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Among all the aspects that are linked to a structural healthmonitoring (SHM) system, algorithms, strategies, ormethods for damage
detection are currently playing an important role in improving the operational reliability of critical structures in several industrial
sectors. �is paper introduces a bioinspired strategy for the detection of structural changes using an arti	cial immune system
(AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at di
erent
actuation phases. Damage detection and classi	cation of structural changes using ultrasonic signals are traditionally performed
usingmethods based on the time of �ight.�e approach followed in this paper is a data-based approach based onAIS, where sensor
data fusion, feature extraction, and pattern recognition are evaluated.One of the key advantages of the proposedmethodology is that
the need to develop and validate a mathematical model is eliminated. �e proposed methodology is applied, tested, and validated
with data collected from two sections of an aircra� skin panel.�e results show that the presentedmethodology is able to accurately
detect damage.

1. Introduction

Structural health monitoring (SHM) is a discipline that
makes use of sensors permanently attached to a structure
together with di
erent so�ware analysis developments in
order to detect damage and assess the proper performance of
structures. An SHM system traditionally includes continuous
monitoring, data processing algorithms, and pattern recogni-
tion techniques for a robust analysis. Di
erentmethodologies
have been developed in the last years in the 	eld of SHM.
However, with the use of bioinspired algorithms, promising
results have been obtained, mainly due to its adaptive,
distributed, and autonomous features.

�is work presents a damage detection methodology that
is mainly based on an arti	cial immune system (AIS) as a
pattern recognition technique and a
nity plots to discrim-
inate the di
erent structural states of the structure. �is
methodology is applied to the collected data by a piezoelectric

system. �e arti	cial immune system has been proposed
and used in several applications. However, in structural
healthmonitoring, thismethodology is relatively new. A brief
state of the art in structural health monitoring is presented,
in chronological order, in the next lines, highlighting the
most representative works with respect to arti	cial immune
systems.

�e use of nondestructive testing inspection methods
(NDT) has proved to be a very useful tool for damage detec-
tion tasks. However, in some situations where it is impos-
sible to manually inspect a structure, as in the inspection
of large-scale structures, the use of automated methods
presents signi	cant advantages. Some of these advantages
can be summarized as follows: (i) continuous monitoring,
since the sensors are permanently attached to the structure;
(ii) early damage detection; and (iii) damage identi	cation,
among others. In this sense, structural health monitoring
(SHM) extends the limits of the NDT methods by including
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the use of data processing algorithms, pattern recognition,
and continuous monitoring because the sensors are perma-
nently attached to the structure. �is is one of the reasons
why the development of improvements in data processing
algorithms is a current demand. �e contribution of the
present work is the development of a methodology for data-
driven damage classi	cation using a bioinspired algorithm,
which is applied to data that comes from a piezoelectric
system. More precisely, this work uses an arti	cial immune
system that allows the use of this methodology as a pattern
recognition approach. �e use of arti	cial immune systems
(AIS) is relatively new in the literature and, compared with
the application of other approaches in SHM, there are still a
reduced number of works. In the next lines we brie�y compile
in chronological order the most representative works in the
use of AIS.

In 2003 Branco et al. [1] developed three module algo-
rithms called T-module, B-module, and D-module. �ese
algorithms are based on immunologic principles to detect
anomalous situations in a squirrel-cage motor induction.
�e T-module distinguishes between self- and non-self-
conditions, the B-module analyzes the occurrence of both
cells (self and non-self), and 	nally theD-module is similar to
aT-module butwith a reduced space. In thiswork, the normal
operation condition of the machine (self) is represented
by the frequency spectrum that can include or not include
harmonics.

In 2007, da Silva et al. [2] presented a damage detection
algorithm applying an autoregressive model and autoregres-
sive model with exogenous input (AR-ARX). �is algorithm
is based on the structural vibration response measurements
and the residual error as damage sensitive index. Data com-
pression is used by means of principal component analysis
(PCA) and the fuzzy �-means clustering method is used
to quantify the damage sensitive index. In this paper, the
authors used a benchmark problem with several damage
patterns to test the algorithm. As the main result, a struc-
tural diagnosis was obtained with high correlation with the
actual state of the structure. Later, in 2008, da Silva et al. [3]
developed a strategy to perform structural healthmonitoring.
�is strategy included three di
erent phases as follows:
(i) the use of principal component analysis to reduce the
dimensionality of the time series data; (ii) the design of an
autoregressive-moving-average (ARMA) model using data
from the healthy structure under several environmental and
operational conditions; and 	nally (iii) the identi	cation of
the state of the structure through a fuzzy clustering approach.
In this paper, the authors compared the performance of
two fuzzy algorithms, fuzzy �-means (FCM) and Gustafson-
Kessel (GK) algorithms. �e proposed strategy was applied
to data from a benchmark structure at Los Alamos National
Laboratory. �e work showed that the GK algorithm out-
performs the FCM algorithm, because the 	rst algorithm
considers an adaptive distance norm and allows clusters with
several geometrical distributions.

Also, in 2008, Zhang et al. [4] used a clonal selection
algorithm to solve a combinatorial optimization problem
called sensor optimization. �is problem consists in choosing
an appropriate distribution of a set of sensors in a structure

to detect impacts. To test the algorithm, the authors used a
composite plate instrumented with 17 lead zirconium titanate
(PZT) transducers.

