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A Biologically Inspired Intelligent PID Controller Tuning 

for AVR Systems 
 

Dong Hwa Kim and Jae Hoon Cho 
 

Abstract: This paper proposes a hybrid approach involving Genetic Algorithm (GA) and 
Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging 
behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the 
proposed method using four test functions and the performance of the algorithm is studied with 
an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time 
of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. 
Simulation results are very encouraging and this approach provides us a novel hybrid model 
based on foraging behavior with a possible new connection between evolutionary forces in social 
foraging and distributed non-gradient optimization algorithm design for global optimization over 
noisy surfaces. 
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1. INTRODUCTION 
 
In the last decade, Genetic Algorithm (GA) based 

approaches have received increased attention from the 
engineers dealing with problems that could not be 
solved using conventional problem solving techniques 
[1-7]. A typical task of a GA in this context is to find 
the best values of a predefined set of free parameters 
associated with either a process model or a control 
vector. One of the active areas of research in GA 
approaches is for system identification [8-12]. A 
recent survey of evolutionary algorithms for the 
evaluation of improved learning algorithm and control 
system engineering can be found in [8,12,13]. GA has 
also been used to optimize nonlinear systems. Among 
them, a large amount of research is focused on the 
design of fuzzy controllers using evolutionary 
algorithm approaches. GAs could be used for 
developing the knowledge base about the controlled 
process in the form of linguistic rules and the fine 
tuning of fuzzy membership function [13].  

A possible solution to a specific problem can be 
encoded as an individual (or a chromosome), which 
consists of group of genes. Each individual represents 

a point in the search space and a possible solution to 
the problem can be formulated. A population consists 
of a finite number of individuals and each individual 
is decided by an evaluating mechanism to obtain its 
fitness value. Using this fitness value and genetic 
operators, a new population is generated iteratively, 
and that is referred to as a generation. The GA uses 
the basic reproduction operators such as crossover and 
mutation to produce the genetic composition of a 
population. The crossover operator produces two 
offspring’s (new candidate solutions) by means of 
recombining the information from two parents. As 
mutation operation is a random alteration of some 
gene values in an individual, the allele of each gene is 
a candidate for mutation, and its function is 
determined by the mutation probability. Many efforts 
for the enhancement of traditional GAs have been 
proposed [14-16]. Among them, one category focuses 
on modifying the structure of the population or on the 
individual’s role [11]. Some examples are distributed 
GA [11], cellular GA [7] and symbiotic GA. Another 
category is focused on modification/efficient control 
of the basic operations, such as crossover or mutation, 
of traditional GAs [17].  

On the other hand, as natural selection tends to 
eliminate animals with poor foraging strategies 
through methods for locating, handling, and ingesting 
food, and to favor the propagation of genes of those 
animals that have successful foraging strategies, they 
are more likely to apply reproductive success to have 
an optimal solution [18,19]. After many generations, 
poor foraging strategies are either eliminated or 
shaped into good ones. Logically, such evolutionary 
principles have led scientists in the field of foraging 
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theory to hypothesize that it is appropriate to model 
the activity of foraging as an optimization process. 
Since a foraging animal takes actions to maximize the 
energy obtained per unit time spent foraging, 
considering all the constraints presented by its own 
physiology such as, sensing and cognitive capabilities 
and environment (e.g., density of prey, risks from 
predators, and physical characteristics of the search 
area), evolution could lead to optimization and 
essentially could be applied to complex problem 
solving. These optimization models could provide a 
social foraging environment where groups of 
parameters communicate cooperatively for finding 
solutions to engineering problems.  

Section 2 gives a brief literature overview of the 
area of bacterial foraging followed by the proposed 
approach based on BA (Bacterial Foraging) and GA 
(Genetic Algorithm). The proposed algorithm is 
validated using four test functions in Section 3 and the 
algorithm is illustrated for PID controller tuning in 
Section 4. Some conclusions are provided at the end. 

