
PERSPECTIVE
https://doi.org/10.1038/s42256-020-00278-8

1The University of Texas at Austin and Cognizant Technology Solutions, Austin, TX, USA. 2Arizona State University and the Santa Fe Institute, Tempe, AZ,
USA. 3These authors contributed equally: Risto Miikkulainen, Stephanie Forrest. ✉e-mail: risto@cs.utexas.edu; steph@asu.edu

T
he 2018 Nobel Prize in Chemistry, awarded to Frances
Arnold, underscored a remarkable trend in engineering: it is
now feasible, and even necessary, to employ automated meth-

ods to augment human design and creativity. Today’s designs have
increased in scale and complexity to the point that humans can no
longer comprehend the design space or consider all reasonable pos-
sibilities. Breaking through this design barrier is an important chal-
lenge that cuts across many areas of engineering.

Arnold used directed evolution to design enzymes with
improved and new functions. Directed evolution creates variation
through random mutation, and variations are selected and ampli-
fied according to a specified design goal (for example, catalysing
useful reactions). Human experts define the problem, and auto-
mated evolution performs the search, often finding solutions that
perform better than those designed by human experts.

Evolutionary computation (EC) aims to harness this process in a
computational framework. EC is distinctly different from machine
learning approaches such as deep learning, which learn predictive
models of phenomena for which correct answers are known. By
contrast, EC creates new solutions by iteratively applying mutation,
recombination and selection to populations of digital individuals
(Fig. 1). These methods, known variously as genetic algorithms1–3,
genetic programming4 and evolutionary strategies5, have been
applied to a variety of problems requiring engineering and sci-
entific creativity6–9. Given the computational power and data that
have recently become available—millions of times more than just
two decades ago—it is now practical to simulate real-world pro-
cesses and evolve solutions to engineered systems that interact with
them. Examples include: simulating and designing growth recipes
for agriculture that are counter-intuitive but outperform humans10,
designing improved treatments for diseases and injuries11,12, con-
trolling robots and vehicles where human-designed controls are
ineffective13,14 and creating improved designs for machines and
chemical processes15,16. Beyond these practical applications, EC has

been used to create music and art, some of which has been accepted
to human exhibitions17–20. It has also been applied to software itself,
repairing bugs21,22, designing neural network architectures23,24,
improving compilers25 and finding energy-efficient versions of pro-
grams26. This progress in several domains, together with the design
complexities faced by engineering and software, suggests that evo-
lutionary methods are poised to augment human design processes
in many applications.

Although EC has produced solutions for highly complex sys-
tems, they pale in comparison to the robustness, versatility and
adaptability of solutions produced by biological evolution, raising
the following questions: How does EC today compare with biologi-
cal evolution? Are there aspects of biological evolution still missing
that could make EC more powerful? Conversely, can some of the
challenges facing EC point to gaps in our understanding of biologi-
cal evolution?

To address these questions, this paper compares EC with biologi-
cal evolution along a small number of dimensions that are gener-
ally accepted as essential hallmarks and mechanisms of evolution.
Not all such dimensions are included (compare with refs. 27,28); the
discussion focuses on those that lead to most relevant insights into
EC today.

Comparing EC with biological evolution
The elements underlying biological evolution have been eluci-
dated and refined over the 160 years since Darwin’s theory was
proposed. There is general agreement today that natural selection,
mutation, recombination and random drift are the key drivers of
evolution29. In addition, there are several hallmarks that character-
ize the evolutionary process and mechanisms that enable it. Of all
these dimensions, this paper focuses on six that provide the most
insight for EC: openendness, major transitions in organizational
structure, neutrality and random drift, multi-objectivity, complex
genotype-to-phenotype mappings, and co-evolution.

A biological perspective on evolutionary
computation

Risto Miikkulainen   1,3 ✉ and Stephanie Forrest2,3 ✉

Evolutionary computation is inspired by the mechanisms of biological evolution. With algorithmic improvements and increasing
computing resources, evolutionary computation has discovered creative and innovative solutions to challenging practical prob-
lems. This paper evaluates how today’s evolutionary computation compares to biological evolution and how it may fall short. A
small number of well-accepted characteristics of biological evolution are considered: openendedness, major transitions in orga-
nizational structure, neutrality and genetic drift, multi-objectivity, complex genotype-to-phenotype mappings and co-evolution.
Evolutionary computation exhibits many of these to some extent but more can be achieved by scaling up with available comput-
ing and by emulating biology more carefully. In particular, evolutionary computation diverges from biological evolution in three
key respects: it is based on small populations and strong selection; it typically uses direct genotype-to-phenotype mappings;
and it does not achieve major organizational transitions. These shortcomings suggest a roadmap for future evolutionary com-
putation research, and point to gaps in our understanding of how biology discovers major transitions. Advances in these areas
can lead to evolutionary computation that approaches the complexity and flexibility of biology, and can serve as an executable
model of biological processes.

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell 9

mailto:risto@cs.utexas.edu
mailto:steph@asu.edu
http://orcid.org/0000-0002-0062-0037
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-00278-8&domain=pdf
http://www.nature.com/natmachintell

PERSPECTIVE NATURE MACHINE INTELLIGENCE

There are other dimensions in which EC and biology differ.
For instance, sexual recombination is important in biology and its
implementation in EC (via the crossover operator) does not capture
all of the biological richness that is implied by dominant/recessive
genes and diploid structures. However, attempts to add such mecha-
nisms to EC have not been particularly successful or generalizable,
and they do not appear to be a promising source of insight for EC at
this time. Table 1 summarizes these findings. For each dimension,
Table 1 reports how it is manifested in biology and the extent to
which it is manifested in EC, with three computational examples.
The rightmost two columns highlight what we consider to be the
greatest challenge and the greatest opportunity to move EC forward
in each dimension. The subsections below discuss each dimension
in detail.

