additional metadata or contact the depositor of metagenomic 
data to distinguish between rhizoplane and rhizosphere data. 
In addition, many sequencing projects are funded using public 
funds, and it is recognized that such data should be available to 
the public as soon as possible. It is therefore important to note 
that publicly available data has not necessarily been published. 
Protocols are in place to reserve publication rights for the “data 

TABLE 2 | Plant-associated metagenomic data set availability in publicly 

available databases.

Search term ENA- SRA 

metagenomes

MG-Rast 

metagenomes

IMG 

metagenomes

Rhizoplane 0 0 197

Rhizosphere 1450 137 78

Phyllosphere 33 25 33

Endophyte 552 0 0

Endosphere 0 0 10

Nodule 0 0 3

Roots 112 12 1

Rice Paddy 77 23 0

Root-associated 

fungus

13 0 0

Shoot 12 0 0

Leaf 10 0 0

Pollen 2 0 0

Moss 748 1 6

“Plant” (unspecified) 469 0 0

Counts refer to total number of discreet data sets, including biological and technical 

replicates.
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providers,” or researchers who conduct sample collection and/
or experiments that are used to generate sequence data. The 
Fort Lauderdale (2003) and Toronto (Toronto International 
Data Release Workshop et al., 2009) agreements provide general 
guidelines for the use of publicly available data.

ADDITIONAL OMICS STRATEGIES AND 
THEIR INTEGRATION WITH MICROBIOME 
DATA

Metatranscriptomics
The amount of transcript sequences from the organisms in 
a microbiome, under a specific condition, is indicative of 
microbial activity and function. RNA-sequencing (RNA-Seq) 
is one of the most popular methods used in transcriptome 
analysis. The whole plant associated microbial communities 
was first analyzed with metatranscriptomics in A. thaliana 
rhizosphere, at different developmental stages (Chaparro et al., 
2014). When sequencing RNA it is important to consider the 
high abundance of ribosomal RNA (rRNA) molecules in the 
cell. rRNA can be considerably reduced by using special library 
preparation kits like TruSeq Ribo-Zero (from Illumina). A 
crucial step in RNA-seq is the construction of complementary 
DNA (cDNA) from the RNA template by a reverse transcriptase. 
For this purpose, protocols have been established, and they can 
be classified into two categories: stranded and non-stranded 
(strand information is lost) (Hou et al., 2015). For sequencing 
plant transcripts, Oligo (dT) primers are used to hybridize to 
the poly-adenylated tail found on the 3′ ends of most eukaryotic 
mRNAs. However, for non-eukaryotic organelles, there are no 
specific tails, and random primers must be used. Therefore, in 
plant microbiome RNA-seq, it is expected to find sequences 
from the host RNA. Ideally, RNA sequencing is deep enough to 
also cover lower expressed transcripts. Recommendations for 
experimental design and sequence depth are provided by the 
ENCODE consortium (https://www.encodeproject.org/about/
experiment-guidelines). Third-generation sequencing methods, 
such as PacBio or Nanopore, provide sequence read lengths up 
to hundreds of kbp (Bronzato Badial et al., 2018; Minio et  al., 
2019), enabling sequencing of complete transcripts. These 
technologies still have a high error rate that can be reduced by 
deep sequencing. In practice, however, these technologies are 
often not feasible due to high sequencing costs. As a result, most 
of the metatranscriptomic studies rely on short-reads obtained 
from Illumina sequencing.

The analysis of short-read metatranscriptome sequences 
can be addressed in two ways: read-based or assembly-based. 
Assembly based transcripts can be reference-based (alignment of 
reads to genome sequences or metagenomic bins) or reference-
free (based on metatranscriptomic reads only). Reference-based 
assemblies have high quality, but only cover those species which 
genomes could be binned well (unlikely for low abundant and 
micro-diverse species). Reference-free assemblies suffer from 
many artefacts (no clear validation method) and from assembly 
limitations due to homologous gene regions between closely 

related strains, alternative splice forms, close paralogs, and close 
homologs (Gongora-Castillo and Buell, 2013).

