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T
he 2018 Nobel Prize in Chemistry, awarded to Frances 
Arnold, underscored a remarkable trend in engineering: it is 
now feasible, and even necessary, to employ automated meth-

ods to augment human design and creativity. Today’s designs have 
increased in scale and complexity to the point that humans can no 
longer comprehend the design space or consider all reasonable pos-
sibilities. Breaking through this design barrier is an important chal-
lenge that cuts across many areas of engineering.

Arnold used directed evolution to design enzymes with 
improved and new functions. Directed evolution creates variation 
through random mutation, and variations are selected and ampli-
fied according to a specified design goal (for example, catalysing 
useful reactions). Human experts define the problem, and auto-
mated evolution performs the search, often finding solutions that 
perform better than those designed by human experts.

Evolutionary computation (EC) aims to harness this process in a 
computational framework. EC is distinctly different from machine 
learning approaches such as deep learning, which learn predictive 
models of phenomena for which correct answers are known. By 
contrast, EC creates new solutions by iteratively applying mutation, 
recombination and selection to populations of digital individuals 
(Fig. 1). These methods, known variously as genetic algorithms1–3, 
genetic programming4 and evolutionary strategies5, have been 
applied to a variety of problems requiring engineering and sci-
entific creativity6–9. Given the computational power and data that 
have recently become available—millions of times more than just 
two decades ago—it is now practical to simulate real-world pro-
cesses and evolve solutions to engineered systems that interact with 
them. Examples include: simulating and designing growth recipes 
for agriculture that are counter-intuitive but outperform humans10, 
designing improved treatments for diseases and injuries11,12, con-
trolling robots and vehicles where human-designed controls are 
ineffective13,14 and creating improved designs for machines and 
chemical processes15,16. Beyond these practical applications, EC has 

been used to create music and art, some of which has been accepted 
to human exhibitions17–20. It has also been applied to software itself, 
repairing bugs21,22, designing neural network architectures23,24, 
improving compilers25 and finding energy-efficient versions of pro-
grams26. This progress in several domains, together with the design 
complexities faced by engineering and software, suggests that evo-
lutionary methods are poised to augment human design processes 
in many applications.

Although EC has produced solutions for highly complex sys-
tems, they pale in comparison to the robustness, versatility and 
adaptability of solutions produced by biological evolution, raising 
the following questions: How does EC today compare with biologi-
cal evolution? Are there aspects of biological evolution still missing 
that could make EC more powerful? Conversely, can some of the 
challenges facing EC point to gaps in our understanding of biologi-
cal evolution?

To address these questions, this paper compares EC with biologi-
cal evolution along a small number of dimensions that are gener-
ally accepted as essential hallmarks and mechanisms of evolution. 
Not all such dimensions are included (compare with refs. 27,28); the 
discussion focuses on those that lead to most relevant insights into 
EC today.

Comparing EC with biological evolution
The elements underlying biological evolution have been eluci-
dated and refined over the 160 years since Darwin’s theory was 
proposed. There is general agreement today that natural selection, 
mutation, recombination and random drift are the key drivers of 
evolution29. In addition, there are several hallmarks that character-
ize the evolutionary process and mechanisms that enable it. Of all 
these dimensions, this paper focuses on six that provide the most 
insight for EC: openendness, major transitions in organizational 
structure, neutrality and random drift, multi-objectivity, complex 
genotype-to-phenotype mappings, and co-evolution.
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There are other dimensions in which EC and biology differ. 
For instance, sexual recombination is important in biology and its 
implementation in EC (via the crossover operator) does not capture 
all of the biological richness that is implied by dominant/recessive 
genes and diploid structures. However, attempts to add such mecha-
nisms to EC have not been particularly successful or generalizable, 
and they do not appear to be a promising source of insight for EC at 
this time. Table 1 summarizes these findings. For each dimension, 
Table 1 reports how it is manifested in biology and the extent to 
which it is manifested in EC, with three computational examples. 
The rightmost two columns highlight what we consider to be the 
greatest challenge and the greatest opportunity to move EC forward 
in each dimension. The subsections below discuss each dimension 
in detail.