Openendedness. Over time, evolution has often produced organ-
isms with increasing complexity, reflecting the openended nature
of the evolutionary process30. In computational terms, innovations
in such a process become essential building blocks for future evo-
lution, leading to nonstationary fitness landscapes and indefinitely
long searches rather than rapid convergence31,32. A canonical exam-
ple is the citric acid cycle for producing energy, which is an essential
building block of all aerobic cells and plays a central role in many
biochemical pathways. Once evolution produced the citric acid
cycle, many diverse complex metabolic pathways were subsequently
enabled33. Niche construction is another example, where organisms
alter their environment in a way that affects natural selection, creat-
ing feedback to the evolutionary process.

An example of openendedness in EC is NEAT34, which gener-
ates neural network architectures from a minimal network, that is,

one node connecting inputs to outputs, iteratively adding nodes
and links tailored to the specific problem. Several artificial life sim-
ulations have demonstrated increasingly complex organisms and
behaviour, such as Tierra, Avida and Division Blocks35–37. Similarly
in genetic programming (GP)4 a program’s size (genome) increases
during a single run, and successful mutations can be used as build-
ing blocks for subsequent mutations and recombinations. Software
repair, for example, GenProg21,22, is similarly openended because the
size of the program can increase during a single run.

In engineering, increasing complexity is not always desirable, yet
openended evolution can lead to unexpected and useful solutions17.
Conversely, unpredictability and surprising discoveries do not
always indicate openendedness. Sometimes, they are simply clever
ways of exploiting the ecology imposed by the fitness function, for
example, when an evolved bug repair exploits a weakness in its test
suite rather than addressing the underlying problem. Such distinc-
tions do not exist in nature.

Because engineering aims to solve particular problems,
openended approaches are rare today. However, there is no reason
why EC cannot become more openended, if properly scaled, and
openendedness may indeed be required for producing more cre-
ative and complex designs.

Major transitions. Major transitions38–40 are one example of how
biological evolution achieves openendedness. These evolutionary
jumps, or transitions to a new level of organization, occurred when
life progressed from replicating molecules to chromosomes, and
further to cells, to plastids, to multicellularity, to eusocial societ-
ies, and to societies with language and culture. In these transitions,
individual units formed groups, differentiated into distinct and

Population at T
N

Population at T
N + 1

00111

11100

01010

...

Selection

F(00111) = 0.1

F(11100) = 0.9

F(01010) = 0.5

11100 00111

11100

01010

...

Mutation

Crossover

11010

01100

...

Gen 1

Gen 2

Gen 3

Gen 9

...

Parent B
Parent A

Child AB
Child BA

Progress through generations

Evolutionary operators

Genetic

algorithm

Fitness

Environment

Action

Neural network

Observation

Evaluation of individuals

ca

b

Fig. 1 | EC mechanisms. a, Genotypes of individuals in the population are encoded as strings or trees of values, for example, binary numbers that encode the

weight values of a neural network. High-fitness individuals are selected as parents for the next generation, their encodings are recombined, and individual

values are mutated. The process repeats until a stopping criterion is met. b, To evaluate an individual’s fitness, its genotype is decoded into a phenotype,

such as a neural network, and it is evaluated in an environment. For instance, the neural network might observe the environment and control the actions

of an agent in the environment. The individual’s performance is interpreted as the fitness for that genotype in the population. Note that the correct actions

do not need to be known, as would be required for deep learning; an overall measure of fitness is sufficient, enabling the discovery of new solutions rather

than imitating known ones. c, The population is initialized to sample the space of possible individuals broadly. The space is represented as a rectangle in

this visualization, individuals are dots, and the size of the dot corresponds to their fitness. Subsequent generations are created as shown in a. Over multiple

generations, the population converges to high-fitness regions of the space.

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell10

http://www.nature.com/natmachintell

PERSPECTIVENATURE MACHINE INTELLIGENCE

cooperative roles, and lost their ability to replicate independently.
Even though the information necessary for life is still represented
in the molecular code, the way that information is organized, trans-
mitted and selected changes with each transition, leading to a trans-
formative new level of individuality.

Even with an explicit focus on openendedness, EC has not yet
produced jumps that could be considered major transitions. Several
researchers have developed methods to encourage transitions to
new organizational structures, but so far they are limited in scope
to mathematical functions (for example, ADFs in GP4) and abstract
mathematical games (for example, Model-S in the Game of Life41
and SEAM in HIFF42). By contrast, a major transition in EC might
occur, for instance, if evolving agents discovered how to create roads
and vehicles that allowed them to move longer distances at higher
speeds. Further evolution might then discover behaviours that take
advantage of such mobility.

When transitions to a higher level of organization are engi-
neered by humans, EC can construct increasing and possibly even
openended complexity. For example, neural networks have been
evolved that control virtual creatures (EVCs) to run, turn and
hit43. These networks can then be encapsulated and used as mod-
ules to evolve pursuit, evasion, and attack. Such modular neural
networks can be further encapsulated to evolve fight-or-flight
behaviour. While such a process incorporates major transitions
in network organization, each transition is engineered rather
than evolved.

Computational mechanisms that discover such transitions as
part of an evolutionary process would be a powerful extension of
current EC. They would enable automatic discovery of complex
structures and exhibit a more compelling form of openendedness
than what we have today. This dimension remains a major chal-
lenge and future opportunity for EC research (see ‘Opportunities
and challenges’).

Neutrality and genetic drift. Neutrality refers to genetic changes
that leave an organism’s reproductive fitness unchanged, and genetic
drift refers to changes in gene frequencies that arise from chance
rather than selection. Both are well studied in evolutionary biology,
and thought to be required for natural populations to evolve and
innovate29,44–46.