 
2. HYBRID SYSTEM CONSISTING OF 

GENETIC ALGORITHM AND BACTERIA 
FORAGING  

 
2.1. Genetic algorithms 

In nature, evolution is mostly determined by natural 
selection or different individuals competing for 
resources in the environment. Superior individuals are 
more likely to survive and propagate their genetic 
material. The encoding for genetic information 
(genome) is done in a way that admits asexual 
reproduction which results in offspring that are 
genetically identical to the parent. Sexual reproduc-
tion allows some exchange and re-ordering of 
chromosomes, producing offspring that contain a 
combination of information from each parent. This is 
the recombination operation, which is often referred to 
as crossover because of the way strands of 
chromosomes cross over during the exchange. The 
diversity in the population is achieved by mutation. 
Genetic algorithms are ubiquitous nowadays, having 
been successfully applied to numerous problems from 
different domains, including optimization, automatic 
programming, machine learning, operations research, 
bioinformatics, and social systems [20]. A population 
of candidate solutions (for the optimization task to be 
solved) is initialized. New solutions are created by 
applying reproduction operators (mutation and/or 
crossover). The fitness (how good the solutions are) of 
the resulting solutions are evaluated and suitable 
selection strategy is then applied to determine which 
solutions will be maintained into the next generation. 
The procedure is then iterated.  

 
2.2. Bacteria foraging algorithm 

Search and optimal foraging decision-making of 
animals can be used for solving engineering problems. 
To perform social foraging an animal needs 
communication capabilities and it gains advantages 
that can exploit essentially the sensing capabilities of 
the group, so that the group can gang-up on larger 
prey, individuals can obtain protection from predators 
while in a group, and in a certain sense the group can 
forage a type of collective intelligence.  

 
2.2.1 Over view of chemotactic behavior of E. coli.  

This paper considers the foraging behavior of E. 
coli, which is a common type of bacteria [18,19]. Its 
behavior and movement comes from a set of six rigid 
spinning (100–200 r.p.s) flagella, each driven as a 
biological motor. An E. coli bacterium alternates 
through running and tumbling. Running speed is 10–
20 m / s,µ  but they are unable to swim straight. We 
modeled the chemotactic actions of the bacteria as 
follows:  

In a neutral medium, if it tumbles and runs in an 
alternating fashion, its action could be similar to 
search.  

If swimming up a nutrient gradient (or out of 
noxious substances), or swimming for a longer period 
of time (climb up nutrient gradient or down noxious 
gradient), its behavior seeks increasingly favorable 
environments.  

If swimming down a nutrient gradient (or up 
noxious substance gradient), then the search action is 
avoiding unfavorable environments. 

Subsequently, it can climb up nutrient hills and at 
the same time avoid noxious substances. The sensors 
it needs for optimal resolution are receptor proteins 
that are very sensitive and possess high gain. That is, a 
small change in the concentration of nutrients can 
cause a significant change in behavior. This is 
probably the best-understood sensory and decision-
making system in biology.  

Mutations in E. coli affect the reproductive 
efficiency at different temperatures, and occur at a rate 
of about 10-7 per gene per generation. E. coli 
occasionally engages in a conjugation that affects the 
characteristics of a population of bacteria. There are 
many types of taxis that are used in bacteria such as, 
aerotaxis (attracted to oxygen), phototaxis (light), 
thermotaxis (temperature), magnetotaxis (magnetic 
lines of flux) and some bacteria can change their 
shape and number of flagella based on the medium to 
reconfigure in order to ensure efficient foraging in a 
variety of media. Bacteria can form intricate stable 
spatio-temporal patterns in certain semisolid nutrient 
substances and they can radially eat their way through 
a medium if placed together initially at its center. 
Moreover, under certain conditions, they will secrete 
cell-to-cell attractant signals in order to group and 
protect each other. 
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2.2.2 Optimization function for the Hybrid GA-BF 
algorithm 