Openendedness. Over time, evolution has often produced organ-
isms with increasing complexity, reflecting the openended nature 
of the evolutionary process30. In computational terms, innovations 
in such a process become essential building blocks for future evo-
lution, leading to nonstationary fitness landscapes and indefinitely 
long searches rather than rapid convergence31,32. A canonical exam-
ple is the citric acid cycle for producing energy, which is an essential 
building block of all aerobic cells and plays a central role in many 
biochemical pathways. Once evolution produced the citric acid 
cycle, many diverse complex metabolic pathways were subsequently 
enabled33. Niche construction is another example, where organisms 
alter their environment in a way that affects natural selection, creat-
ing feedback to the evolutionary process.

An example of openendedness in EC is NEAT34, which gener-
ates neural network architectures from a minimal network, that is, 

one node connecting inputs to outputs, iteratively adding nodes 
and links tailored to the specific problem. Several artificial life sim-
ulations have demonstrated increasingly complex organisms and 
behaviour, such as Tierra, Avida and Division Blocks35–37. Similarly 
in genetic programming (GP)4 a program’s size (genome) increases 
during a single run, and successful mutations can be used as build-
ing blocks for subsequent mutations and recombinations. Software 
repair, for example, GenProg21,22, is similarly openended because the 
size of the program can increase during a single run.

In engineering, increasing complexity is not always desirable, yet 
openended evolution can lead to unexpected and useful solutions17. 
Conversely, unpredictability and surprising discoveries do not 
always indicate openendedness. Sometimes, they are simply clever 
ways of exploiting the ecology imposed by the fitness function, for 
example, when an evolved bug repair exploits a weakness in its test 
suite rather than addressing the underlying problem. Such distinc-
tions do not exist in nature.

Because engineering aims to solve particular problems, 
openended approaches are rare today. However, there is no reason 
why EC cannot become more openended, if properly scaled, and 
openendedness may indeed be required for producing more cre-
ative and complex designs.

Major transitions. Major transitions38–40 are one example of how 
biological evolution achieves openendedness. These evolutionary 
jumps, or transitions to a new level of organization, occurred when 
life progressed from replicating molecules to chromosomes, and 
further to cells, to plastids, to multicellularity, to eusocial societ-
ies, and to societies with language and culture. In these transitions, 
individual units formed groups, differentiated into distinct and  
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Fig. 1 | EC mechanisms. a, Genotypes of individuals in the population are encoded as strings or trees of values, for example, binary numbers that encode the 

weight values of a neural network. High-fitness individuals are selected as parents for the next generation, their encodings are recombined, and individual 

values are mutated. The process repeats until a stopping criterion is met. b, To evaluate an individual’s fitness, its genotype is decoded into a phenotype, 

such as a neural network, and it is evaluated in an environment. For instance, the neural network might observe the environment and control the actions 

of an agent in the environment. The individual’s performance is interpreted as the fitness for that genotype in the population. Note that the correct actions 

do not need to be known, as would be required for deep learning; an overall measure of fitness is sufficient, enabling the discovery of new solutions rather 

than imitating known ones. c, The population is initialized to sample the space of possible individuals broadly. The space is represented as a rectangle in 

this visualization, individuals are dots, and the size of the dot corresponds to their fitness. Subsequent generations are created as shown in a. Over multiple 

generations, the population converges to high-fitness regions of the space.
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cooperative roles, and lost their ability to replicate independently. 
Even though the information necessary for life is still represented 
in the molecular code, the way that information is organized, trans-
mitted and selected changes with each transition, leading to a trans-
formative new level of individuality.