Specialized computer simulations have been used to model
neutrality in biology35,36,47,48, and traditional selection-based EC
algorithms have taken advantage of neutrality in particular prob-
lems49–53. For example, novelty search54 is a recent technique in EC
that eschews fitness entirely, grading solutions only on their novelty
with respect to earlier samples, and then assessing whether or not a
solution was found at the end of the process. Similarly, the mixing
genetic algorithm (MGA)55, tailored to travelling salesman problem

applications, does not use selection, allowing it to preserve diversity
and avoid premature convergence.

Although neutrality rarely emerges endogenously in EC, it is
surprisingly common in human-produced software. For example,
random mutations of source code are neutral with respect to tested
functionality as much as 30–40% of the time, even when mutations
are restricted to regions of code executed by the fitness function56–58.
These results are informative for algorithms that repair software
automatically59. Similarly, the GEVO code optimizer uses neutral
mutations of LLVM code to improve execution times60.

Random drift provides raw material for evolutionary innova-
tion under weak selection. Such selection allows populations to
retain mutations that are neutral or even weakly deleterious, which
in turn can seed innovations that increase fitness dramatically in
subsequent generations, even though it may take a long time61–64.
By contrast, most EC algorithms today use selection that is strong
compared to biology. Neutral and weakly deleterious mutations are
eliminated almost immediately, except for accidental hitchhikers,
and the population tends to converge quickly on a local optimum.
This design decision, driven by efficiency considerations, is a nota-
ble departure from many evolutionary processes.

Incorporating neutrality, weak selection and longer time scales is
thus a promising opportunity for future EC research.

Multi-objectivity. Biological fitness is complex. Many competing
elements determine the number of offspring that an individual
ultimately produces. Spending resources to find food competes
with attracting a mate and protecting the young. To survive and
reproduce, individuals must perform adequately on all such dimen-
sions. Thus, while fitness drives biological selection directly, the
tradeoffs that determine reproductive success are indirect and
multi-dimensional.

In some cases, EC systems have a single high-level computa-
tional objective, such as survival in an ecological simulation, win-
ning or losing a game, or the amount of money earned in financial
markets65–67. In these settings, evolution manages the necessary
dimensions and tradeoffs among them implicitly. In many settings,
however, high-level fitness provides too weak a signal for selection,
and EC fails to make progress towards a solution.

Multi-objective ECs address this problem by operating one
level below the high-level objective. They specify and measure the
various dimensions directly, such as performance, cost, accuracy,
solution complexity or appearance68–70. The solutions form Pareto
fronts, that is, collections of different trade-offs, and mathematical
techniques (such as NSGA-II) are used to find them71. Engineers
can then use external criteria to select a particular set of trade-offs,
in some cases combining hundreds or thousands of objectives
that represent a large array of constraints or tests (for example,

Table 1 | A comparison of biological and computational evolution across several characteristic dimensions

Dimension in biology in computation Example computational
approaches

Computational challenge Opportunity

Openendedness Apparent Incipient Avida, GenProg, Division
Blocks21,35,37

Nonstationary fitness Scale

Major transitions Transformative Minor EVC, SEAM, Model-S41–43 Encapsulation Develop biology

Neutrality and drift Essential Minimal Novelty Search, MGA,
GEVO54,55,60

Selection pressure Emulate biology

Multi-objectivity Implicit Explicit NSGA, Lexicase, Quality
Diversity 72,73,78

Dimensionality Scale

Geno/pheno mappings High DoF Low DoF CE, HyperNEAT, Deep
GA87–89

Effective representations Emulate biology

Co-evolution Pervasive Constrained CoDeepNEAT, EUREQA,
POET23,102,103

Generality Scale

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell 11

http://www.nature.com/natmachintell

PERSPECTIVE NATURE MACHINE INTELLIGENCE

NSGA-III72, lexicase selection73). Although popular, such explicit
multi-objectivity departs from biology: it is a tool for expressing
principles of human design.

In biology, multidimensional fitness can facilitate speciation, that
is, different strategies for thriving in a complex environment. Such
environments contain multiple niches and different species without
explicit multiple objectives74,75. Speciation is useful in EC as well,
enhancing diversity and protecting innovation34,76. However, specia-
tion does not arise in EC endogeneously without supporting mech-
anisms. A step in this direction is quality diversity, where novelty is
included as a secondary objective. The approach rewards diversity
explicitly, and useful niches and stepping stones are more likely to
be discovered without prescribing them as explicit objectives77,78.

Thus, artificial multi-objectivity can serve as a proxy for com-
plex environments and niches that emerge through time. There is
an opportunity, however, for EC to apply multi-objectivity more
aggressively and implicitly by adopting more natural high-level fit-
ness functions and encouraging niche formation.

Genotype-to-phenotype mappings. Most EC systems encode solu-
tions directly in the genome. For instance, in function optimiza-
tion, the genotype might represent parameter values, and for neural
networks, the genotype might be a concatenation of connection
weights. Mutation and recombination can thus modify the com-
ponents of the solution directly. This approach succeeds in many
problems, and it is easy to understand and visualize.

Such direct encodings do not scale to biological levels of com-
plexity, and in biology the genotype-to-phenotype mapping is much
more complex and indirect. Epistasis is common, and gene expres-
sion is modulated, for example, by genetic regulatory networks79
and by epigenetic traits80. Developmental pathways are modulated
by interactions among cells and between the cells and the environ-
ment81, providing another level of indirection. Selection operates at
the phenotypic level, which is constructed in an interactive, multi-
faceted process with high degrees of freedom (DoF).

