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Abstract - An architecture that is inspired by a human’s 
capability to autonomously navigate an environment based on 
visual landmark recognition is presented. It consists of pre-
attentive and attentive stages that allow visual landmarks to be 
recognized reliably under both clean and cluttered 
backgrounds. The pre-attentive stage provides an efficient 
means for real-time image processing by selectively focusing on 
regions of interest within input images. The attentive stage has 
a memory feedback modulation mechanism that allows visual 
knowledge of landmarks in the memory to interact and guide 
different stages in the architecture for efficient feature 
extraction and landmark recognition. The results show that the 
architecture is able to reliably recognise both occluded and non-
occluded visual landmarks in complex backgrounds.  
 
   Keywords: visual landmark recognition; neural network; image 
processing  

I. INTRODUCTION 
    Human vision has an exceptional ability to perceive the 
external environment. Therefore, it is highly desirable to 
mimic this ability in an autonomous robot. However, this 
requires an in-depth knowledge of the human vision system 
in terms of behavioural, structural and computational 
mechanisms. Fortunately, advances in the fields of biology, 
neurophysiology and cognitive neuroscience has enhanced 
the understanding of various aspects of visual processing  [1-
4], leading to the development of artificial neural networks 
that model biological neural processing. 
   Adaptive Resonance Theory (ART) was first introduced as 
a physical theory of cognitive information processing in the 
brain [5, 6], and it is derived from a simple feedforward real-
time competitive learning system called Instar [7], 
addressing the plasticity-stability dilemma wherein a real-
time competitive learning system must be plastic to 
incorporate new and significantly novel events, while being 
stable to avoid the corruption of previously learned 
information in the memories by erroneous observations. 
Since the introduction of ART in the late 1970’s and early 
1980’s, a large family of ART-based artificial neural 
network architectures had been developed by Grossberg and 
Carpenter, which include: ART-1 for binary inputs [8], 
ART-2 for binary and analog inputs [9], ART-3 for 
hierarchical neural architectures [10].  

   The ART neural networks have gained popularity in 
various engineering applications, solving many non-linear 
problems, and text and image classification problems. 
However, they have a key deficiency which prevents them 
from recognising a familiar pattern embedded in a cluttered 
background [11]. 
    The recognition of objects in complex backgrounds is a 
difficult task, primarily due to parts of the object being 
merged or occluded by other background features. In 
contrast to the ART networks, it  has been reported in [11, 
12], that for the networks to recognise a familiar object in a 
cluttered environment requires prior image segmentation. 
However, such preprocessing diminishes the role of neural 
architectures in object recognition. Fortunately,  studies in 
neurophysiology have suggested that visual attention has 
modulatory effects on neuronal signals [13, 14] and top-
down mechanisms from memory may influence the 
activations of the desired bottom-up stimuli [15-17]  in 
contrast with Ulman’s proposal [18], that the top-down 
feedback connection is directly involved in the activation of 
the lower neural layer. This leads to an interesting 
suggestion that the feedback connection from the higher 
cortex modulates the input features to be attended to or 
ignored and this has been supported by evidence produced 
from many studies [19, 20].  In 1997, Lozo was inspired by 
these findings and developed the SAART network [11]. It is 
an extension to the ART-3 network by incorporating top-
down feedback pathways to modulate the bottom-up input 
pattern, and enables the network to selectively remove 
background features so that it can recognise an object 
embedded in a complex scene.      
   The SAART neural network is well known for its ability to 
achieve memory visual resonance, which removes relevant 
and noisy data from the input image, and enables landmark 
recognition in cluttered backgrounds. However, it is 
subjected to a major drawback. As reported in [7], it is a 
computationally intensive dynamic network, thus not 
suitable for real-time landmark or object recognition 
applications. Furthermore, the target of interest is assumed to 
be completely visible. In contrast, objects or landmarks in 
the natural environment are subjected to varying levels of 
occlusion by adjacent features. This paper describes an 
extension to the SAART neural network that enables the 

2009 Digital Image Computing: Techniques and Applications

978-0-7695-3866-2/09 $26.00 © 2009 IEEE

DOI 10.1109/DICTA.2009.61

346

2009 Digital Image Computing: Techniques and Applications

978-0-7695-3866-2/09 $26.00 © 2009 IEEE

DOI 10.1109/DICTA.2009.61

303

2009 Digital Image Computing: Techniques and Applications

978-0-7695-3866-2/09 $26.00 © 2009 IEEE

DOI 10.1109/DICTA.2009.61

325

2009 Digital Image Computing: Techniques and Applications

978-0-7695-3866-2/09 $26.00 © 2009 IEEE

DOI 10.1109/DICTA.2009.61

325



 
 

architecture to cope with the recognition of both partially 
occluded and non-occluded landmarks in real-time. 
 