The main goal of the Hybrid GA-BF based algorithm 
is to apply and find the minimum of ( ), ,nP Rφ φ ∈  
not in the gradient ( ).P φ∇  Here, when φ  is the 
position of a bacterium, ( )P φ  is an attractant-
repellant profile. That is, where nutrients and noxious 
substances are located, P < 0, P = 0, P > 0 represent 
the presence of nutrients. A neutral medium, and the 
presence of noxious substances, respectively can be 
defined by 

( , , ) { ( , , ) 1,2,..., }.xH j k l j k l x Nφ= =  (1) 

(1) represents the position of each member in the 
population of the N bacteria at the jth chemotactic step, 
kth reproduction step, and lth elimination-dispersal 
event. Let P(x, j, k, l) denote the cost at the location of 
the ith bacterium ( , , ) ,x ni j k Rφ ∈  and  

( 1, , ) ( , , ) (( ) ( ),x xi j k i j k C x iφ φ ϕ= + = +  (2) 

so that C(x)>0 is the size of the step taken in the 
random direction specified by the tumble. If at 

( 1, , )x i j kφ +  the cost P(x, j+1, k, l) is lower than at 

( , , ),x i j kφ  then another chemotactic step of size C(x) 
in this same direction will be taken and repeated up to 
a maximum number of steps Ns. Ns is the length of 
the lifetime of the bacteria measured by the number of 
chemotactic steps. Function ( ),i

cP φ  i=1, 2, ... , S, to 
model the cell-to-cell signaling via an attractant and a 
repellant is represented by [17-19,21] 

1
( )

N
i

c cc
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=

=∑                           (3) 
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where 1,...,[ ]Tpφ φ φ=  is a point on the optimization 
domain, Lattract is the depth of the attractant released 
by the cell and attractδ  is a measure of the width of 
the attractant signal. repellant attractK L= is the height 

of the repellant effect magnitude, and attractδ  is a 
measure of the width of the repellant. The expression 
of ( )cP φ  means that its value does not depend on the 
nutrient concentration at position .φ  That is, a 
bacterium with high nutrient concentration secretes 
stronger attractant than one with low nutrient 

concentration. The model uses the function ( )arP φ  
to represent the environment-dependent cell-to-cell 
signaling as 

( )( ) ( )( ) exp ,ar cP T P Pφ φ φ= −   (3a) 

where T is a tunable parameter. By considering 
minimization of P(i, j, k, l )+ ( )( ), , ,i

arP j k lφ  the 

cells try to find nutrients, avoid noxious substances, 
and at the same time try to move toward other cells, 
but not too close to them. The function 

( )( ), ,i
arP j k lφ  implies that, with M being constant, 

the smaller the ( ) ,P φ  the larger the Par(φ ) and thus 
the stronger attraction, which is intuitively reasonable. 
In tuning the parameter M, it is normally found that, 
when M is very large, Par (φ ) is much larger than 
( ) ,J φ  and thus the profile of the search space is 

dominated by the chemical attractant secreted by E. 
coli.  

On the other hand, if T is very small, then Par (φ ) 
is much smaller than ( ) ,P φ  and it is the effect of the 
nutrients that dominates. In Par (φ ), the scaling factor 
of Pc (φ ) is given as in exponential form.  