In EC, epistasis manifests as nonlinear interactions among genes,
and the recombination operator allows successful gene combi-
nations to be preserved in successive generations. Simple genetic
regulatory networks have led to evolvable solutions, that is, those
that can adapt rapidly to environmental changes82–84. Several types
of epigenetic mechanism have been proposed, leading to transgen-
erational effects similar to those seen in nature85. Many projects
have investigated generative and developmental approaches, that is,
those that include a constructive or adaptive process operating on
the genetic encoding. For instance, the structure of a neural network
can be evolved, and its weights learned through gradient descent86;
a neural network can be evolved to assign the weights of another
neural network that actually performs the task (for example,
HyperNEAT87); the genome may contain a set of grammatical rules
that are applied sequentially to generate a solution (for example, cel-
lular encoding or CE88); and a compressed representation of a deep
neural network can be evolved and expanded systematically to form
the full network (for example, Deep GA89). In GP, evaluations can
be seen as a primitive form of development: programs are evalu-
ated with an interpreter90, or by compiling and executing them in a
run-time environment21.

Despite these advances, most of these systems use mappings that
are unlike biology, or abstract away much of it. The implementa-
tions have few degrees of freedom, and the epistatic interactions
among the genes are highly constrained. Indirect encodings often
do not improve performance over direct encodings91–93. Developing
more successful indirect encodings will likely require thinking more
carefully about their biological counterparts.

Co-evolution. Biological systems exist in dynamic environ-
ments where multiple species co-evolve simultaneously and both

competition and cooperation are pervasive94. Some EC systems
exhibit a similar dynamic, for example, in game playing, robot
navigation and multi-agent problem solving. In such domains,
co-evolution can be effective: two or more populations evolve
simultaneously, and fitness is defined by how well the individuals
compete or cooperate with individuals in the other population(s)95.

Competitive co-evolution has rich dynamics that researchers
have characterized in terms of the equilibria that can evolve96,97.
This dynamic is particularly effective in game playing, where it
establishes a natural progression of more challenging opponents—
a method dating back to Samuel’s Checker playing program in
the 1950s98 and used more recently in AlphaZero, for example99.
Competitive co-evolution also applies to asymmetric situations such
as co-evolving solutions and objectives100, sorting networks and test
cases101, locomotion and obstacle courses (POET102), equations that
explain progressively more experimental data while remaining sim-
ple (EUREQA103), and predator/prey systems that develop progres-
sively complex behaviours104. More recently, generative adversarial
network (GAN) architectures have adopted this strategy, whether
trained through EC or gradient descent105,106.

In cooperative co-evolution, multiple populations also evolve
simultaneously, but the solution is formed by combining the
populations107. For instance, CoDeepNEAT evolves modules and
high-level blueprints of deep neural networks in multiple popula-
tions in parallel23. Similarly, subroutines can be evolved to form
complete programs when combined108. Fitness is assessed on the
combined system and propagates to the components—allowing
evolution to discover components that work well together. This
approach produces more complex solutions than would be possible
if they were evolved directly.

Therefore, co-evolution is appealing because it establishes an
openended dynamic that, in principle, can indefinitely discover pro-
gressively more complex solutions. Cooperative co-evolution can
lead to more complex representations, and competitive co-evolution
can establish new challenges. In current EC, however, interactions
between populations are highly constrained and scripted, and the
relationships and representations do not change. With more com-
puting resources and more flexible environments it may be possible
to generalize this approach, and thus take better advantage of it.

Opportunities and challenges
Research in EC has matured in the nearly 60 years since these algo-
rithms were first proposed, and today’s EC at times demonstrates
surprisingly creative and innovative problem solving. However,
most observers would judge today’s digitally evolved systems as lack-
ing the sophistication, flexibility and plasticity of biological organ-
isms and ecosystems. Evolved neural networks are still far from the
complexity of their biological counterparts; evolved cyberdefence
systems do not come close to the capabilities of the natural immune
system; no evolved agents are capable of even simple geometric rea-
soning109 that comes naturally to humans.

While evolutionary biology has progressed tremendously dur-
ing these 60 years, the development of EC methods has followed
its own trajectory, and often diverged from biology (as summa-
rized in Table 1). In terms of openendedness, multi-objectivity and
co-evolution, EC is on a promising path where scaling the computa-
tion, representations, and environments is likely to lead to systems
that resemble biological complexity more closely. However, EC falls
short in other areas: neutrality and random drift, using complex
genotype-to-phenotype mappings with rich environmental interac-
tions, and achieving major transitions in organization. Biological
mechanisms may need to be further elucidated and incorporated
into EC before we see major transitions evolving computationally.
However, biology does suggest how the first two might be addressed.

First, regarding neutrality and random drift, EC researchers
have studied computational mechanisms that promote diversity and

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell12

http://www.nature.com/natmachintell

PERSPECTIVENATURE MACHINE INTELLIGENCE

exploration54,73,110, but they are ad hoc corrections to small popula-
tions operating under strong selection pressure. In a similar vein,
many EC methods rely on mutation more than recombination5,111,
even though it is viewed as a key mechanism in biological evolution,
preserving epistatic interactions among genes. By contrast, diver-
sity and exploration in naturally evolving systems often originate
from relatively weak selection on large populations. Even unlikely
innovations, such as changes in organizational structure, can appear
when the process runs long enough. These directions are underex-
plored in EC but constitute a major opportunity for future research.

Second, regarding genotype-to-phenotype mappings, EC
methods today succeed when the human designer can identify a
genetic encoding that maps directly to phenotypic behaviour. By
contrast, biological evolution uses complex indirect mappings. To
take advantage of this process in EC will require designs in which
genomes do not necessarily contain all of the information required
to construct a solution, and instead information emerges naturally
through interactions with the environment112,113.