Vieira de Moura et al. [5] presented a fuzzy-based meta-
model to detect damage in a �at structure under corrosion
conditions. �is work considers data obtained from an SHM
approach based on electromechanic impedance. Chen [6],
in 2010, applied an agent-based arti	cial immune system for
adaptive damage detection. In the approach, a group of agents
is used as immune cells (B-cells) patrolling over a distributed
sensor network installed in the structure. �e damage diag-
nosis is based on the analysis of structural dynamic response
data. Each mobile agent inspects the structure using agent-
based cooperation protocols. In 2010, Tan et al. [7] presented
a damage detection algorithm based on fuzzy clustering and
support vector machines (SVM). In this work, as a 	rst
step, the wavelet packet transform is used to decompose the
accelerator data from the structure and extract the energy of
each wavelet component. Consequently, this energy is used
as a damage index. In further steps, damage is classi	ed
by means of fuzzy clustering. As a 	nal phase, damage is
identi	ed using a vector machine. �e numerical example
illustrated in this work shows that the proposed method is
able to identify the damage from the spatial truss structure.
In 2011, Chen and Zang [8] presented an algorithm based
on immune network theory and hierarchical clustering algo-
rithms. Chilengue et al. [9] presented an arti	cial immune
system (AIS) approach to detect and diagnose failures in
the stator and rotor circuits of an induction machine. In the
approach, the dynamic of the machine is compared before
and a�er the fault condition. Similarly, the alpha-beta (���)
transformation (also known as the Clarke transformation)
was applied to the stator current to obtain a characteristic
pattern of the machine that is 	nally applied to the pattern
recognition algorithm.

In 2012, Zhou et al. [10], inspired by Chen’s work, devel-
oped a damage classi	er in structures based on the immune
principle of clonal selection. Using evolution algorithms and
the immune learning, a high quality memory cell is created
that is able to identify several damage patterns. In 2012,
Xiao [11] developed a structural health monitoring and fault
diagnosis system based on arti	cial immune system. In this
approach, the antigen represents the structural state (health
or damage), whereas the antibody represents database infor-
mation to identify a damage pattern. In this work, the feature
space is formed by natural frequencies and modal shapes
collected by simulation of the structure in free vibration and
seismic response. Quite recently, Liu et al. [12], in 2014, pro-
posed a structural damage detection method using semisu-
pervised fuzzy �-means clustering method, wavelet packet
decomposition, and data fusion. �is method is applied to
detect damage in a four-level benchmark model. �e data
that was used includes 11 damage patterns and 9 samples per
damage. �e method uses a Daubechies wavelet 	lter and 6
decompositions levels. According to the results, the method
can achieve a reasonable detection performance. Huang et al.
[13], in 2014, proposed an automatic methodology to know
the status of a machine. �e introduced method includes a
semisupervised fuzzy-based method to detect the faults or
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anomalies in the machine and to classify the unknown faults.
�e authors described two steps for the learning procedure
as follows: (i) a fuzzy �-means clustering to get candidates of
labels (fuzzy centers) and (ii) a label matching by 	ltering out
the unreasonable labels candidates. �e proposed method is
validated in a roller bearing test top diagnosing the state of
the machine.

Compared with the works previously reviewed, the
methodology described on the current work presents a new
point of view, since this uses an arti	cial immune system
(AIS) and some damage indices to de	ne feature vectors
which represents the structure under di
erent conditions by
allowing the fact that the damage detection process can be
understood as a pattern recognition approach. More pre-
cisely, damage detection and classi	cation using ultrasonic
signals have been traditionally performed using methods
based on the time of �ight. �e approach followed in this
paper, which complements and completes the initial work
by Anaya et al. [14], is rather di
erent because it is a data-
based approach based on AIS (arti	cial immune system),
where sensor data fusion, feature extraction, and pattern
recognition are evaluated. A clear major advantage of the
methodology is that the development and validation of a
mathematical model are not needed. Additionally and in
contrast to standard Lamb waves-based methods there is
no necessity of directly analyzing the complex time-domain
traces containing overlapping, multimodal, and frequency
dispersive wave propagation which distorts the signals and
makes their analysis di
cult. However, using the proposed
methodology, it is not possible to provide a multidamage
detection able to identify several occurring damage patterns
independently unless the model baselines are built with the
structural responses that have interacted with previously
detected and existing damage.

�is paper is organized as follows. Section 2 describes the
theoretical background that includes basic concepts about the
methods and elements used in the methodology. Section 3
includes the damage detection methodology followed by the
description about the experimental setup in Section 4. �e
experimental results are included in Section 5. Finally, some
conclusions are drawn.

2. General Framework

�ecurrentwork is based ondata-driven analysis.�ismeans
that the damage detection will be developed by analyzing
and interpreting the data collected in several experiments
from the structures under diagnosis. To perform this analysis,
a bioinspired methodology based on features extraction for
pattern recognition is developed. For the sake of clarity, basic
concepts and fundamentals about the methods that will be
used are presented in the following subsections.