The algorithm to search optimal values of 
parameters is described as follows: 

Step 1: Initialize parameters n, N, NC, NS, Nre, Ned, 
Ped, C(i)( i=1,2,…,N), ,iφ  

where 
n: Dimension of the search space 
N: The number of bacteria in the population 
NC: chemotactic steps 
Nre: The number of reproduction steps 
Ned: the number of elimination-dispersal events 
Ped: elimination-dispersal with probability  
C(i): the size of the step taken in the random 

direction specified by the tumble.  
Step 2: Elimination-dispersal loop: l=l+1  
Step 3: Reproduction loop: k=k+1 
Step 4: Chemotaxis loop: j=j+1 
substep a: For i =1,2,…,N, take a chemotactic step 

for bacterium i as follows.  
substep b: Compute fitness function, ITSE (i ,j, k, l). 
substep c: Let ITSElast=ITSE (i,j,k,l) to save this 

value since we may find a better cost via a run. 
substep d: Tumble: generate a random vector ∆(i) 

nR∈  with each element ( ), 1,2,..., ,m i m p∆ =  a 
random number on [-1, 1]. 

substep e: Move: Let 

( )( 1, , ) ( , , ) ( ) .
( ) ( )

x x
T

ii j k i j k C i
i i

φ φ ∆
+ = +

∆ ∆
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This results in a step of size ( )C i  in the direction 
of the tumble for bacterium i. 

substep f: Compute ITSE ( , 1, , ).i j k l+  
substep g: Swim 

i) Let m=0 (counter for swim length). 
ii) While m< sN  (if not climbed down too long). 
• Let m=m+1. 
• If ITSE ( , 1, , )i j k l+ < ITSElast(if doing better), let 

ITSElast=ITSE ( , 1, , )i j k l+  and let 

( )( 1, , ) ( 1, , ) ( )
( ) ( )

x x
T

ii j k i j k C i
i i

φ φ ∆
+ = + +

∆ ∆
 

and use this ( 1, , )x i j kφ +  to compute the new 
ITSE ( , 1, , )i j k l+ as we did in substep f. 
• Else, let m= .sN  This is the end of the while 

statement.  
substep h: Go to next bacterium (i, 1) if i N≠ (i.e., 

go to substep b to process the next bacterium). 
Step 5: If ,Cj N<  go to step 3. In this case, 

continue chemotaxis, since the life of the bacteria is 
not over. 

Step 6: Reproduction: 
substep a: For the given k and l, and for each 
1,2,..., ,i N=  let 

1

1
( , , , )

cN
i
health

j
ITSE ITSE i j k l

+

=
= ∑

 

be the health of bacterium i  (a measure of how 
many nutrients it got over its lifetime and how 
successful it was at avoiding noxious substances). 
Sort bacteria and chemotactic parameters ( )C i  in 
order of ascending cost healthITSE (higher cost means 
lower health). 

substep b: The rS  bacteria with the highest 

healthITSE  values die and the other rS  bacteria with 
the best values split (this process is performed by the 
copies that are at the same location as their parent). 

Step 7: If ,rek N<  go to step 3. In this case, we 
have not reached the number of specified reproduction 
steps, so we start the next generation in the 
chemotactic loop. 

Step 8: Elimination-dispersal: For 1,2..., ,i N=  
with probability ,edP  eliminate and disperse each 
bacterium, and this results in maintaining the number 
of bacteria in the population constant. 

To do this, if a bacterium is eliminated, simply 
disperse one to a random location on the optimization 
domain. If ,edl N<  then go to step 2 otherwise end. 

3. SIMULATION USING TEST FUNCTIONS 
 
This section illustrates some comparisons between 

the proposed GA-BF (Genetic Algorithms-Bacteria 
Foraging algorithm) and the conventional SGA 
(Simple Genetic Algorithm) using some test functions. 

 
3.1. Mutation operation in GA-BF 

Dynamic mutation [22] is used in the proposed GA-
BF algorithm 

( )

( )

( , ), 0

( , ), 1,

U
j jj

j L
j j j

x k x x
x

x k x x

τ

τ

 + ∆ − == 
− ∆ − =

  (4) 

where random constant, τ  becomes 0 or 1 and 
( , )k y∆  is given as  

( , ) (1 ) .Akk y y
z

η∆ = ⋅ ⋅ −    (5) 

Here, η  has 0 or 1 randomly and z is the maximum 
number of generations as defined by the user.  