Third, as discussed in ‘Comparing EC with biological evolution’,
we have not yet seen major transitions in EC, that is, evolved rep-
resentations at new organizational levels than what was provided in
the initial encoding. In EC such innovations are currently achievable
only by manually creating transition mechanisms43, that is, if the dif-
ferent levels are prespecified, representations constructed for each
of them, and evolution is allowed to proceed sequentially or in par-
allel at multiple levels. In such a setting, collaborative co-evolution
can create cooperative structures that work together23,69, and com-
petitive co-evolution can dynamically produce new challenges at
different levels102,114. But they do not drive actual transitions.

By contrast, major transitions in biology occurred by manipulat-
ing one underlying representation, the amino acid sequences38–40.
The way that information is organized, transmitted between ele-
ments and individuals, and translated into physical structures and
behaviours, changes fundamentally in these transitions. However,
biological theory does not yet provide adequate guidance on how
such transitions can be achieved mechanistically. Biological theory
describes what these transitions are, but not how they happened,
leaving many questions unanswered. Does selection operate at mul-
tiple levels? Is the high-level organization discovered gradually, or
does it require multiple simultaneous innovations? Are there phases
where multiple levels coexist, cooperate and compete? What mech-
anisms lead to component specialization and loss of independent
replication? Is there a similar dynamic in each of these transitions or
is it different in each case? This lack of guidance suggests that there
may be gaps in evolutionary theory, which are important to fill not
just for its own sake, but for EC as well.

If we can meet these challenges, EC is poised to become a core
innovation engine for complex engineered systems. As EC improves,
it may capture enough relevant biology to serve as a useful model
of biological evolution. The enormous computational power avail-
able today allows us to simulate large populations and deep time,
thereby testing theories about biological evolution in a way that has
not been possible until now.

Conclusion
Over half a century of EC has shown the promise in harnessing
the principles of biological evolution. Modern evolutionary theory,
coupled with a millionfold increase in computational power, offers
an opportunity to simulate evolutionary mechanisms at a new scale
with increased fidelity. Of the six essential dimensions discussed in
this paper, EC has a good start on openendedness, multi-objectivity
and co-evolution, although more can be achieved by scaling up.
Neutrality and genotype-to-phenotype mappings are opportunities
where existing biological insights could be utilized to produce dra-
matic improvements. By contrast, major transitions may not emerge
in EC until they are better understood in biology and computational

approaches are adjusted accordingly. With such progress, EC can
play a leading role in machine creativity, support breakthroughs in
engineering and provide insight into evolutionary theory.

Received: 15 September 2020; Accepted: 1 December 2020;
Published online: 18 January 2021

References
 1. Holland, J. H. Outline for a logical theory of adaptive systems. J. ACM 9,

297–314 (1962).
 2. Holland, J. H. Adaptation in Natural and Arti�cial Systems: An Introductory

Analysis with Applications to Biology, Control, and Arti�cial Intelligence
(Univ. Michigan Press, 1975).

 3. Forrest, S. Genetic algorithms: principles of natural selection applied to
computation. Science 261, 872–878 (1993).

 4. Koza, J. R. Genetic Programming (MIT Press, 1992).
 5. Beyer, H.-G. & Schwefel, H.-P. Evolution strategies: a comprehensive

introduction. Nat. Comput. 1, 3–52 (2002).
 6. Dasgupta, D. & Michalewicz, Z. (eds). Evolutionary Algorithms in

Engineering Applications (Springer, 1997).
 7. Greiner, D., Periaux, J., Quagliarella, D., Magalhaes-Mendes, J. & Galván, B.

Evolutionary algorithms and metaheuristics: applications in engineering
design and optimization. Math. Probl. Eng. 2018, 2793762 (2018).

 8. Miettinen, K. & Neittaanmaki, P. Evolutionary Algorithms in Engineering
and Computer Science: Recent Advances in Genetic Algorithms, Evolution
Strategies, Evolutionary Programming, GE (Wiley, 1999).

 9. Parmee, I. C. Evolutionary and Adaptive Computing in Engineering Design
(Springer, 2001).

 10. Johnson, A. J. et al. Flavor-cyber-agriculture: optimization of plant
metabolites in an open-source control environment through surrogate
modeling. PLoS ONE 14, e0213918 (2019).

 11. Ling, S. H. & Lam, H. K. Evolutionary algorithms in health technologies.
Algorithms 12, 202 (2019).

 12. Wang, H., Jin, Y. & Jansen, J. Data-driven surrogate-assisted multi-objective
evolutionary optimization of a trauma system. IEEE Trans. Evol. Comput.
20, 939–952 (2016).

 13. Bongard, J. Evolutionary robotics. Commun. ACM 56, 74–85 (2013).
 14. Cheney, N., Bongard, J., SunSpiral, V. & Lipson, H. Scalable co-optimization

of morphology and control in embodied machines. J. R. Soc. Interface 15,
20170937 (2018).

 15. Hornby, G. S., Lohn, J. D. & Linden, D. S. Computer-automated evolution
of an X-band antenna for NASA’s space technology 5 mission.
Evol. Comput. 19, 1–23 (2011).

 16. van Eck Conradie, A., Miikkulainen, R. & Aldrich, C. Adaptive control
utilising neural swarming. In Proceedings of the Genetic and Evolutionary
Computation Conference 60–67 (2002).

 17. Lehman, J. et al. �e surprising creativity of digital evolution: a collection
of anecdotes from the evolutionary computation and arti�cial life research
communities. Artif. Life 26, 274–306 (2020).

 18. Miranda, E. R. & Biles, J. A. (eds) Evolutionary Computer Music
(Springer, 2006).

 19. Romero, J. & Machado, P. (eds) �e Art of Arti�cial Evolution: A Handbook
on Evolutionary Art and Music (Springer, 2007).