Even with an explicit focus on openendedness, EC has not yet 
produced jumps that could be considered major transitions. Several 
researchers have developed methods to encourage transitions to 
new organizational structures, but so far they are limited in scope 
to mathematical functions (for example, ADFs in GP4) and abstract 
mathematical games (for example, Model-S in the Game of Life41 
and SEAM in HIFF42). By contrast, a major transition in EC might 
occur, for instance, if evolving agents discovered how to create roads 
and vehicles that allowed them to move longer distances at higher 
speeds. Further evolution might then discover behaviours that take 
advantage of such mobility.

When transitions to a higher level of organization are engi-
neered by humans, EC can construct increasing and possibly even 
openended complexity. For example, neural networks have been 
evolved that control virtual creatures (EVCs) to run, turn and 
hit43. These networks can then be encapsulated and used as mod-
ules to evolve pursuit, evasion, and attack. Such modular neural 
networks can be further encapsulated to evolve fight-or-flight 
behaviour. While such a process incorporates major transitions 
in network organization, each transition is engineered rather  
than evolved.

Computational mechanisms that discover such transitions as 
part of an evolutionary process would be a powerful extension of 
current EC. They would enable automatic discovery of complex 
structures and exhibit a more compelling form of openendedness 
than what we have today. This dimension remains a major chal-
lenge and future opportunity for EC research (see ‘Opportunities 
and challenges’).

Neutrality and genetic drift. Neutrality refers to genetic changes 
that leave an organism’s reproductive fitness unchanged, and genetic 
drift refers to changes in gene frequencies that arise from chance 
rather than selection. Both are well studied in evolutionary biology, 
and thought to be required for natural populations to evolve and 
innovate29,44–46.

Specialized computer simulations have been used to model 
neutrality in biology35,36,47,48, and traditional selection-based EC 
algorithms have taken advantage of neutrality in particular prob-
lems49–53. For example, novelty search54 is a recent technique in EC 
that eschews fitness entirely, grading solutions only on their novelty 
with respect to earlier samples, and then assessing whether or not a 
solution was found at the end of the process. Similarly, the mixing 
genetic algorithm (MGA)55, tailored to travelling salesman problem 

applications, does not use selection, allowing it to preserve diversity 
and avoid premature convergence.

Although neutrality rarely emerges endogenously in EC, it is 
surprisingly common in human-produced software. For example, 
random mutations of source code are neutral with respect to tested 
functionality as much as 30–40% of the time, even when mutations 
are restricted to regions of code executed by the fitness function56–58. 
These results are informative for algorithms that repair software 
automatically59. Similarly, the GEVO code optimizer uses neutral 
mutations of LLVM code to improve execution times60.

Random drift provides raw material for evolutionary innova-
tion under weak selection. Such selection allows populations to 
retain mutations that are neutral or even weakly deleterious, which 
in turn can seed innovations that increase fitness dramatically in 
subsequent generations, even though it may take a long time61–64. 
By contrast, most EC algorithms today use selection that is strong 
compared to biology. Neutral and weakly deleterious mutations are 
eliminated almost immediately, except for accidental hitchhikers, 
and the population tends to converge quickly on a local optimum. 
This design decision, driven by efficiency considerations, is a nota-
ble departure from many evolutionary processes.

Incorporating neutrality, weak selection and longer time scales is 
thus a promising opportunity for future EC research.

Multi-objectivity. Biological fitness is complex. Many competing 
elements determine the number of offspring that an individual 
ultimately produces. Spending resources to find food competes 
with attracting a mate and protecting the young. To survive and 
reproduce, individuals must perform adequately on all such dimen-
sions. Thus, while fitness drives biological selection directly, the 
tradeoffs that determine reproductive success are indirect and 
multi-dimensional.

In some cases, EC systems have a single high-level computa-
tional objective, such as survival in an ecological simulation, win-
ning or losing a game, or the amount of money earned in financial 
markets65–67. In these settings, evolution manages the necessary 
dimensions and tradeoffs among them implicitly. In many settings, 
however, high-level fitness provides too weak a signal for selection, 
and EC fails to make progress towards a solution.