II. IMAGE PROCESSING ARCHITECTURE 
   The proposed architecture provides a means for both 
visual knowledge (stores as memory templates) to facilitate 
feature extraction – top-down modulation, and 
simultaneously allows selected features to facilitate the 
active memory template – bottom-up modulation. The 
convergence of these bottom-up and top-down memory 
interactions enables recognition of partially occluded and 
non occluded landmarks in cluttered backgrounds. The 
architecture consists of two stages: pre-attentive and 
attentive that are inspired by the human vision system and is 
illustrated in Figure 1. The former focuses on rapid 
identification of regions of interest (ROIs) within input 
images prior to any intensive processing, which significantly 
reduces the image processing time while the latter 
concentrates on feature extraction and landmark recognition 
within the ROIs. Both of these stages use the Memory 
Feedback Modulation (MFM) mechanism for facilitation and 
inhibition of relevant and irrelevant visual information 
respectively. 

 A. Attentive Stage 

1) Memory Database 

   The architecture recognises visual landmarks using 
template matching of an input extracted pattern with an 
active memory template. There are two types of memory 
templates: memory image and binary memory filters. The 
former is used in the landmark recognition stage for object 
classification, while the latter is used to create memory 
feedback modulation pathways in the MFM mechanism, 
which provides memory guidance for the feature extraction, 
searching and matching stages.  
    Each memory template is used to create three binary 
memory filters. Firstly, the template is further divided into 
twenty five smaller sub-memory templates (SMTs) as 
illustrated in Figure 2(b). The first filter is created using a 
5x5 array.  Each cell in the array indicates the status of a 
STM. This filter is called the memory active region (MAR) 
filter, as shown in Figure 2 (d). The second filter is named 
the memory active edge (MAE) filter. It is created by 
analysing active edge distribution within each SMT using 
eq.1. The MAE filter has the same size as the memory 
template, where each high pixel denotes a corresponding 
active pixel in the memory template, as illustrated in Figure 
2 (c). Both MAR and the MAE filters are used to provide 
memory guidance for the feature extraction, and searching 
stages. The third filter is named the landmark enclosed area 
(LEA), with the same size as the memory template, and 
denotes the entire region that encloses the landmark as 

shown in Figure 2 (e). This filter is used in the template 
matching stage. 
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   Where E(i,j) is the edge processed image,τ is a small threshold 
and F(i,j) is the memory active edge (MAE) filter.  
 

 
Figure 1. The biological visual landmark recognition architecture that 

combines pre-attentive and attentive stages from the human visual system, 
and memory feedback modulation from the SAART neural network. 

 

 
Figure 2. A memory template and the corresponding binary memory filters. 
(a) The gray-level image, (b) the memory template, (c) the memory active 
edge (MAE) filter, (d) the memory active region (MAR) filter and (e) 
landmark enclosed area (LEA) filter. 

2) Memory Feedback Modulation Mechanism 

   The prominent characteristic of the architecture lies within 
the incorporation of the memory feedback modulation 
(MFM) mechanism, which enables the architecture to 
selectively attend to relevant input data, while ignoring 
irrelevant visual information. As a result, this enables the 
architecture to reliably achieve object-background 
separation, which leads to the ability to recognise visual 

(a) (b) 

(c) (d) 
(e) 
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landmarks in cluttered backgrounds. For instance, consider 
an input image entering the feature extraction stage, where it 
is modulated by the MFM mechanism as illustrated in Figure 
3. 

The MFM mechanism allows prior visual knowledge from 
the memory template to selectively guide the feature 
extraction process. This is achieved by applying eq.2 to the 
input. Notice that the memory template has approximately 
20% of high pixel values that define the shape of the 
landmark. These pixels form memory feedback pathways 
governed by the MAE filter, creating amplification channels. 
Pixels that correspond to these channels are amplified or 
otherwise passed through unaffected. The modulated region, 
P(i,j) is subjected to lateral completion by L2 normalisation, 
resulting in lateral suppression that removes irrelevant visual 
information within the input region via a threshold. Thus it 
achieves landmark-background separation. 

 
[ ]),(*1),(),( jiBMFGjiROIjiP +=        …  (2) 

 
   Where P(i,j) is the result of the memory modulation, ROI(i,j) is 
the region of interest in the input image,  BMF(i,j) is the binary 
memory filter and G is a gain control. 
 