 20. Secretan, J. et al. Picbreeder: a case study in collaborative evolutionary
exploration of design space. Evol. Comput. 19, 345–371 (2011).

 21. Le Goues, C., Nguyen, T., Forrest, S. & Weimer, W. GenProg: a generic
method for automated so�ware repair. Trans. So�ware Eng. 38,
54–72 (2012).

 22. Le Goues, C., Dewey-Vogt, M., Forrest, S. & Weimer, W. A systematic study
of automated program repair: �xing 55 out of 105 bugs for $8 each. In
International Conference on So�ware Engineering (IEEE, 2012).

 23. Miikkulainen, R. et al. Evolving deep neural networks. In Arti�cial
Intelligence in the Age of Neural Networks and Brain Computing
(eds Morabito, C. F. et al.) Ch. 15, 293–312 (Elsevier, 2020).

 24. Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for
image classi�er architecture search. In Proceedings of the AAAI Conference
on Arti�cial Intelligence 4780–4789 (AAAI, 2019).

 25. Stephenson, M., Amarasinghe, S., Martin, M. & O’Reilly, U.-M. Meta
optimization: improving compiler heuristics with machine learning.
SIGPLAN Not. 38, 77–90 (2003).

 26. Schulte, E., Dorn, J., Harding, S., Forrest, S. & Weimer, W. Post-compiler
so�ware optimization for reducing energy. In Architectural Support for
Programming Languages and Operating Systems 639–652 (2014).

 27. Banzhaf, W. et al. From arti�cial evolution to computational evolution: a
research agenda. Nat. Rev. Genet. 7, 729–735 (2006).

 28. Bedau, M. A. et al. Open problems in arti�cial life. Artif. Life 6,
363–376 (2000).

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell 13

http://www.nature.com/natmachintell

PERSPECTIVE NATURE MACHINE INTELLIGENCE

 29. Lynch, M. �e frailty of adaptive hypotheses for the origins of organismal
complexity. Proc. Natl Acad. Sci. USA 104, 8597–8604 (2007).

 30. Liow, L. H., Valen, L. & Stenseth, N. C. Red queen: from populations to
taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).

 31. Banzhaf, W. et al. De�ning and simulating open-ended novelty:
requirements, guidelines, and challenges. �eor. Biosci. 135, 131–161 (2016).

 32. Stanley, K. O. Why open-endedness matters. Artif. Life 25, 232–235 (2019).
 33. Smith, E. & Morowitz, H. J. Universality in intermediary metabolism.

Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).
 34. Stanley, K. O. & Miikkulainen, R. Evolving neural networks through

augmenting topologies. Evol. Comput. 10, 99–127 (2002).
 35. Lenski, R. E., Ofria, C., Collier, T. C. & Adami, C. Genome complexity,

robustness, and genetic interactions in digital organisms. Nature 400,
661–664 (1999).

 36. Ray, T. S. An approach to the synthesis of life. In Arti�cial Life II
(eds Langton, C. G. et al.) 371–408 (Addison-Wesley, 1991).

 37. Spector, L., Klein, J. & Feinstein, M. Division blocks and the open-ended
evolution of development, form, and behavior. In Proceedings of the Genetic
and Evolutionary Computation Conference (2007).

 38. Maynard Smith, J. & Szathmary, E. �e Major Transitions in Evolution
(Oxford Univ. Press, 1997).

 39. Szathmáry, E. Toward major evolutionary transitions theory 2.0. Proc. Natl
Acad. Sci. USA 112, 10104–10111 (2015).

 40. West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary
transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119
(2015).

 41. Watson, R. A. & Pollack, J. B. A computational model of symbiotic
composition in evolutionary transitions. Biosystems 69, 187–209 (2003).

 42. Turney, P. D. Symbiosis promotes �tness improvements in the game of life.
Artif. Life 26, 338–365 (2020).

 43. Lessin, D., Fussell, D. & Miikkulainen, R. Open-ended behavioral
complexity for evolved virtual creatures. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) (2013).

 44. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Taw�k, D.
Robustness-epistasis link shapes the �tness landscape of a randomly dri�ing
protein. Nature 444, 929–932 (2006).

 45. Kimura, M. �e Neutral �eory of Molecular Evolution (Cambridge Univ.
Press, 1985).

 46. Wagner, A. et al. Robustness and Evolvability in Living Systems (Princeton
Univ. Press, 2005).

 47. Draghi, J., Parsons, T., Wagner, G. & Plotkin, J. Mutational robustness can
facilitate adaptation. Nature 463, 353–355 (2010).

 48. LaBar, T. & Adami, C. Di�erent evolutionary paths to complexity for small
and large populations of digital organisms. PLoS Comput. Biol. 12,
e1005066 (2016).

 49. Banzhaf, W. & Leier, A. Evolution on neutral networks in genetic
programming. In Genetic Programming �eory and Practice III (eds Yu, T.
et al.) 207–221 (Springer, 2006).

 50. Milano, N. & Nol�, S. Robustness to faults promotes evolvability: insights
from evolving digital circuits. PLoS ONE 11, e0158627 (2016).

 51. Smith, T., Husbands, P. & O’Shea, M. Neutral networks and evolvability
with complex genotype-phenotype mapping. In Advances in Arti�cial Life
272–281 (2001).

 52. Spector, L. & Robinson, A. Genetic programming and autoconstructive
evolution with the push programming language. Genet. Program. Evolvable
Mach. 3, 7–40 (2002).

 53. Yu, T. & Miller, J. F. �rough the interaction of neutral and adaptive
mutations, evolutionary search �nds a way. Artif. Life 12, 525–551 (2006).