 
3.2. Crossover operation in GA-BF 

A modified simple crossover [22] is employed for 
the BF-GA algorithm using 

 
(1 ) ,

(1 ) ,

u v u
j j j
v u v
j j j

x x x

x x x

λ λ

λ λ

= + −

= + −
   (6) 

 

where ,u
jx  v

jx  refers to the parent’s generations, 

,u
jx  v

jx  refers to the offspring’s generations, j is the 
chromosome of j th and λ  is the multiplier.  

 
3.3. Performance variation for different step sizes 

Step size here refers to the moving distance per step 
of the bacteria. For performance comparison test 
function F1 is used 

3
2

1 1 2 3
1

( ) , 5.12 , , 5.11.i
i

F x x x x x
=

= − ≤ ≤∑  (7) 

 

 
Fig. 1. Contour of test function F1. 
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Fig. 2(a) and (b) and Table 1 illustrate the 
performance of the GA-BF algorithm for the 300 
generations. As evident from the results for bigger 
step size, the convergence is faster. Table 1 illustrates 
parameters of variables obtained by the step size of 
Fig. 5(a). 

 
3.4. Performance for different chemotactic steps of 

GA-BF 
Fig. 3 and Table 2 illustrate the relationship between 
objective function and the number of generations for 
different chemotactic steps. When the chemotactic 
step is smaller, the objective function converges faster.  

3.5. Performance for different life time N 
Fig. 4(a) and (b) illustrate the characteristics 

between objective function and the number of 
generations for different life time N of bacteria. Table 
3 depicts some empirical results for a few more test 
functions showing the initial condition’s variation of 
objective values, parameter values, chemotactic steps, 
total number of chemotactic reaction of bacteria, step 
sizes, basic unit for movement of bacteria, the number 
of critical reaction (N), the number of bacteria (S), 
generations (G), mutation (Mu), and crossover (Cr). 

 
3.6. Performance of GA-BF for test functions  
3.6.1 Test function: F1 

Fig. 5(a) and (c) show the performance comparison 
of GA and GA-BF with stepsize=1×10-5 for 
generations 70, 300. As evident from Fig. 5(a) and (c) 
the hybrid GA-BF approach could search the optimal 
solutions earlier (10 generations) compared to GA. 
Fig. 5(b) reveals that the GA-BF could converge 
faster than GA during the final few iterations. 

Fig. 5(d) depicts how the parameters are optimized 
during the 27-300 generations by the characteristics of 
GA and GA-BF with different step size (stepsize 
=1×10-5). Table 4 depicts the final parameter values 
obtained using GA and GA-BF algorithms. Fig. 5(e) 
represents the characteristic of optimal approach of 
variables on different 100 generations. 
 
3.6.2 Test function: F2 

 
(a) 

 
(b) 

 

Fig. 2. (a) Performance value for the three different 
step sizes for the first 50 generations. (b) 
Performance value for the three different step 
sizes for generations 270-300. 

 
Table 1. Parameter values for various step sizes. 

Step 
size x1 x2 x3 

Optimal 
objective 
function 

Average
objective
function

1.0e-6 3.87E-13 6.60E-13 2.92E-07 -5.43E-07 -8.98E-08

1.0e-7 2.85E-14 2.34E-13 -5.52E-08 1.50E-07 -5.45E-08

1.0e-8 5.01E-16 1.43E-15 -1.70E-08 -1.44E-08 -2.31E-09

 

 
Fig. 3. Performance value for different chemotactic 

step for generations 270-300. 
 
Table 2. Variation of objective function for different 

chemotactic steps. 