2.1. Bioinspired Systems. �e adaptation of the di
erent liv-
ing beings of the planet in harsh environments and the
development of skills to solve the inherent problems in the
interaction with the world of nature have resulted in the
evolution of the species in order to survive and avoid their
extinction. Some examples are the communication abilities,

the reasoning, the physical structures design, or the response
of the body to external agents, among others [15].

Taking advantage of the fact that nature provides robust
and e
cient solutions to many di
erent problems, more and
more researchers on di
erent areas work in the develop-
ment of biologically inspired hardware and algorithms. �e
inspiration process is called biomimetic or bioinspired and
aims to apply the developments in the 	eld of biology to the
engineering developments [16].

2.2. Natural Immune Systems. �e human immune system
(HIS) is a complex and robust defense mechanism composed
of a large network of specialized cells, tissues, and organs.�e
system further includes an elevated number of sensors and
a high processing capability. �e human immune system has
proved its e
ectiveness in the detection of foreign elements by
protecting the organism against disease. �e principal skills
of the human immune system are as follows:

(i) to discriminate between its own cells (self) and for-
eign cells (non-self);

(ii) to recognize di
erent invaders (called antigens) in
order to ensure the protection of the body;

(iii) to learn from speci	c antigens and adapt to them in
order to improve the immune response to this kind of
invader.

In general, when a foreign particle wants to gain access to
the organism, it has to break several defense levels provided
by the immune system that protects the organism. �e idea
of several defense levels is illustrated in Figure 1. �ese levels
can be summarized as follows [17].

(i) External Barriers. �ese are the 	rst and the major
line of defense into the human body. �is level can
include elements such as the skin, the mucus secreted
by the membranes, the tears, the saliva, and the urine.
All of these elements present di
erent physiological
conditions that are harmful to the antigens, as the
temperature or the pH level, among others. �e
response of these barriers is equal for any foreign
invader [18].

(ii) Innate Immune System. �is barrier refers to the
defense mechanisms that are activated immediately
or within a short lapse of time of an antigen’s arrival
in the body. �e innate immune system operates
when the 	rst barrier has been broken �is system,
in opposition to the adaptive immune system, is not
adaptive [17].

(iii) Adaptive Immune System.�is is the last defense level
and reacts to the stimulus of foreign cells or antigens
that evade both the external barriers and the innate
immune defense [17]. Adaptive immunity creates
some sort of memory that leads to an improved
response to future encounters with this antigen.

With respect to di
erent type of cells, the immune system
includes cells born in the bone marrow that are usually
called white blood cells, leukocytes, or leucocytes [19]. Among
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Figure 1: Schematic representation of a system’s defense barriers.

the white blood cells, it is possible to highlight the T-cells and
the B-cells. On the one hand, the T-cells are called so since
their maturation takes place in the thymus. Besides, this kind
of cells has high mobility and can also be found in the blood
and the lymph [20]. One can distinguish three types of T-cells
as follows:

(i) the T-helper cells, involved in the activation of B-cells;

(ii) the T-killer cells that destroy the invaders; and 	nally

(iii) the T-suppressor cells that avoid the allergic reactions
[21].

On the other hand, the B-cells produce and secrete a
special protein called antibody, which recognizes and binds
the antigen.�e responsibility of each B-cell is the production
of a speci	c antibody. �is protein is then used for signaling
other cells whose elements have to be removed from the
body [20]. When the antigen passes over the 	rst barrier of
the immune system, the HIS performs the following steps to
eliminate the invader [20].

(1) �e specialized cells of the immune system are called
antigen presenting cells (APCs) (e.g., macrophages).
�ese cells activate the immune response by ingesting
the antigen and dividing it into simple substances
known as antigenic peptides.

(2) �ese peptides are joined to the molecules called
major histocompatibility complex (MHC), inside of
the macrophage, and the result passes to the immune
cell surface.

(3) �e T-cells have receptor molecules able to iden-
tify and recognize di
erent combinations of MHC-
peptide. When the receptor molecule recognizes the
combination, the T-cell is activated and sends a
chemical signal to other immune cells.

(4) �e B-cells are activated by chemical signals and they
initiate the recognition of the antigen in the blood-
stream. �is process is performed by the receptor
molecules in the B-cells.

(5) �e mission of the B-cells, when they are activated,
is to secrete antibodies to bind the antigens they 	nd
and to neutralize and eliminate them from the body.

�e T- and B-cells that have recognized the antigen
proliferate and some of them become memory cells. �ese
memory cells remain in the immune system to eliminate
the same antigen, in the future, in a more e
ective manner
[15, 20].

�ree immunological principles are used in arti	cial
immune systems [11, 15, 20] as follows.

(i) Immune Network 	eory. �is theory was 	rst intro-
duced by Niels Jerne in 1974 and describes how the
immune memory is built by means of the dynamic
behaviour of the immune system cells. �ese cells
can recognized by themselves, detect invaders, and
interconnect between them to stabilize the network
[17].

(ii) 	e Negative Selection. �e negative selection is a
process that allows the identi	cation and eradica-
tion of the cells that react to their own body cells.
�is ensures a convenient operation of the immune
system since it is able to distinguish between for-
eign molecules and self-molecules, thus avoiding
autoimmune diseases. �is process is similar to the
maturation of T-cells carried out in the thymus [15].