 
Figure 3: The memory feedback pre-synaptic facilitation and inhibition for 

selectively enhancing desired features while suppressing background 
clutters. 

3)   Landmark Recognition 

   The landmark recognition has two modules: matching and 
evaluation. The former uses the MFM mechanism to 
generate governing matching channels using the MAR filter, 
the MAE filter, and an additional dynamic filter called the 
landmark occluded area (LOA) filter. The LOA filter is 
dynamically determined at the feature extraction stage. It is a 
5x5 filter with each cell indicating an area (10x10 pixels) as 
being a potential landmark occlusion. The LOA filter is 
determined in a similar way to the MAR filter as described 
in section 2.1.1. Then, the matching channels, Ck(i,j) are 
created using eq.3. Only pixels that lie within the channels 
are considered in the matching process.  

[ ]),(),(),(),( jiLOAjiMARjiMAEjiC kkkk −=   …(3) 

   Where Ck(i,j) is the matching channel for each active ROI patch, 
MAR(i,j) is the memory active region filter, LOA(i,j) is the 
landmark occluded area filter and MAEk(i,j) is the corresponding 
region in the memory active edge filter. 
 
   The template matching process performs a similarity 
measure between each active STM and the corresponding 
patch in the input ROI region – denoted as a degree of match 
(DoM). The matching process is expressed mathematically 
in eq.4. Each DoM has a value range from 0 to 1, where 1 
represent 100% match. This is further evaluated against a 
matching threshold, where the input patch with a DoM value 
greater than the threshold is regarded as a STM match. If the 
summation of all the number of STM matches within the 
ROI region is greater an occlusion threshold, then this region 
is passed into the evaluation module for further validation to 
ensure robust landmark recognition.  
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   Where ROI(i,j) is the patch that corresponds to the active STM 
and M(i,j) is the STM, ε  is a small constant to prevent the 
equation from being divided by zero.   
 
   The evaluation module validates each positive match by 
assessing the similarity between the regions that enclose the 
landmark in the memory template - denoted by the LEA 
filter, and the corresponding area in ROI region, but 
excluding the detected occluded areas - denoted by the LOA 
filter. This is achieved by creating evaluation channels using 
eq.5. Similarly, the evaluation process focuses on pixels in 
the input ROI and the memory template that lie within the 
evaluating channel, while ignoring all others. The matching 
validation is achieved using eq.4, with Ck(i,j) replaced by 
Ek(i,j). The overall DoM is calculated by averaging all of the 
DoM values. This is measured against an evaluation 
threshold, and a match is declared for the DoM value greater 
than the threshold.  

[ ]),(),(),(),( jiLOAjiMARjiLEAjiE kkkk −=    …(5) 

   Where Ek(i,j) is the evaluating channel for each active ROI patch, 
MAR(i,j) is the memory active region filter, LOA(i,j) is the 
landmark occluded area filter and LEAk(i,j) is the landmark 
enclosed area filter. 
 
B. Pre-Attentive Stage   

1) Memory Assisted Local Edge Analysis 

   The central idea in the memory assisted local edge analysis 
(MALEA) approach method is the incorporation of the 
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MFM mechanism, which involves the use of the memory 
active edge (MAE) and the landmark enclosed area (LEA) 
filters to provide memory guidance for determining the ROIs 
within the input image. The MAE and LEA filters are 
described in section 2.1.1. The MALEA search considers 
pixels that correspond to the MAE and LEA memory filters, 
as only these edges are relevant in describing the shape of 
the landmark. All others can be safely discarded, which 
significantly reduces the amount of computation required.    
   The operation of the MALEA search is illustrated in 
Figure 4. Initially, input patches are extracted as the search 
window scans across the image. The regions that satisfy the 
ROI-threshold are passed through and further evaluated with 
the signature threshold to be confirmed and classified as 
ROIs, otherwise these regions are discarded. This process is 
guided by the visual knowledge feedback from memory 
using the MAE and LEA filters. Both the ROI and the 
signature thresholds are set dynamically for every active 
memory template.    

 
Figure 4. The process of the MALEA method, which employed the MFM 
mechanism (using the MAE and the LEA filters) to provide memory-
guided selective processing for rapid determination of ROIs within an input 
image.  