Chemo.
Step x1 x2 x3 

Optimal 
objective
function 

Average
objective
function

100 -9.32E-08 3.78E-07 -8.57E-09 1.52E-13 1.59E-13
500 2.97E-08 1.92E-08 2.32E-08 1.79E-15 3.26E-15

1000 -1.70E-08-1.44E-08 -2.31E-09 5.01E-16 1.43E-15
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Function ( ) ( )
2 22

2 1 2 1( ) 100 1F x x x x= − + −  is used 

to illustrate the performance of GA and GA-FA. Fig. 
6(a) illustrates the contour of this function at 

[ ]1 1 .Tx =  Fig. 6(b) represents the performance 
characteristics of the conventional GA and the GA-BF 
algorithm. 

From these figures, it is evident that the proposed 
GA-BF algorithm converges to the optimal solution 
much faster than the conventional GA approach. Table 
5 illustrates the various empirical results obtained 
using GA and GA-BF approaches. 

 
3.6.3 Test function: F3 

Function 
5

3
1
[ ]i

i
F x

=
=∑  is applied to compare the 

performance of GA and GA-BF. This function has 
minimum -30 at 

 
[ ]5.12, 5.12, 5.12, 5.12, 5.12, .x = − − − − −  

 
Fig. 7(a) illustrates the contour map for this function. 
Fig. 7(b)-(d) represent the various results obtained on 
the test function f3 and Table 6 is for the values of 
variables.  
 
3.6.4 Test function: F4 

Function 
30

4
4

1
(0, 1)i

i
F ix N

=
= +∑ is used to compare 

the conventional GA and the proposed system GA-BF. 
Fig. 8(a) illustrates the contour map of this function. 
Fig. 8(b)-(c), depict the performance by the GA and 
GA-BF method on different generation. Fig. 8(b), (c) 
illustrate that the proposed method converges faster 
than the conventional GA. 

 
4. INTELLIGENT TUNING OF PID 
CONTROLLER FOR AUTOMATIC 

VOLTAGE REGULATOR (AVR) USING GA-
BF APPROACH 

 
The transfer function of the PID controller in the 

AVR system is given by  

( ) ,i
p d

k
PID s k k s

s
= + +    (8) 

 
(a) 

 
(b) 

Fig. 4. (a) Performance value for different lifetime N
for the first 70 generations. (b) Performance 
value for different lifetime N for generations 
270-300. 

 

 

Table 3. Initial conditions of test function and variation of different parameters. 
Range Genetic Algorithm Parameters Bacteria Foraging Parameters

Test function ( )L
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Table 4. Performance of GA and GA-BF function F1. 

Method x1 x2 x3 
Optimal 
objective 
function 

Average
objective
function

GA 7.22E-08 5.07E-08 -9.43E-09 7.87E-15 8.03E-15
GA-BF -1.70E-08 -1.44E-08 -2.31E-09 5.01E-16 1.43E-15

Table 5. GA and GA-BF performance for function F2. 

Method x1 x2 
Optimal 
objective 
function 

Average 
objective 
function 

GA 0.001967 0.001967 1.0443267 1.0907699
BF-GA 5.12E-09 5.17E-09 0.9999285 0.9998567

    
   (a)         (b) 

    
   (c)         (d) 

 

 
(e) 

 

Fig. 5. (a) Convergence of GA and GA-BF for stepsize=1×10-5 during the first 70 generations. (b) Tuning of 
parameters during 70 generations. (c) Convergence of GA and GA-BF for stepsize=1×10-5 during 300 
generations. (d) Performance of GA and GA-BF for stepsize=1×10-5 during generations 270-300. (e) 
Tuning of parameters for stepsize=1×10-5 during 100 generations. 
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(a) 

 
(b) 

 

Fig. 6. (a) Contour of test function (F2). (b) Perfor-
mance of GA and GA-BF during the first 70 
generations on test function F2. 

 

and the block diagram of the AVR system is shown in 
Fig. 9. The performance index of the control response 
is defined by  
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( )1 1 / max( ) ,re t tβα −= − ⋅ −  

, , :p i dk k k  Parameter of PID controller, 
:β  Weighting factor, 

:Mo  Overshoot, 
:st  Settling time (2%), 

:ess  Steady-state error, 
:t  Desired settling time. 