Multi-objective ECs address this problem by operating one 
level below the high-level objective. They specify and measure the 
various dimensions directly, such as performance, cost, accuracy, 
solution complexity or appearance68–70. The solutions form Pareto 
fronts, that is, collections of different trade-offs, and mathematical 
techniques (such as NSGA-II) are used to find them71. Engineers 
can then use external criteria to select a particular set of trade-offs, 
in some cases combining hundreds or thousands of objectives 
that represent a large array of constraints or tests (for example, 

Table 1 | A comparison of biological and computational evolution across several characteristic dimensions

Dimension in biology in computation Example computational 
approaches

Computational challenge Opportunity

Openendedness Apparent Incipient Avida, GenProg, Division 
Blocks21,35,37

Nonstationary fitness Scale

Major transitions Transformative Minor EVC, SEAM, Model-S41–43 Encapsulation Develop biology

Neutrality and drift Essential Minimal Novelty Search, MGA, 
GEVO54,55,60

Selection pressure Emulate biology

Multi-objectivity Implicit Explicit NSGA, Lexicase, Quality 
Diversity 72,73,78

Dimensionality Scale

Geno/pheno mappings High DoF Low DoF CE, HyperNEAT, Deep 
GA87–89

Effective representations Emulate biology

Co-evolution Pervasive Constrained CoDeepNEAT, EUREQA, 
POET23,102,103

Generality Scale
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NSGA-III72, lexicase selection73). Although popular, such explicit 
multi-objectivity departs from biology: it is a tool for expressing 
principles of human design.

In biology, multidimensional fitness can facilitate speciation, that 
is, different strategies for thriving in a complex environment. Such 
environments contain multiple niches and different species without 
explicit multiple objectives74,75. Speciation is useful in EC as well, 
enhancing diversity and protecting innovation34,76. However, specia-
tion does not arise in EC endogeneously without supporting mech-
anisms. A step in this direction is quality diversity, where novelty is 
included as a secondary objective. The approach rewards diversity 
explicitly, and useful niches and stepping stones are more likely to 
be discovered without prescribing them as explicit objectives77,78.

Thus, artificial multi-objectivity can serve as a proxy for com-
plex environments and niches that emerge through time. There is 
an opportunity, however, for EC to apply multi-objectivity more 
aggressively and implicitly by adopting more natural high-level fit-
ness functions and encouraging niche formation.

Genotype-to-phenotype mappings. Most EC systems encode solu-
tions directly in the genome. For instance, in function optimiza-
tion, the genotype might represent parameter values, and for neural 
networks, the genotype might be a concatenation of connection 
weights. Mutation and recombination can thus modify the com-
ponents of the solution directly. This approach succeeds in many 
problems, and it is easy to understand and visualize.

Such direct encodings do not scale to biological levels of com-
plexity, and in biology the genotype-to-phenotype mapping is much 
more complex and indirect. Epistasis is common, and gene expres-
sion is modulated, for example, by genetic regulatory networks79 
and by epigenetic traits80. Developmental pathways are modulated 
by interactions among cells and between the cells and the environ-
ment81, providing another level of indirection. Selection operates at 
the phenotypic level, which is constructed in an interactive, multi-
faceted process with high degrees of freedom (DoF).

In EC, epistasis manifests as nonlinear interactions among genes, 
and the recombination operator allows successful gene combi-
nations to be preserved in successive generations. Simple genetic 
regulatory networks have led to evolvable solutions, that is, those 
that can adapt rapidly to environmental changes82–84. Several types 
of epigenetic mechanism have been proposed, leading to transgen-
erational effects similar to those seen in nature85. Many projects 
have investigated generative and developmental approaches, that is, 
those that include a constructive or adaptive process operating on 
the genetic encoding. For instance, the structure of a neural network 
can be evolved, and its weights learned through gradient descent86; 
a neural network can be evolved to assign the weights of another 
neural network that actually performs the task (for example, 
HyperNEAT87); the genome may contain a set of grammatical rules 
that are applied sequentially to generate a solution (for example, cel-
lular encoding or CE88); and a compressed representation of a deep 
neural network can be evolved and expanded systematically to form 
the full network (for example, Deep GA89). In GP, evaluations can 
be seen as a primitive form of development: programs are evalu-
ated with an interpreter90, or by compiling and executing them in a 
run-time environment21.