 54. Stanley, K. O. & Lehman, J. Why Greatness Cannot Be Planned: �e Myth of
the Objective (Springer, 2015).

 55. Varadarajan, S. & Whitley, D. �e massively parallel mixing genetic algorithm
for the traveling salesman problem. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’19 872–879 (ACM, 2019).

 56. Harrand, N., Allier, S., Rodriguez-Cancio, M., Monperrus, M. & Baudry, B.
A journey among Java neutral program variants. Genet. Program. Evolvable
Mach. 20, 531–580 (2019).

 57. Schulte, E., Fry, Z. P., Fast, E., Weimer, W. & Forrest, S. So�ware mutational
robustness. Genet. Program. Evolvable Mach. 15, 281–312 (2014).

 58. Veerapen, N., Daolio, F. & Ochoa, G. Modelling genetic improvement
landscapes with local optima networks. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion 1543–1548 (2017).

 59. Renzullo, J., Weimer, W., Moses, M., and Forrest, S. Neutrality and epistasis
in program space. In ICSE Genetic Improvement Workshop (2018).

 60. Liou, J.-Y., Wang, X., Forrest, S. & Wu, C.-J. GEVO: GPU code optimization
using evolutionary computation. ACM Trans. Archit. Code Optimiz. 17,
33 (2020).

 61. Cowperthwaite, M. C., Bull, J. J. & Meyers, L. A. From bad to good: �tness
reversals and the ascent of deleterious mutations. PLoS Comput. Biol. 2,
e141 (2006).

 62. LaBar, T. & Adami, C. Evolution of dri� robustness in small populations.
Nat. Commun. 8, 1012 (2017).

 63. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic
resistance and the population genetics of adaptive evolution in bacteria.
Genetics 154, 985–997 (2000).

 64. Moore, F. B.-G., Rozen, D. E. & Lenski, R. E. Pervasive compensatory
adaptation in Escherichia coli. Proc. R. Soc. Lon. B 267, 515–522 (2000).

 65. Fogel, D. B. Blondie24: Playing at the Edge of AI (Kaufmann, 2001).
 66. Grasm, R., Golestani, A., Hendry, A. P. & Cristescu, M. E. Speciation

without pre-de�ned �tness functions. PLoS ONE 10, e0137838 (2015).
 67. Hu, Y. et al. Application of evolutionary computation for rule discovery in

stock algorithmic trading: a literature review. Appl. So� Comput. 36,
534–551 (2015).

 68. Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. Evolutionary
Algorithms for Solving Multi-Objective Problems (Springer, 2007).

 69. Liang, J., et al. Evolutionary neural AutoML for deep learning. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2019) 401–409 (2019).

 70. Schwaab, J. et al. Improving the performance of genetic algorithms for
land-use allocation problems. Int. J. Geogr. Inf. Sci. 32, 907–930 (2018).

 71. Deb, K., Pratab, A., Agrawal, S. & Meyarivan, T. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6,
181–197 (2002).

 72. Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I:
solving problems with box constraints. IEEE Trans. Evol. Comput. 18,
577–601 (2014).

 73. LaCava, W., Helmuth, T., Spector, L. & Moore, J. H. A probabilistic and
multi-objective analysis of lexicase selection and ϵ -lexicase selection.
Evol. Comput. 27, 377–402 (2019).

 74. Anceschi, N. et al. Neutral and niche forces as drivers of species selection.
J. �eor. Biol. 483, 109969 (2019).

 75. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric
speciation. Nature 400, 354–357 (1999).

 76. Mahfoud, S. W. Niching Methods for Genetic Algorithms. PhD thesis, Univ.
Illinois at Urbana-Champaign (1995).

 77. Meyerson, E., Lehman, J. & Miikkulainen, R. Learning behavior
characterizations for novelty search. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) 149–156 (2016).

 78. Pugh, J. K., Soros, L. B., Szerlip, P. A. & Stanley, K. O. Confronting the
challenge of quality diversity. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation 967–974 (2015).

 79. Wang, Y. Gene regulatory networks. In Encyclopedia of Systems Biology
(eds Dubitzky, W. et al.) 801–805 (Springer, 2013).

 80. Lind, M. & Spagopoulou, F. Evolutionary consequences of epigenetic
inheritance. Heredity 121, 205–209 (2018).

 81. Muller, G. B. Evo-devo Extending the evolutionary synthesis. Nat. Rev.
Genet. 8, 943–949 (2007).

 82. Bentley, P. J. Evolving fractal gene regulatory networks for robot control. In
Advances in Arti�cial Life (eds Banzhaf, W. et al.) 753–762 (Springer, 2003).

 83. Payne, J. L., Moore, J. H. & Wagner, A. Robustness, evolvability, and the
logic of genetic regulation. Artif. Life 20, 111–126 (2014).

 84. Reisinger, J. & Miikkulainen, R. Acquiring evolvability through adaptive
representations. In Proceeedings of the Genetic and Evolutionary
Computation Conference 1045–1052 (2007).

 85. Wang, Q. et al. Epigenetic game theory: how to compute the epigenetic
control of maternal-to-zygotic transition. Phys. Life Rev. 20, 126–137 (2017).

 86. Stanley, K. O., Clune, J., Lehman, J. & Miikkulainen, R. Designing neural
networks through evolutionary algorithms. Nat. Mach. Intell. 1, 24–35 (2019).

 87. Stanley, K. O., D’Ambrosio, D. B. & Gauci, J. A hypercube-based encoding
for evolving large-scale neural networks. Artif. Life 15, 185–212 (2009).

 88. Gruau, F. & Whitley, D. Adding learning to the cellular development of
neural networks: evolution and the Baldwin e�ect. Evol. Comput. 1,
213–233 (1993).

 89. Such, F. P. et al. Deep neuroevolution: genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning. In
NeurIPS Deep Reinforcement Learning Workshop (2017).