(iii) 	e Clonal Selection. �is is a mechanism of the
adaptive immune responses in which the cells of the
system are adapted to identify an invader element
[20]. Antibodies that are able to recognize or identify
an antigen can proliferate.�ose antibodies unable to
recognize the antigens are eliminated. �e new cells
are clones of their parents and they are subjected to
an adaptation process by mutation. From the new
antibody set, the cells with the greatest a
nity with
respect to the primary antigen are selected asmemory
cells, therefore excluding the rest.
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Table 1: Analogy between the biological immune system and
arti	cial immune system [11].

Biological immune system Arti	cial immune system in SHM

Antibodies A detector of a speci	c pattern

Antigens Structural health or damage
condition

Matured antibodies Database or information system for
damage detection

Recognition of antigens Identi	cation of health and damage
condition

Process of mutation Training procedure

Immune memory Memory cells

2.3. Arti
cial Immune Systems. Arti	cial immune systems
(AIS) are an adaptive and bioinspired computational systems
based on the processes and performance of the human
immune system (HIS) and its properties, diversity, error
tolerance, dynamic learning, adaptation, distributed com-
putation, and self-monitoring [22, 23]. Nowadays, these
computational systems are used in several research areas
such as pattern recognition [16], optimization [20, 24], and
computer security [25] [26]. Table 1 presents the analogy
between the natural and arti	cial immune systems applied to
the 	eld of structural health monitoring.

In the implementation of an arti	cial immune system,
it is fundamental to bear in mind two important aspects as
follows.

(i) �e 	rst is to de	ne the role of the antigen (ag) and
the antibody (ab) in the context of the application.
Both are represented or coded in the same way. �is
representation is generally given by a vector of binary
or real numbers [21].

(ii) �e second is to de	ne the mechanism that measures
the degree of correspondence between an antigen and
an antibody. �is measure is usually related to the
distance between them [15]. If both an antigen and an
antibody are represented by �-dimensional arrays,

ab ∈ R
�,

ag ∈ R
�, (1)

the distance � between them can be computed using,
for instance, the Euclidean distance (related to the 2-
norm) or the so-called Manhattan distance (related
to the 1-norm) as in the following equations, respec-
tively [19]:

� (ab, ag) = ����ab− ag
����2 = √ �∑

�=1
(ab� − ag�)2, (2)

� (ab, ag) = ����ab− ag
����1 = �∑
�=1

����ab� − ag�
���� . (3)

Finally, there exists the adaptation process of the
molecules in the arti	cial immune system. �is adaptation
allows including the dynamic of the system, for instance, the
antibodies excitation, cloning of all the excited antibodies,
and the interconnection between them.All these elements are
adapted from the three immunologic principles previously
introduced.

2.4. Principal Component Analysis (PCA). Principal compo-
nent analysis (PCA) is a classical method used in applied
multivariate statistical analysis with the goal of dimension-
ality reduction and, more precisely, feature extraction and
data reduction. It was developed by Karl Pearson in 1901 and
integrated to the mathematical statistics in 1933 by Harold
Hotelling [27]. �e general idea in the use of PCA is to 	nd
a smaller set of variables with less redundancy [28]. To 	nd
these variables, the analysis includes the transformation of
the current coordinate space to a new space to reexpress
the original data trying to 	lter the noise and redundancies.
�ese redundancies aremeasured bymeans of the correlation
between the variables.

2.4.1. Matrix Unfolding. �e application of PCA starts, for
each actuation phase, with the collected data arranged in
a three-dimensional matrix � × � × �. �e matrix is
subsequently unfolded, as illustrated in Figure 2, in a two-
dimensional � × (� ⋅ �)matrix as follows:

X

= (((((
(

�111 �112 ⋅ ⋅ ⋅ �11� �211 ⋅ ⋅ ⋅ �21� ⋅ ⋅ ⋅ ��11 ⋅ ⋅ ⋅ ��1�... ... d
... ... d

... d
... d

...�1�1 �1�2 ⋅ ⋅ ⋅ �1�� �2�1 ⋅ ⋅ ⋅ �2�� ⋅ ⋅ ⋅ ���1 ⋅ ⋅ ⋅ ����... ... d
... ... d

... d
... d

...�1�1 �1�2 ⋅ ⋅ ⋅ �1�� �2�1 ⋅ ⋅ ⋅ �2�� ⋅ ⋅ ⋅ ���1 ⋅ ⋅ ⋅ ����
)))))
)

. (4)

Matrix X ∈ M�×(�⋅�)(R), where M�×(�⋅�)(R) is the vector
space of � × (� ⋅ �) matrices over R, contains data from� sensors at � discretization instants and � experimental

trials [29]. Consequently, each row vector ��� = X(�, :) ∈
R
�⋅�, � = 1, . . . , �, represents, for a speci	c experimental

trial, the measurements from all the sensors. Equivalently,
each column vector X(:, �) ∈ R

�, � = 1, . . . , � ⋅ �,
represents measurements from one sensor in the whole set
of experimental trials.