2)  Scale View Invariant Landmark Recognition  

   The shape of a landmark in an input image is affected by 
noises and 3D to 2D projection, image distortion, and small 
size and shape changes. These result in faulty landmark 
recognition due to template mismatch as the MFM 
mechanism requires elementary alignment of input data with 
the memory feedback pathways.  
    In order to overcome image distortions, and small changes 
in size and shape, the developed architecture employs two 
concepts named band transformation and shape attraction 
[11]. The central idea is that, if an edge is missing due to 
distortion or small size and shape changes, it can be 
compensated for or reconfirmed by considering its 
neighborhood.  This method has two parts. Firstly, band 
transformations is applied to diffuse the shape of the input 
pattern by mean of a Gaussian filter  or an averaging mask 
[21] to produce a diffused-edge image.  Secondly, the 

distorted information is recovered by applying a memory 
guided shape attraction process to the diffused image. The 
shape attraction process uses the MFM mechanism to 
selectively attract and recover the missing edges. The 
concept of image diffusion and shape attraction processes to 
achieve distortion and small size and shape invariant 
recognition is further illustrated in Figure 5.  
   The concepts of band transformation and memory guided 
shape attraction affectively achieve memory driven feature 
extraction.  These concepts have been used to develop a 
method named simultaneous multiple-memory image search 
(SMIS) for achieving size and view invariant landmark 
recognition [22].  
 

 
Figure 5. The memory-guided shape attraction process using the MFM 
mechanism to selectively project and recover missing or distorted input 
edge information. 

III. RESULTS 

   The biologically inspired visual landmark recognition 
architecture described has been successfully evaluated using 
images from both clean and complex backgrounds, 
consisting of occluded and non-occluded situations. 
 

A. Non-Occluded Landmark Recognition 

   In order to evaluate the architecture’s capability in 
recognizing visual landmarks in cluttered backgrounds, a 
comparison study with a traditional template matching 
approach was conducted. A total of forty different input 
images were collected, composed of twenty in clean-
backgrounds and twenty in cluttered backgrounds. These 
images were fed both into the proposed architecture, and the 
traditional template matching method to evaluate and 
compare their performances. All image processing stages 
were kept constant, the only difference is the additional 
MFM mechanism incorporated in the proposed architecture.  
   The recognition results are summarized and plotted as 
shown in Figure 6.  In these graphs, the vertical axis shows 
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the degree of match (DoM), while the horizontal axis 
indicates the corresponding input image. The first five 
sample images were collected from a laboratory 
environment, samples (6-10) were taken from a corridor, 
samples (11-15) were generated in a foyer and finally, 
samples (16-20) were gathered in an outdoor environment.  
It is clearly shown that the architecture using the MFM 
mechanism has superior performance when compared to the 
traditional template matching approach. The proposed 
architecture produced very high degree of matches (DoMs), 
fluctuating around 90%, while the traditional template 
matching approach obtained comparatively low DoMs, 
fluctuating between 50% to 80%. 
 

 
Figure 6. Comparison between the proposed landmark recognition 
architecture and traditional template matching approach. (a) Images of 
objects in clean-backgrounds. (b) Images of objects in cluttered 
backgrounds.   

B. Partially Occluded Landmark Recognition 

   The proposed architecture’s capability in recognising 
partially occluded landmark has been evaluated using a 
number of real images, representing different occlusion 
situations. These images simulate the following situations: 

non-occluded, single, and multiple partially occluded 
landmarks. In non-occluded situations, the images were 
taken with a target object alone in a background. For single 
occluded situations, the landmark was obstructed by a single 
object, placed either in front or to the left or right of the 
target. Similarly, in multiple occluded situations, multiple 
objects were placed in different locations (left, right and in 
front) to partially obscure the landmarks.  
   A total of twenty four images were captured and processed 
by the proposed architecture, and the recognition results are 
shown in Table.1. It records the best degree of match (DoM) 
value between the input ROI region and the corresponding 
memory template. Table.1 shows that non-occluded 
landmarks have very high DoM values, approximately 97% 
as expected, and diminishes with the increase in the level of 
concealment. Nevertheless, in single occlusion situations, the 
proposed architecture was able to maintain DoMs above 
90% for all of the tested images. However, in the case of 
multiple occlusions, the architecture is only able to obtain 
DoM values over the threshold in a few cases. Future 
research will focus on enhancing the architecture to address 
the issue of recognising landmarks that are partially 
occluded by many objects. 
 
Table.1: The results of the template matching stage – the match between 
the best ROI region in the input image and the memory template 

 

VI.   CONCLUSIONS 

   The paper describes a visual landmark recognition 
architecture that mimics properties of the human vision 
system using ART and SARRT artificial neural networks. It 
uses a set of static and dynamic binary filters to create 
memory-guided feedback pathways that selectively govern 
the feature extraction, matching, and memory activation 
stages. The architecture has shown superior performance 
over traditional template approach in recognizing occluded 
and non-occluded visual landmarks in both clean and 
cluttered backgrounds.  
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