RNA-seq analysis requires pre-processing of the data, in 
which rRNA is separated, sequence tails (e.g., long poly-A 
tail) are removed, and low-quality bases are trimmed. In plant 
microbiome analysis, the RNA from the host can be separated by 
mapping the reads to a closely related reference plant genome or 
transcriptome (if available). In the read-based approach, rRNA 
and non-rRNA reads are analyzed separately by aligning them to 
a reference database (e.g., NCBI nonredundant protein database 
(Coordinators, 2014) for mRNA and SILVA (Quast et al., 2013) 
for rRNA).

Reference-based assembly methods work in combination 
with complete genome sequences or high-quality genome bins 
generated from metagenomic data. In this approach the RNA 
sequences are mapped to the genomic DNA using intron-aware 
mapping methods like STAR (Dobin et al., 2013). Reference-free 
assembly methods rely on de novo transcriptome assemblers. 
Assemblers like Trinity will additionally generate the isoforms 
of a gene (Grabherr et al., 2011). Taxonomic classification of 
transcripts is usually based on the lowest common ancestor (LCA) 
algorithm (e.g., MEGAN; Huson et al., 2007). For comparison 
between multiple samples, normalization (e.g., based on number 
of reads) is necessary.

In terms of statistical analysis, transcripts and genes can be 
quantified with specific methods designed for such purpose, e.g., 
Kallisto (Bray et al., 2016). For analyzing differentially expressed 
transcripts or genes (DEG) between samples from different 
conditions, quantification results are used as input for tools like 
edgeR (Robinson et al., 2010).

For biological pathway reconstruction, retrieval of gene 
ontology (GO) terms and gene annotation, a multitude of 
databases, and associated tools are available. As an example, 
DEG can be analyzed with blast2GO (Conesa et al., 2005), a 
software suite which annotates genes with GO terms based on 
the GO database (Ashburner et al., 2000) and infers biological 
pathway information based on the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) (Kanehisa and Goto, 2000). Significantly 
overrepresented and underrepresented pathways, functions, or 
biological processes can be identified based on this information 
using enrichment analysis of GO terms for DEG. For large scale 
experimental setups, co-expression networks might be a viable 
next layer of analysis, as extensively reviewed (Serin et al., 2016).

For a comprehensive annotation of transcriptomes, automatic 
functional annotation methods like Trinotate are available 
(Bryant et al., 2017). Trinotate uses a number of different 
methods for functional annotation, including homology search 
to known sequence data (BLAST+/SwissProt), protein domain 
identification (HMMER/PFAM), protein signal peptide, and 
transmembrane domain prediction (signalP/tmHMM) and 
leveraging various annotation databases (eggNOG/GO/KEGG 
databases).

In plant microbial associated studies, metatranscriptomic 
data were, for instance, used for understanding the rhizosphere 
microbiome of four crop plants grown in the same soil: wheat 
(Triticum aestivum) oat (Avena strigosa), oat mutant (sad1), and 
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pea (Pisum sativum) (Turner et al., 2013), for assessing bacterial 
gene expression during Arabidopsis development (Lambais 
et al., 2017). With the decrease of sequencing costs, the use of 
transcriptomics and metatranscriptomics studies related to plant 
increased (Levy et al., 2018).

Metabolomics
Metabolomics studies aim at understanding small molecule 
metabolites of a biological system under specific conditions. 
In general, the metabolome consists of primary and secondary 
metabolites. Compared to other complex biological systems, 
plants defence mechanisms evolved a high diversity of secondary 
metabolites (Wink, 2003). Most of them are toxic or repellent 
to herbivores and microbes. The analysis of metabolomic 
compounds results in metabolic profiles and fingerprints up to 
the detection of novel biomarkers, which also can be integrated 
into microbiome analyses for a more holistic understanding of 
the plant microbiome.