In other words, the objective is to 	nd a linear transfor-
mation orthogonal matrix P ∈ M(�⋅�)×(�⋅�)(R) that will be
used to transform the original data matrixX according to the
following matrix multiplication:

T = XP ∈ M�×(�⋅�) (R) . (5)

Matrix P is usually called the principal components of the
data set or loading matrix and matrix T is the transformed
or projected matrix to the principal component space, also
called score matrix. Using all the�⋅� principal components,
that is, in the full dimensional case, the orthogonality of P



6 Shock and Vibration

E
xp

er
im

en
ts

 (
n

)

E
xp

er
im

en
ts

 (
n

)

Se
nso

r (
N

)

1 L 2L jL NL

Sensor 1 Sensor 2 · · ·· · · Sensor j Sensor N

Sensor x time

Time (L)

...

Figure 2: �e collected data arranged in a three-dimensional matrix is unfolded in a two-dimensional matrix [30].

implies PP� = I, where I is the (� ⋅ �) × (� ⋅ �) identity
matrix. �erefore, the projection can be inverted to recover
the original data as

X = TP
�. (6)

2.4.2. Group Scaling. Since the data in matrix X come from
experimental trials and could have di
erent magnitudes and
scales, it is necessary to apply a preprocessing step to scale the
data using the mean of all measurements of the sensor at the
same time and the standard deviation of all measurements of
the sensor [29].

More precisely, for � = 1, 2, . . . , �, we de	ne

��	 = 1� �∑�=1���	, � = 1, . . . , �, (7)

�� = 1�� �∑�=1 �∑	=1���	, (8)

�� = √ 1�� �∑�=1 �∑	=1 (���	 − ��)2 , (9)

where ��	 is themean of the �measures of sensor � at the time

instant �; �� is the mean of all the measures of sensor �; and�� is the standard deviation of all the measures of sensor �.
�erefore, the elements ���	 of matrix X are scaled to de	ne a

new matrix X̌ as

�̌��	 := ���	 − ��	�� ,� = 1, . . . , �, � = 1, . . . , �, � = 1, . . . , �. (10)

When the data are normalized using (10), the scaling proce-
dure is called variable scaling or group scaling [29]. According
to former studies of the authors [30–32], group scaling
presents a better performance than other kind of normal-
izations. �e reason is that group scaling considers changes
between sensors and does not process them independently.
Further discussion on this issue can be found in [29, 33].

For simplicity and throughout the rest of the paper the

scaled matrix X̌ is renamed as simply X. �e mean of each
column vector in the scaled matrix X can be computed as

1� �∑�=1�̌��	 = 1� �∑�=1���	 − ��	�� = 1��� �∑�=1 (���	 −��	)
= 1��� ( �∑�=1���	 − ���	) = 1��� (���	 − ���	)
= 0.

(11)

Since the scaled matrix X is a mean-centered matrix, it is
possible to calculate the covariance matrix as follows:

CX = 1� − 1
X
�
X ∈ M(�⋅�)×(�⋅�) (R) . (12)

�e covariancematrixCX is (�⋅�)×(�⋅�) symmetricmatrix
thatmeasures the degree of linear relationshipwithin the data
set between all possible pairs of variables (sensors).

�e subspaces in PCA are de	ned by the eigenvectors and
eigenvalues of the covariance matrix as follows:

CXP = PΛ, (13)

where the columns of P ∈ M(�⋅�)×(�⋅�)(R) are the eigenvec-
tors ofCX. �e diagonal terms of matrixΛ ∈ M(�⋅�)×(�⋅�)(R)
are the eigenvalues $�, � = 1, . . . , � ⋅ �, of CX whereas the
o
-diagonal terms are zero; that is,

Λ �� = $�, � = 1, . . . , � ⋅ �,Λ �	 = 0, �, � = 1, . . . , � ⋅ �, � ̸= �. (14)

�e eigenvectors&	, � = 1, . . . , �⋅�, representing the columns
of the transformation matrix P, are classi	ed according to
the eigenvalues in descending order and they are called the
principal components or the loading vectors of the data set.
�e eigenvector with the highest eigenvalue, called the 
rst
principal component, represents the most important pattern
in the data with the largest quantity of information.
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However, the objective of PCA is, as said before, to reduce
the dimensionality of the data setX by selecting only a limited
number ℓ < � ⋅ � of principal components, that is, only the
eigenvectors related to the ℓ highest eigenvalues. �us, given
the reduced matrix

P̂ = (&1 | &2 | ⋅ ⋅ ⋅ | &ℓ) ∈ M�⋅�×ℓ (R) , (15)

matrix T̂ is de	ned as

T̂ = XP̂ ∈ M�×ℓ (R) . (16)

Note that opposite to T, T̂ is no longer invertible. Conse-

quently, it is not possible to fully recover X although T̂ can
be projected back onto the original +-dimensional space to

get a data matrix X̂ as follows:

X̂ = T̂P̂
� ∈ M�×� (R) . (17)

�e di
erence between the original data matrixes X and

X̂ is de	ned as the residual error matrix E or X̃ as follows:

E = X− X̂, (18)

or, equivalently,

X = X̂+E = T̂P̂
� +E. (19)

�e residual error matrix E describes the variability not

represented by the data matrix X̂ and can be also expressed
as

E = X (I− P̂P̂
�) . (20)

Even though the real measures obtained from the sensors
as a function of time represent physical magnitudes, when
these measures are projected and the scores are obtained,
these scores no longer represent any physical magnitude [34].