Despite these advances, most of these systems use mappings that 
are unlike biology, or abstract away much of it. The implementa-
tions have few degrees of freedom, and the epistatic interactions 
among the genes are highly constrained. Indirect encodings often 
do not improve performance over direct encodings91–93. Developing 
more successful indirect encodings will likely require thinking more 
carefully about their biological counterparts.

Co-evolution. Biological systems exist in dynamic environ-
ments where multiple species co-evolve simultaneously and both  

competition and cooperation are pervasive94. Some EC systems 
exhibit a similar dynamic, for example, in game playing, robot 
navigation and multi-agent problem solving. In such domains, 
co-evolution can be effective: two or more populations evolve 
simultaneously, and fitness is defined by how well the individuals 
compete or cooperate with individuals in the other population(s)95.

Competitive co-evolution has rich dynamics that researchers 
have characterized in terms of the equilibria that can evolve96,97. 
This dynamic is particularly effective in game playing, where it 
establishes a natural progression of more challenging opponents—
a method dating back to Samuel’s Checker playing program in 
the 1950s98 and used more recently in AlphaZero, for example99. 
Competitive co-evolution also applies to asymmetric situations such 
as co-evolving solutions and objectives100, sorting networks and test 
cases101, locomotion and obstacle courses (POET102), equations that 
explain progressively more experimental data while remaining sim-
ple (EUREQA103), and predator/prey systems that develop progres-
sively complex behaviours104. More recently, generative adversarial 
network (GAN) architectures have adopted this strategy, whether 
trained through EC or gradient descent105,106.

In cooperative co-evolution, multiple populations also evolve 
simultaneously, but the solution is formed by combining the 
populations107. For instance, CoDeepNEAT evolves modules and 
high-level blueprints of deep neural networks in multiple popula-
tions in parallel23. Similarly, subroutines can be evolved to form 
complete programs when combined108. Fitness is assessed on the 
combined system and propagates to the components—allowing 
evolution to discover components that work well together. This 
approach produces more complex solutions than would be possible 
if they were evolved directly.

Therefore, co-evolution is appealing because it establishes an 
openended dynamic that, in principle, can indefinitely discover pro-
gressively more complex solutions. Cooperative co-evolution can 
lead to more complex representations, and competitive co-evolution 
can establish new challenges. In current EC, however, interactions 
between populations are highly constrained and scripted, and the 
relationships and representations do not change. With more com-
puting resources and more flexible environments it may be possible 
to generalize this approach, and thus take better advantage of it.

Opportunities and challenges
Research in EC has matured in the nearly 60 years since these algo-
rithms were first proposed, and today’s EC at times demonstrates 
surprisingly creative and innovative problem solving. However, 
most observers would judge today’s digitally evolved systems as lack-
ing the sophistication, flexibility and plasticity of biological organ-
isms and ecosystems. Evolved neural networks are still far from the 
complexity of their biological counterparts; evolved cyberdefence 
systems do not come close to the capabilities of the natural immune 
system; no evolved agents are capable of even simple geometric rea-
soning109 that comes naturally to humans.

While evolutionary biology has progressed tremendously dur-
ing these 60 years, the development of EC methods has followed 
its own trajectory, and often diverged from biology (as summa-
rized in Table 1). In terms of openendedness, multi-objectivity and 
co-evolution, EC is on a promising path where scaling the computa-
tion, representations, and environments is likely to lead to systems 
that resemble biological complexity more closely. However, EC falls 
short in other areas: neutrality and random drift, using complex 
genotype-to-phenotype mappings with rich environmental interac-
tions, and achieving major transitions in organization. Biological 
mechanisms may need to be further elucidated and incorporated 
into EC before we see major transitions evolving computationally. 
However, biology does suggest how the first two might be addressed.