 

 
(a) 

 
(c) 

 

Fig. 7. (a) Contour map of test function F3. (b) Performance of GA and GA-BF during the first 180 generations on 
test function F3. (c) Performance of GA and GA-BF during the first 70 generations on test function F3. (d) 
Tuning of parameters during 160 generations on test function F3. 
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In (9), if the weighting factor ,β  increases, rising 
time of response curve is small, and when β  
decreases, rising time is big. Performance criterion is 
defined as Mo = 5061%, ess = 0.0909, tr = 0.2693(s), ts 

= 6.9834(s). Initial values of PID Controller and the 
GA-BF algorithm are depicted in Table 8 and Table 9, 

respectively. For comparison purposes, we also used a 
Particle Swarm Optimization (PSO) approach and a 
Hybrid GA - PSO approach [22-29].  

The Particle Swarm Optimization (PSO) algorithm 
is mainly inspired by social behavior patterns of 
organisms that live and interact within large groups 
[25]. The standard PSO model consists of a swarm of 
particles, which are initialized with a population of 
random candidate solutions. They move iteratively 
through the d-dimension problem space to search the 
new solutions, where the fitness, f, can be calculated 
as certain qualities are measured. Each particle has a 
position represented by a position-vector ix (i is the 
index of the particle), and a velocity represented by a 
velocity-vector .iv  Each particle remembers its own 

best position so far in a vector ,#
ix  and the j-th 

Table 6. Performance of GA and GA-BF for test function F3. 
Method x1 x2 x3 x4 x5 Optimal objective function Average objective function

GA -5.024811 -5.015523 -5.059941 -5.03529 -5.03527 -30 -29.4 
BF-GA -5.111186 -5.097807 -5.089435 -5.06529 -5.06891 -30 -29.95 

 

 
(a) 

 
(c) 

(b) 

(d) 

Fig. 8. (a) Contour map of test function F4. (b) Performance of GA and GA-BF during the first 50 generations on 
test function F4. (c) Performance of GA and GA-BF during generations 250-300 on test function. (d) 
Tuning of parameters during 300 generations on test function F4.  
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Fig. 9. Block diagram of an AVR system. 
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dimensional value of the vector #
ix  is .#

i, jx  The best 
position-vector among the swarm so far is then stored 
in a vector *,x  and the j-th dimensional value of the 
vector *x  is *.jx  During the iteration time t, the 
update of the velocity from the previous velocity to 
the new velocity is determined and then the new 
position is determined by the sum of the previous 
position and the new velocity. The conventional PSO 
algorithm was used for controlling the mutation 
process of the genetic algorithm (GA), as an attempt 
to improve the GA learning efficiency. The 
architecture and flow chart of the proposed method 
are given in [26]. Euclidean distance is used for 
selecting crossover parents (in the hybrid GA-PSO 
approach) to avoid local optima and to obtain fast 
solutions. 

Fig. 10 illustrates the response of terminal voltage 
to a step input in the control system. Figs. 11-14 
represent results obtained by the GA and GA-BF 
algorithm for the variation of β  for 200 generations 
as per (9). Empirical results show satisfactory learning. 
Figs. 15-17 illustrate the search process for optimal 
parameters for the variation of β (=0.5, 1.0, and 1.5) 

by GA-BF approach. Table 10 depicts the best 
solution using BF-GA controller for different β  
values and Table 11 illustrates a performance 
comparison of the values evaluated using different 
methods ( β =1.5, 200 generations). 

Table 8. Range of PID parameters. 
Range PID parameters Min Max 

kp 0 1.5 
ki 0 1 
kd 0 1 

 
Table 9. Parameters of BF-GA algorithm. 

parameters Values 
Stepsize 0.08 

Ns 4 
Pc 0.9 
Pm 0.65 

  

 
Fig. 10. Step response of terminal voltage in an AVR 

system without controller. 
 