 90. Banzhaf, W., Francone, F. D., Keller, R. E. & Nordin, P. Genetic
Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications (Kaufmann, 1998).

 91. Gomez, F., Schmidhuber, J. & Miikkulainen, R. Accelerated neural
evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9,
937–965 (2008).

 92. Helms, L. & Clune, J. Improving hybrid: how to best combine indirect and
direct encoding in evolutionary algorithms. PLoS ONE 12, e0174635 (2017).

 93. Schrum, J., Gillespie, L. E. & Gonzalez, G. R. Comparing direct and indirect
encodings using both raw and hand-designed features in tetris. In
Proceedings of the Genetic and Evolutionary Computation Conference
179–186 (ACM, 2017).

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell14

http://www.nature.com/natmachintell

PERSPECTIVENATURE MACHINE INTELLIGENCE

 94. Nuismer, S. Introduction to Coevolutionary �eory (Freeman, 2017).
 95. Popovici, E., Bucci, A., Wiegand, P. & De Jong, E. In Handbook of Natural

Computing (Rozenberg, G. et al.) 987–1033 (Springer, 2010).
 96. de Jong, E. D. & Pollack, J. B. Ideal evaluation from coevolution.

Evol. Comput. 12, 159–192 (2004).
 97. Ficici, S. G. & Pollack, J. B. Pareto optimality in coevolutionary learning. In

Sixth European Conference on Arti�cial Life (ed. Kelemen, J.) 316–325
(Springer, 2001).

 98. Samuel, A. In Computers and �ought (eds Feigenbaum, E. A. & Feldman, J.
A.) 210–229 (McGraw-Hill, 1963).

 99. Silver, D. et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science 362, 1140–1144 (2018).

 100. Sipper, M., Moore, J. H. & Urbanowicz, R. J. In Genetic Programming
(eds Sekanina, L. et al.) 146–161 (Springer, 2019).

 101. Hillis, W. D. Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D 42, 228–234 (1990).

 102. Wang, R., Lehman, J., Clune, J. & Stanley, K. O. POET: Open-ended
coevolution of environments and their optimized solutions. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2019,
Prague, Czech Republic, July 13-17, 2019 142–151 (2019).

 103. Schmidt, M. & Lipson, H. Distilling free-form natural laws from
experimental data. Science 324, 81–85 (2009).

 104. Rawal, A., Rajagopalan, P. & Miikkulainen, R. Constructing competitive
and cooperative agent behavior using coevolution. In IEEE Conference on
Computational Intelligence and Games (CIG 2010) (2010).

 105. Goodfellow, I. et al. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27 (eds Ghahramani, Z. et al.)
2672–2680. (Curran Associates, 2014).

 106. Wang, C., Xu, C., Yao, X. & Tao, D. Evolutionary generative adversarial
networks. IEEE Trans. Evol. Comput. 23, 921–934 (2019).

 107. Potter, M. A. & Jong, K. A. D. Cooperative coevolution: an architecture for
evolving coadapted subcomponents. Evol. Comput. 8, 1–29 (2000).

 108. Gerules, G. & Janikow, C. A survey of modularity in genetic
programming. In 2016 IEEE Congress on Evolutionary Computation (CEC)
5034–5043 (2016).

 109. Chollet, F. On the measure of intelligence. Preprint at https://arxiv.org/
abs/01547 (2019).

 110. Goldberg, D. E. & Richardson, J. Genetic algorithms with sharing for
multimodal function optimization. In Proceedings of the Second
International Conference on Genetic Algorithms (1987).

 111. Hansen, N. �e CMA evolution strategy: a tutorial. Preprint at https://arxiv.
org/abs/1604.00772 (2016).

 112. Davidson, E. & Erwin, D. Gene regulatory networks and the evolution of
animal body plans. Science 311, 796–800 (2006).

 113. Hendriks-Jansen, H. Catching Ourselves in the Act. Situated Activity,
Interactive Emergence, and Human �ought (MIT Press, 1996).

 114. Stanley, K. O. & Miikkulainen, R. Competitive coevolution through
evolutionary complexi�cation. J. Artif. Intell. Res. 21, 63–100 (2004).

Acknowledgements
We thank R. Axelrod, D. Erwin, A. Graham and M. Mitchell for their suggestions on an

earlier version of this paper, and R. Lenski and M. Lynch for many helpful discussions

on evolution. Thanks to P. Reiter, F. Gomez and C. Schoolland for the original drawings

for Fig. 1a–c. R.M. was partially supported by NSF DBI-0939454, DARPA FA8750-

18-C-0103 and HR0011-18-2-0024, and NIH 1U01DC014922; S.F. was partially

supported by NSF CCF-1908633 and IOS 2029696, DARPA FA8750-19C-0003 and

N6600120C4020, and AFRL FA8750-19-1-0501; both R.M. and S.F. were supported by

NSF IIS-2020103.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to R.M. or S.F.

Peer review information Nature Machine Intelligence thanks Christoph Adami, Julian

Miller and the other, anonymous, reviewer(s) for their contribution to the peer review of

this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

© Springer Nature Limited 2021

NAtuRE MAChiNE iNtElligENCE | VOL 3 | JANUARY 2021 | 9–15 | www.nature.com/natmachintell 15

https://arxiv.org/abs/01547
https://arxiv.org/abs/01547
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	A biological perspective on evolutionary computation
	Comparing EC with biological evolution
	Openendedness.
	Major transitions.
	Neutrality and genetic drift.
	Multi-objectivity.
	Genotype-to-phenotype mappings.
	Co-evolution.

	Opportunities and challenges
	Conclusion
	Acknowledgements
	Fig. 1 EC mechanisms.
	Table 1 A comparison of biological and computational evolution across several characteristic dimensions.