Analytical Technologies Used in Metabolomics
Most frequent technologies used in metabolomics are nuclear 
magnetic resonance (NMR), gas chromatography-mass 
spectrometry (GC-MS) and liquid chromatography-mass 
spectrometry (LC-MS). MS-based techniques detect metabolites 
with a much higher sensitivity than NMR (Emwas, 2015). 
However, MS samples require an elaborate preparation, and the 
detection is limited only to metabolites that are able to ionize 
into the detectable mass range. The advantages of using NMR 
stand out for compounds that are difficult to ionize or dissolve or 
require derivatization for MS (Markley et al., 2017).

Metabolomic methodologies have so far been divided into 
targeted and untargeted approaches and might merge in the 
future (Cajka and Fiehn, 2016). The analysis of data obtained 
from these technologies (NMR and MS) can be divided into pre-
processing, annotation, post-processing, and statistical analysis 
(Spicer et al., 2017). In general, these methods are tailored to the 
analytical technology. Pre-processing methods are applied to 
correct the differences in peak shape width and position due to 
noise, sample differences, or instrument factors (Ren et al., 2015). 
There is no gold standard pipeline yet for pre-processing of the 
data. According to the metabolites standard initiative (MSI), for 
identification, a metabolite must be compared to at least two 
orthogonal properties of an authentic chemical standard analyzed 
in the same laboratory with the same analytical techniques as 
experimental data (Salek et al., 2013). Since most metabolites are 
not available in the form of chemical standards, they cannot be 
fully identified. Therefore, MS annotation tools are divided based 
on different annotation levels (detailed in Schymanski et  al., 
2014). For NMR, metabolites can be identified by comparing 
directly with data from online databases (Everett, 2015). This 
limits the findings to the content of respective databases.

Before statistical analysis, data can be filtered out based on a 
signal-to-noise ratio selected threshold, or a minimum percent of 
samples a feature must detect. Normalization is also necessary due 
to differences in metabolite concentrations in different samples. 
A current review (Barupal et al., 2018) covers statistical analysis, 

visualization as well as contextualization of metabolic data from 
a bioinformatic viewpoint. Lists of freely available tools based on 
their functionality, and technology used are available in Spicer 
et al. (2017). The application of multiomics data from genomics, 
transcriptomics, proteomics, metabolomics, and fluxomics to 
lipidomics focusing on metabolic modeling in plants have been 
reviewed recently (Rai et al., 2017).

Application of Metabolomics Together With Plant 

Microbiomes
The vast diversity of soil microbiota interacts with roots of 
plants, forming a microbial rhizosphere community with intense 
interactions between plant and microbes. To study such complex 
interactions, both knowledge about the microbial communities 
as well as the metabolic constitution of the environment is 
needed (reviewed in van Dam and Bouwmeester, 2016).

Using a combination of metagenomics and metabolomics, 
Blaya et al. (2016) could establish a starting point to unravel 
the complex mechanisms in the suppressive nature of composts 
to control plant diseases in economically important settings 
using 16S and ITS for taxonomic analysis together with 
UHPLC-MS-TOF and additional 13C NMR for the chemical 
properties of compost and peat. Another multiomics approach 
using metatranscriptomics and metabolomics could highlight 
how Arabidopsis plants impact soil microbial functions by a 
changing constitution of root exudates during development of 
the plant (Chaparro et al., 2013). Plant-microbe interactions 
play also a vital role in the phyllosphere of plants. Ryffel et al. 
(2016) applied both NMR and MS methods, investigating 
epiphytic bacteria on A. thaliana leaves and the response of 
the plant toward epiphytic bacteria and resulting changes 
in the phylloplane exometabolome. Recently, metabolomics 
in combination with 16s amplicon sequencing was used to 
evaluate the potential for metabolic plant–microbial linkages in 
the rhizosphere of an annual grass in the absence of soil matrix 
effects (Zhalnina et al., 2018).