First, regarding neutrality and random drift, EC researchers 
have studied computational mechanisms that promote diversity and 
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exploration54,73,110, but they are ad hoc corrections to small popula-
tions operating under strong selection pressure. In a similar vein, 
many EC methods rely on mutation more than recombination5,111, 
even though it is viewed as a key mechanism in biological evolution, 
preserving epistatic interactions among genes. By contrast, diver-
sity and exploration in naturally evolving systems often originate 
from relatively weak selection on large populations. Even unlikely 
innovations, such as changes in organizational structure, can appear 
when the process runs long enough. These directions are underex-
plored in EC but constitute a major opportunity for future research.

Second, regarding genotype-to-phenotype mappings, EC 
methods today succeed when the human designer can identify a 
genetic encoding that maps directly to phenotypic behaviour. By 
contrast, biological evolution uses complex indirect mappings. To 
take advantage of this process in EC will require designs in which 
genomes do not necessarily contain all of the information required 
to construct a solution, and instead information emerges naturally 
through interactions with the environment112,113.

Third, as discussed in ‘Comparing EC with biological evolution’, 
we have not yet seen major transitions in EC, that is, evolved rep-
resentations at new organizational levels than what was provided in 
the initial encoding. In EC such innovations are currently achievable 
only by manually creating transition mechanisms43, that is, if the dif-
ferent levels are prespecified, representations constructed for each 
of them, and evolution is allowed to proceed sequentially or in par-
allel at multiple levels. In such a setting, collaborative co-evolution 
can create cooperative structures that work together23,69, and com-
petitive co-evolution can dynamically produce new challenges at 
different levels102,114. But they do not drive actual transitions.

By contrast, major transitions in biology occurred by manipulat-
ing one underlying representation, the amino acid sequences38–40. 
The way that information is organized, transmitted between ele-
ments and individuals, and translated into physical structures and 
behaviours, changes fundamentally in these transitions. However, 
biological theory does not yet provide adequate guidance on how 
such transitions can be achieved mechanistically. Biological theory 
describes what these transitions are, but not how they happened, 
leaving many questions unanswered. Does selection operate at mul-
tiple levels? Is the high-level organization discovered gradually, or 
does it require multiple simultaneous innovations? Are there phases 
where multiple levels coexist, cooperate and compete? What mech-
anisms lead to component specialization and loss of independent 
replication? Is there a similar dynamic in each of these transitions or 
is it different in each case? This lack of guidance suggests that there 
may be gaps in evolutionary theory, which are important to fill not 
just for its own sake, but for EC as well.

If we can meet these challenges, EC is poised to become a core 
innovation engine for complex engineered systems. As EC improves, 
it may capture enough relevant biology to serve as a useful model 
of biological evolution. The enormous computational power avail-
able today allows us to simulate large populations and deep time, 
thereby testing theories about biological evolution in a way that has 
not been possible until now.

Conclusion
Over half a century of EC has shown the promise in harnessing 
the principles of biological evolution. Modern evolutionary theory, 
coupled with a millionfold increase in computational power, offers 
an opportunity to simulate evolutionary mechanisms at a new scale 
with increased fidelity. Of the six essential dimensions discussed in 
this paper, EC has a good start on openendedness, multi-objectivity 
and co-evolution, although more can be achieved by scaling up. 
Neutrality and genotype-to-phenotype mappings are opportunities 
where existing biological insights could be utilized to produce dra-
matic improvements. By contrast, major transitions may not emerge 
in EC until they are better understood in biology and computational 

approaches are adjusted accordingly. With such progress, EC can 
play a leading role in machine creativity, support breakthroughs in 
engineering and provide insight into evolutionary theory.
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