2.5. DamageDetection Indices Based on PCA. Several damage
detection indices based on PCA have been proposed and
applied with excellent results in pattern recognition applica-
tions. In particular, two damage indices are commonly used:
(i) the 1 index (also known as SPE, square prediction error)
and (ii) Hotelling’s 22 index.

�e1 index of the �th experimental trial ��� measures the

magnitude of the vector �̃�� := X̃(�, :), that is, the events that
are not explained by the model of principal components [35],
and it is de	ned as follows:1� = X̃ (�, :) X̃ (�, :)� = ��� (I− P̂P̂

�) ��. (21)

�e 22 index of the �th experimental trial ��� is the

weighted norm of the projected vector 4̂�� := T̂(�, :) = ��� P̂,
that is, a measure of the variation of each sample within the
PCA model, and it is de	ned as follows:

22
� = ℓ∑
	=1

4̂2�,	$	 = 4̂�� Λ−1 4̂� = ��� (P̂Λ−1P̂�) ��. (22)

3. Damage Detection Methodology

�e damaged detection methodology that we present in this
paper involves an active piezoelectric system to inspect the
structure. �is active system consists of several piezoelectric
transducers (lead zirconium titanate, PZT) distributed on
di
erent positions of the structure and working as both
actuators or sensors in di
erent actuation phases. Each PZT
is able to produce a mechanical vibration if some electrical
excitation is applied (actuator mode). Besides, the PZTs are
able to detect time varying mechanical response data (sensor
mode). In each phase of the experimental stage, just one PZT
is used as the actuator (exciting the structure). �en, the
propagated signal through the structure is collected by using
the rest of PZTs, which are used as sensors. �is procedure is
repeated in as many actuation phases as the number of PZTs
on the structure.

To determine the presence of damage in the structure, the
data from each actuation phase will be used in the proposed
arti	cial immune system. �e proposed methodology is
performed in three steps as follows: (i) data preprocess-
ing and feature extraction; (ii) training process; and (iii)
testing. More precisely, in the 	rst step the collected data
is organized, preprocessed, and dimensionally reduced, by
means of principal component analysis, to obtain relevant
information. �e damage indices in (21)-(22) are used to
de	ne the feature vectors. �e training step includes the
evolution of the data to generate good representatives for each
pattern, damage, or structural condition. A good accuracy in
the damage detection using AIS depends on a good training.
Finally, the testing step includes new data to evaluate the
training step and the knowledge of the current state of the
structure.

3.1. Data Preprocessing, PCA Modeling, and Feature Extrac-
tion. For each di
erent phase (PZT1 will act as an actuator
in phase 1, PZT2 will act as an actuator in phase 2, and so
on) and considering the signals measured by the sensors, the
matrix X is de	ned and arranged as in (4) in Section 2.4.1
and scaled as stated in Section 2.4.2. PCAmodeling basically
consists of computing the projection matrix P for each phase
as in (7). Matrix P, renamed as Pmodel, provides an improved
and dimensionally limited representation of the original data
X. �e number of principal components retained at each
di
erent phase accounts for at least 90% of the cumulative
variance.

Subsequently, the data from di
erent structural states are
projected into each PCA model in order to obtain the scores
and calculate the damage detection indices 22 and 1 as in
Sections 2.4 and 2.5. In this way, for each experiment, a two-
dimensional feature vector5� = (22

� , 1�)� ∈ R
2, � = 1, . . . , ] (23)

is de	ned, where ] is the total number of experiments.
�e feature vector could include more components, as, for
instance, the scores. Several tests were then performed in this
sense with the combination of scores and damage indices.
However, the results indicated that the single use of 22 and
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Experimental
data per phase

Healthy data set
(� experiments)

Training set
(2k experiments)

Test set (� − 2k
experiments)

Damage data set
(� experiments

per damage)

(k experiments) (k experiments)
ABtraining AGtraining

Figure 3: Random selection of the antibody (ABtraining) and antigen (AGtraining) training sets.

1 leads to the best results. One of the reasons about the use
of the damage indices can be found in [35]. In this paper,
Tibaduiza et al. showed that the use of scores is not su
cient
for damage detection when two scores do not account for
a high cumulative variance. �is result implies that it is
necessary to use another type of measurement or statistic to
obtain an accurate discrimination of the presence of damage
in a structure.