 

Fig. 11. Terminal voltage step response of an AVR 
system using BF-GA algorithm. 

 

 

Fig. 12. Terminal voltage step response of an AVR 
system with different controllers ( 0.5,β =
generations=200). 

 

 

Fig. 13. Terminal voltage step response of an AVR 
system with different controllers ( 1.0,β =
generations=200). 
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5. CONCLUSIONS 
 
Recently, many variants of genetic algorithms for 

improving the learning related to control engineering 
have been investigated. The general problem of 

evolutionary algorithm based engineering system 
design has been tackled in various ways mainly from 
a convergence perspective and finding local or 
suboptimal solutions. The GA  has also been used to 
optimize nonlinear system strategies. Among some 

 

Fig. 14. Terminal voltage step response of an AVR 
system with different controllers ( 1.5,β =
generations=200). 

 

 

Fig. 15. Search process for optimal parameter values 
of an AVR system by the GA-BF method for

0.5.β =  

 

Fig. 16. Search process for optimal parameter values 
of an AVR system by GA-BF method for

1.0.β =  
 

 

Fig. 17. Search process for optimal parameter values 
of an AVR system by GA-BF method for

1.5.β =  

 
Table 10. Best solution obtained using BF-GA controller with different β  values. 

β  Number of 
generation pk  ik  dk  Mo (%) ess  st  rt  Evaluati

on value
0.5 200 0.68233 0.6138 0.26782 1.94 0.0171 0.3770 0.2522 0.3614 
1 200 0.68002 0.52212 0.24401 1.97 0.0067 0.4010 0.2684 0.1487 

1.5 200 0.67278 0.47869 0.22987 1.97 0.0014 0.4180 0.2795 0.07562
 

Table 11. Comparison of the objective value using different methods ( β =1.5, generation=200). 

β  Methods pk  ik  dk  Mo (%) ess  st  rt  Evaluati
on value

GA 0.8282 0.7143 0.3010 6.7122 0.0112 0.5950 0.2156 0.0135 
PSO 0.6445 0.5043 0.2348 0.8399 0.0084 0.4300 0.2827 0.0073 

GA-PSO 0.6794 0.6167 0.2681 1.8540 0.0178 0.8000 0.2526 0.0071 1.5 

BF-GA 0.6728 0.4787 0.2299 1.97 0.0014 0.4180 0.2795 0.0756 
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other methods, a large amount of research is focused 
on the design of fuzzy controllers using evolutionary 
algorithm approaches. The GA could be used for 
developing the knowledge base in the form of 
linguistic rules and the fine tuning of fuzzy 
membership functions, fuzzy operators, etc. In all 
these situations, there could be problems with local 
optimization or suboptimal solutions. 

This paper proposed a novel hybrid approach 
consisting of GA (Genetic Algorithm) and BF 
(Bacterial Foraging) and the performance is illustrated 
using various test functions. Also, the proposed GA-
BF algorithm is used for tuning a PID controller of the 
AVR system. From Figs. 2-8 of test functions 

1 4 ,F F−  the suggested hybrid system GA-BF has the 
better performance obtaining the optimal parameter 
simultaneously. We applied the suggested hybrid 
system GA-BF to the AVR system of Fig. 9, and the 
resulting Figs. 11-14 show the comparison of the 
performance obtained by each approach. 

The proposed approach has the potential to be 
useful in other practical optimization problems (e.g., 
engineering design, online distributed optimization in 
distributed computing and cooperative control) as 
social foraging models work very well for distributed 
non-gradient optimization methods. Other species of 
bacteria or biological based computing approaches 
could be studied but it depends on how practically 
useful these optimization algorithms are for 
engineering optimization problems, because they 
depend on the theoretical properties of the algorithm, 
theoretical and empirical comparisons to other 
methods, and extensive evaluation on many 
benchmark problems and real-world problems. 
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