Bioinformatic Resources and Platforms for Plant 

Metabolomics
Several online resources are available as well, providing software 
tools, tutorials, protocols and guidelines on processing, statistical 
analysis, and visualization of metabolomic data. To this end, 
platforms like the Metabolic Workbench (Sud et al., 2016), XCMS 
for MS-based data (Gowda et al., 2014), or MetaboAnalyst (Xia 
et al., 2015), focusing on biomarker discovery and classification, 
provide a multitude of resources.

Databases for the annotation of plant genomes and the 
construction of metabolic models can be obtained from KEGG 
(Kanehisa et al., 2014) or plant-specific resources as PlantSEED, 
providing annotation and model-data for 10 plant genomes 
(Seaver et al., 2014) or Gramene/Plant Reactome as a free and 
open-source, curated plant pathway database portal (Naithani 
et  al., 2017; Tello-Ruiz et al., 2018). Another vast resource for 
plant metabolic networks is the Plant Metabolic Network with 
the PlantCyc database containing 1200 pathways in over 350 
plant species as of version 12.0 (Schlapfer et al., 2017).
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Overall, complete annotation of plant metabolomes is yet to be 
achieved, though improvements in non-targeted metabolomics 
continuously underway (reviewed in Viant et al., 2017).

Proteomics
Metaproteomics is the study of the proteins in a microbial 
community from an environmental sample. In contrast to other 
-omics strategies, metaproteomics provides direct evidence 
for proteins, post-translational modifications, protein-protein 
interactions, and protein turnover, reflecting microbial community 
structure, dynamics, and metabolic activities (Hettich et al., 2013). 
In general, metaproteomics mostly utilizes methods originating 
from mass spectrometry (MS)-based proteomics.

Experimental Procedures
MS-based proteomics is a powerful analytical technique for 
large-scale, high-throughput experiments to identify and 
quantify (characterize) thousands of microbial proteins. In 
MS-based proteomics we can distinguish between top-down 
and bottom-up strategies to analyze intact proteins or peptides 
from artificial proteolytic digestion, respectively. For the purpose 
of this review, we will focus on the more common bottom-up 
strategy. In brief, major experimental steps include sample lysis, 
protein extraction, protein separation, proteolytic digest, peptide 
fractionation, and MS analysis (Siggins et al., 2012).

Computational Proteomics
MS analysis in a large-scale bottom-up experiment readily results 
in millions of spectra that require automated mass spectral 
interpretation. Major steps in the computational workflow 
consist of spectrum pre-processing, peptide identification, 
quantification (e.g., label-free), protein grouping, and in a 
metaproteomic context LCA analysis, e.g., UniPept (Mesuere 
et al., 2018) and Megan (Huson et al., 2007). Peptide identification 
plays a critical and defining role in metaproteomics to infer 
most of the constituents of a microbial sample. Among the most 
popular approaches to assign a peptide sequence to a spectrum 
are database searching, de novo sequencing, e.g., PEAKS (Ma 
et al., 2003), and spectral library searching, e.g., SpectraST (Lam 
et al., 2007).

In database searching, a protein sequence database is in silico 
digested and fragmented to generate theoretical spectra to match 
against experimental spectra. Most protein sequence databases 
are built from various omic sources, but at the core use gene 
predictions from primary genome assemblies. Respectively, the 
genome quality and its assembly greatly influence the content 
in reference databases like UniProtKB (Pundir et al., 2017), 
RefSeq (O’Leary et al., 2016), or Ensembl (Zerbino et al., 2018). 
In proteomics, one has to balance three aspects of a database, 
i) complexity to satisfy downstream statistical validation, ii) 
completeness to identify most constituents, and iii) size to control 
sensitivity and processing time (Zerbino et al., 2018).