To keep the a
nity values within the range of [0, 1], the
norm of the feature vectors 5�, � = 1, . . . , ], is normalized to
the unit circle.�e normalization process uses the maximum
norm of the feature vectors; that is,6 := max

�=1,...,]
�����5������ , (24)

where �����5������ = √(5�1)2 + (5�2)2, (25)

and therefore the normalized feature vector 5�norm of 5� =(22
� , 1�)� is as follows:

5�norm = (22
�6, 1�6) . (26)

Since all the feature vectors are locatedwithin a unit circle, the
Euclidean distance between any feature vectors is less than or
equal to 2. �e healthy data set (HDS) is de	ned as

HDS = ]⋃
�=1

{5�} . (27)

3.2. Training Step. �is step can be modi	ed according
to di
erent goals. For instance, in the most basic case in
damage identi	cation, the detection, the training only needs
to consider the feature vectors that come from data of the
healthy structure. However, in a more complex analysis, the
classi	cation, for instance, the training process must include
the feature vectors of data coming from the structure in
di
erent and known structural states. �e steps to perform
the training in the basic case are summarized as follows:

(i) Randomly select 2� ∈ N, 2� < ], feature vectors. �e
remaining ] − 2� feature vectors will be used in the
testing process.�is set of 2� feature vectors is divided
into two subsets of the same size �, the antibody
training set (ABtraining) and the antigen training set
(AGtraining). �is step is represented in Figure 3.

(ii) Compute the a
nity between the antibodies and anti-
gens of the ABtraining and AGtraining sets, respectively.
�e a
nity between an antibody and an antigen is
de	ned as

A
 (ab, ag) := 1− 1

2
� (ab, ag) , (28)

where�(ab, ag) is the distance, de	ned in (2), between
the feature vectors of ab and ag, respectively. Since the
Euclidean distance between any feature vectors is less
than or equal to 2, their a
nity lies within the range
of [0, 1].

(iii) Evolve the antibodies.�e evolution of the antibodies
is performed when these are stimulated by an invad-
ing antigen invader and it consists in the mutation of
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the antibody.�e mutation is performed by mutating
the feature vectors of the cloned antibodies as shown
in

abevolved = ab+MV ⋅ A, (29)

where abevolved is the mutated antibody and MV rep-
resents themutation value, a value used to indicate the
mutation degree of the feature vector of an antibody.
In the present implementation, the mutation value is
de	ned as in

MV = 1−CV, (30)

where CV is the clonal value, a value that measures
the response of an arti	cial B-cell to an antigen, and
is equal to the a
nity between the antibody and the
stimulating antigen. �e vectorA = (A1, A2)� ∈ R

2 (31)

in (29) is a randomly generated vector. Each elementA�, � = 1, 2, of the random vector is a normally dis-
tributed random variable with mean zero and stan-
dard deviation � = 0.5.
�e mutated antibody feature vectors must lie within
the unit circle. �erefore, the norm of the feature
vector for each mutated antibody is immediately
checked a�er the mutation according to the following
procedure:

(a) if ‖abevolved‖ ≤ 1, then no normalization is per-
formed;

(b) if ‖abevolved‖ > 1, then

abevolved = (‖ab‖ +U ⋅ (1− ‖ab‖)) ⋅ abevolved����abevolved���� , (32)

where U is a uniform random function with a value
within the range of [0, 1].
�e norm of the mutated antibody is greater than the
norm of the original antibody and less than 1.

�e clonal rate (CR) is an integer value used to control
the number of antibody clones allowed. �e number
of clones (NC) is de	ned in

NC = ⌊CR ⋅CV⌋ , (33)

where ⌊⋅⌋ is the �oor function. In this paper the value
of CR is 8.

�e highest a
nity antibody is chosen as the candi-
date memory cell for possible updating of memory
cell set.

(iv) De	ne the threshold. A threshold 2ℎ is de	ned in
order to update the memory cell set to improve the
representation quality of memory cells for the healthy
state of the structure. �is threshold is de	ned as

a weighted a
nity of the two elements in the healthy
data set (HDS) in (27) with the maximum Euclidean
distance. �at is,Δ = max

�,	=1,...,�
�����5� −5	����� ,

H = 7

25
Δ,

2ℎ = 1− 1

2
H.

(34)

�en a comparison between the candidate memory
cell and all the elements in the healthy data set (HDS)
is performed through the a
nity. If the a
nities are
greater than or equal to the threshold, the candidate
memory cell becomesmemory cell of the healthy state
of the structure. Otherwise, the candidate memory
cell is eliminated. �e main outcome of this step
is the memory cell set of the healthy state (MCSH)
of the structure. �is algorithmic training process is
represented in Figure 4.

3.3. Testing Step. �e damage detection algorithm is 	nally
illustrated in Figure 5. �e damage detection is based on the
a
nity values between the elements in the memory cell set
of the healthy state (MCSH), acting as antibodies, and the
data coming from the structure to test (TD, test data), acting
as antigens. A detection threshold (ITh) is de	ned in the
following equation for this purpose:ITh = min

ab∈MCSH
�∈{1,...,]}

A
 (ab, 5�) ,
(35)

that is, the minimum a
nity between the elements in the
memory cell set of healthy state (MCSH) and the elements
in the healthy data set (HDS).

When the a
nity is less than the threshold ITh, we say
that the data has been collected from a damaged state of the
structure. Otherwise, the data comes from an undamaged
structure.

4. Experimental Setup and
Experimental Results

4.1. Experimental Setup. To test the proposed methodology,
data from an aircra� skin panel is used. �e structure is
divided into small sections by means of stringers and ribs as
shown in Figure 6. To validate the proposed methodology,
two sections of this structure were used. �e dimensions
of each section and the damage description are depicted
in Figure 7. �ese sections were instrumented with 6 PZT
transducers: two in the upper section, two in the lower
section, and two in the rib. �e transducers dimensions are
as follows: 26mm diameter and 0.4mm thickness.