To address those aspects in metaproteomics, various 
approaches supplement existing reference databases or build 
custom databases to account for the microbial communities. The 
proteogenomics field leverages metatranscriptome or metagenome 

data to build sample specific custom protein sequence databases 
(Nesvizhskii, 2014). This is especially useful for non-model 
organisms with no available reference genome database or to 
identify novel proteins not present in a reference database. Even 
draft metagenomes provide a sufficient basis to analyze MS data 
without prior extensive genome annotation (Armengaud et al., 
2014). In metatranscriptomics and metagenomics, many short-
read assembly algorithms make use of de Brujin graphs as primary 
data structure to infer primary assemblies. Tang et al. reutilize 
the graph structure to match MS spectra and construct a more 
comprehensive database of putative proteins (Tang et al., 2016). 
A common challenge to metaproteomics and proteogenomics is 
the loss in sensitivity due to an increase in number of databases 
or database size (Jagtap et al., 2013). Database size reduction 
methods include a two-step search method to create a smaller 
database from a “survey” search and database clustering prior to 
searching (Marx et al., 2013).

Metaproteomics in Plant Microbial-Associated 

Studies
In plant microbiome studies, metaproteomics were, for instance, 
used to evaluate bacterial communities in the phyllospheres 
of tree species in a pristine Atlantic Forest (Lambais et al., 
2017), for investigating the response of the plant PGPB Bacillus 
amyloliquefaciens FZB42 to the presence of plant root exudates 
(Kierul et al., 2015), to determine the differences between the 
soil protein abundance in plant sugarcane and ratoon sugarcane 
rhizospheric soils (Lin et al., 2013) and few other studies. Despite 
the successfully usage, metaproteomics in plant microbiome are 
limited due to the lower expression of proteins in plant microbial 
samples and limited information in the databases (Levy et al., 2018).

CONCLUSION

The emergence of molecular techniques over the last decades 
has considerably improved and sped up the analysis of plant-
associated microorganisms, e.g., i) deep understanding of A. 
thaliana roots microbiome (Bulgarelli et al., 2012; Lundberg 
et al., 2012) and ii) identification of key bacterial taxa and genes 
involved in suppression of a fungal root pathogen (Mendes et al., 
2011). However, remaining challenges include: i) understanding 
the high diversity of plants and their microbiome, ii) assembling 
useful databases, iii) inherent limitations and error in molecular 
techniques, iv) moving from model systems to the field. A 
promising approach to understand reciprocal effects of plants, 
and their microbiota lies in disassembling plant microbiomes and 
establishing synthetic microbial communities for reconstitution 
experiments to study interspecies and intraspecies interactions 
(Vorholt et al., 2017; Duran et al., 2018). Here, the use of 
genome-sequenced and fully characterized species would allow 
for predicting functional interrelations that could be tested in 
experiments under gnotobiotic conditions.

Due to the high diversity of plants and their sequencing and 
assembly challenges (Schatz et al., 2012) few plant genomes have 
been sequenced and well analyzed, while many public plant 
genome sequences are still represented as a draft. Therefore, 
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experiments conducted in model plants, such as A. thaliana, 
will still help in establishing computational and database 
resources (Genomes Consortium. Electronic address and 
Genomes, 2016), from which information can be transferred 
to other plants (Busby et al., 2017). Furthermore, the 10,000 
Plant Genomes Project has the potential to reduce this limit 
by sequencing representative species from every major clade 
of embryophytes, green algae, and protists (Cheng et al., 2018). 
Long-read DNA sequencing techniques (PacBio, Nanopore) are 
expected to improve the quality of genome and metagenomic-
derived sequences and will overcome the binning and assembly 
limitation in samples with high richness. Despite the differences 
in the plant microbial community based on plant species, 
soil, and environment, it is very important to study if core 
microbiome functions specific to phyllosphere and rhizosphere 
exist and, if so, to understand interaction mechanisms between 
core microbes and plants. These insights will be challenged by 
our understanding of microbiome contributions to plant health 
and the development of applications in agriculture. With the 
reduced cost of sequencing a huge amount of omics data from 
plant microbial community can be expected. However, there 
is so far no plant microbiome specific database where species 
or strains could be stored together with the information about 

plant and environmental condition. The development of such 
databases needs to be prioritized to enable the functional and 
ecological interpretation of the upcoming large-scale multi-
omics plant microbiome data.
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