4.2. Experimental Results. As said in Section 3.1, the experi-
ments are performed in 6 independent phases: (i) piezoelec-
tric transducer 1 (PZT1) is con	gured as actuator and the rest
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Figure 4: Training process in an arti	cial immune system (IAS) applied to structural health monitoring (SHM).
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Figure 5: Damage detection process.

Figure 6: Aircra� skin panel.

of PZTs as sensors; (ii) PZT2 is con	gured as actuator; (iii)
PZT3 is con	gured as actuator; (iv) PZT4 is con	gured as
actuator; (v) PZT5 is con	gured as actuator; and (vi) PZT6
is con	gured as actuator.

To apply the proposed methodology and for each phase
the collected data is arranged in a matrix as in (4) in
Section 2.4.1. With this unfolded data, the PCA model P is
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Figure 7: Damage description.
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Figure 8: Amount of variance accounted for by each principal component, for phases 1, 3, 5, and 6.

built as explained in Sections 2.4 and 3.1 using data from
the healthy structure. In Figure 8 the amount of variance
accounted for by each principal component is illustrated, for
phases 1, 3, 5, and 6.

For each actuator phase, the number of principal com-
ponents adopted varies since the principal components
retained must account for at least 90% of the cumulative
variance. Although there is not an accurate criterion to state
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Figure 9: Projections onto the two 	rst principal components of several experiments in actuator phases 1 (a) and 3 (b).

a percentage of cumulative variance to be retained for a good
representation, a high percentage can ensure that most of the
variability is incorporated into the statistical model.

Figure 9 shows the projections onto the two 	rst principal
components of several experiments that come from the
undamaged and damaged structure under consideration. It
can be clearly observed that no separation of damaged/
undamaged can be determined using the scatter plot. �ese
are then two motivating depictions in the sense that with the
proposedmethodology we will be able to both detect damage
in the structure and classify it.

4.2.1. Damage Detection. A�er the baseline modeling, the
data coming from the structure to be diagnosed is projected
onto the PCA model. �en, for each experiment, the feature
vector in (23) formed by the two damage indices 22 and 1 is
de	ned.

�e ability of the proposed method to detect damage
in the structure is illustrated in Figures 10 to 15. In these
	gures, the a
nity of a memory cell from the memory cell
set of the healthy state (MCSH) and the data coming from
the structure to diagnosis is depicted.�e 25 	rst experiments
correspond to data that come from the undamaged structure,
while the remainder 75 experiments come from the damaged
structure. More precisely, experiments 25 to 50 correspond
to damage 1 (I1), experiments 51 to 75 to damage 2 (I2),
and experiments 76 to 100 to damage 3 (I3). �e purple
solid horizontal line delimits the detection threshold (ITh).
It can be clearly observed that experiments with an a
nity
value less thanITh, from the damaged structure, are correctly
de	ned as “damaged.” Similarly, experiments with an a
nity
value greater than or equal toITh, from the healthy structure,
are correctly de	ned as “healthy.”
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Figure 10: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 1).

Actuation phases 1 to 5 show that it is possible to
distinguish the healthy and unhealthy states; in addition it
can be observed that di
erent a
nity values represent the
di
erences between the group of data which indicate that it is
possible to determine the presence of three damage patterns.
In contrast to the a
nity in the rest of the actuation phases,
phase 6 in Figure 15 is showing that it is possible to detect
abnormal situations; however it is not possible to determine
the di
erent structural states.
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Figure 11: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 2).
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Figure 12: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 3).

As it was shown, results from each actuation phase
showed di
erent a
nity values to the di
erent structural
states; this is because the actuators are distributed by the
structure in di
erent positions and to di
erent distance to the
damage.

5. Concluding Remarks

In this paper, a newmethodology to detect structural changes
has been introduced.�emethodology includes the use of an
arti	cial immune system (AIS) and the notion of a
nity for
the damage detection.

One of the advantages of the methodology is the fact that
to develop and validate a model is not needed. Additionally
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Figure 13: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 4).
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Figure 14: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 5).

and in contrast to standard Lambwaves-basedmethods there
is no need to directly analyze the complex time-domain
traces containing overlapping, multimodal, and frequency
dispersive wave propagation that distorts the signals and
makes the analysis di
cult. Results have shown that di
erent
actuation phases present di
erent results.

�e proposed methodology has been applied to data
coming from two sections of an aircra� skin panel. �e
results indicate that the proposed methodology is able to
accurately detect damage by means of the analysis of the
a
nity values. However, within the proposed methodology,
it is not possible to provide a multidamage classi	cation able
to identify several simultaneous damage patterns. To ensure
the proper performance of the methodology, a study of the
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Figure 15: A
nity values between a memory cell of the memory
cell set of the healthy state (MCSH) and the data coming from the
structure to diagnosis (phase 6).

e
ect of changing environmental and operational conditions
needs to be considered, which is considered as a future
work. �e methodology can be improved by applying data
fusion in order to obtain an only plot with the information
from the actuation phases. In this sense, the use of SOM or
fuzzy clustering will allow the data fusion and estimate more
information from the data.
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