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Abstract:    In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. 
The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the 
olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with dis-
tributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and 
malignant classes is used to demonstrate the capacity of the model to learn and recognize patterns, even when these 
are deformed versions of the originally learned patterns. The performance of the novel model was compared with three 
artificial neural networks (ANNs), a back-propagation network, a support vector machine classifier, and a radial basis 
function classifier. All the ANNs and the olfactory bionic model were tested in a benchmark study of a standard dataset. 
Experimental results show that the bionic olfactory system model can learn and classify patterns based on a small 
training set and a few learning trials to reflect biological intelligence to some extent. 
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1  Introduction 
 

Human beings have always tried to understand 
the world and themselves. Through the senses, touch, 
sight, hearing, smell, and taste, animals and particu-
larly humans obtain information about the environ-
ment, which is used to make models of the world and 
cope with it in an efficient way. Scientifically, we can 
study the different pathways and neural substrate, the 
structure and dynamics of different sensory systems, 
in order to understand how the sensory information is 
processed by our brains.  

One of the oldest sensory systems is the olfac-

tory system, which is relatively simple and compara-
tively well known functionally and morphologically, 
and is thus an interesting system for understanding the 
process of recognition, classification, learning and 
recall. Many different aspects of olfaction, such as the 
nature of the stimuli or the mechanisms of reception 
and central processing, have been studied and mod-
eled fairly extensively (Freeman, 1975; Shepherd, 
1979; Freeman and Skarda, 1985; Wilson and Bower, 
1992; Liljenström and Hasselmo, 1995; Aronsson and 
Liljenström, 2001; Haberly, 2001). However, it re-
mains unclear how the olfactory information is re-
called by the brain. 

Mammalian odor information is processed by 
three main parts: the olfactory epithelium, the olfactory 
bulb and the olfactory cortex. The odorous molecules 
are detected by the odor receptors (ORs) and trans-
duced into neural activation. The ORs send their axons 
to small structures called glomeruli within the olfac-
tory bulb. Also, the ORs, that express common odor 
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information, converge onto one or two common 
glomeruli (Mombaerts et al., 1996; Jefferis et al., 
2001). 

Mitral cells in the olfactory bulb form synapses 
with the axons within glomeruli and send the odor 
information to the olfactory primary cortex. Mitral 
cells also project to granular cells inside the bulb and 
these receive inhibition and excitation of the mitral 
cells through pathways from centrifugal fibers and the 
olfactory cortex. When the spatiotemporal represen-
tation of an odor enters the cortex, the odor is normally 
identified and recalled, if it has been learned before.  

Even though the olfactory neurodynamics is 
fairly well known, the final odor recognition process 
is still unclear. As one of the oldest sensory modalities 
in the sensory systems of mammals, olfactory nervous 
systems have attracted many researchers during the 
last decades. Some models have been developed to 
simulate the function of olfactory nervous systems 
(Freeman, 1987; Freeman and Barrie, 1994; Kay et al., 
1995). They are useful in understanding the signal 
processing mechanism of olfactory systems. There-
fore many mathematical models of olfactory systems 
have been applied to pattern recognition, often with 
remarkable results, which help to understand the ol-
factory information processing (Liljenström and Wu, 
1995; Kozma et al., 2003; Gonzalez et al., 2007; Li G. 
et al., 2007; Li X. et al., 2006; Ma and Krings, 2009; 
Wu et al., 2009).  

In this paper, a mathematical bionic model of the 
mammalian olfactory system is presented and its 
capacity for pattern recognition is tested. The full 
model is constructed from a bulbar model [originally 
developed by Li and Hopfield (1989)] which emu-
lates the excitatory mitral and inhibitory granule cells, 
and from a three-layered cortical model, which 
mimics the structure and behavior of the piriform 
cortex [originally developed by Liljenström (1991)]. 
The main objective with this mathematical model is to 
mimic the principal features of the olfactory system, 
relating to the ability to learn and recognize input 
patterns, even when these are fragmented or distorted 
versions of the original patterns. In order to test the 
model capacity in classification task, a standard data 
set was used. The Breast Cancer Wisconsin (BCW) 
dataset from the University of California, Irvine (UCI) 
repository has been studied by other researchers in the 
last decades, making the results easy to compare and 

reproduce (Taha and Ghosh, 1997; Brunzell and 
Eriksson, 2000). In the following sections a descrip-
tion of the model and simulation results for the cancer 
data classification are shown. 

 
 

2  Model description 
 

Our modelling approach balances between the 
wish for realism when comparing theoretical and 
computational results with experiment, and the need 
for abstraction and simplification of the biological 
complexity for a mathematical analysis and computer 
simulation, in order to gain understanding of the 
complex structure and dynamics of the biological 
system. 

The bionic model is based on the olfactory sys-
tem and it emulates the main structural features of the 
system in order to create a pattern classifier. Fig. 1 
shows the two main parts of the bionic model and 
how they are connected via feedforward and feedback  
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Fig. 1  The structure of our bionic model. For the bulb 
model during the active stage the sensory input (a) is 
modulated by excitatory mitral cells (M) and inhibitory 
granule cells (G). Olfactory information (b) passes from 
the olfactory bulb directly into top (Layer I) and middle 
(Layer II) layers on the cortex model via the lateral 
olfactory track (LOT). Feedback information (c) is sent 
up from middle cortical layer to bulbar granule nodes 
via medial olfactory track (MOT). The bionic model 
output (d) is taken from the cortical middle layer 
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channels. In order to give a detailed description of the 
bionic model, its main parts are named: bulb model 
and cortex model, but this does not mean that the 
model is an exact representation of the olfactory 
system. 

2.1  Network architecture 

In our bionic model the channel numbers of the 
lateral and medial olfactory tracks are equal, based on 
the bidirectional characteristics of the mammalian 
neural systems. The output of the olfactory bulb 
model is transmitted to the olfactory cortex model 
through feedforward channel connections via the 
lateral olfactory tract (LOT) and the feedback trans-
mission from the cortex to glomerulus’ ensembles in 
the bulb is sent via the medial olfactory track (MOT). 

2.1.1  Bulb model 

In the bulb model, based on previous works (Li 
and Hopfield, 1989; Li, 1990), we included N exci-
tatory mitral cells and M inhibitory granule cells, with 
receptor inputs connecting directly onto the mitral 
cells. We disregarded the glomerular layer structure 
in this model. The “spherical” structure of the bulb is 
simplified by placing the cells in a one-dimensional 
ring with altogether 400 cells of each type, i.e., 
N=M=400. 

Each cell is specified by an index, for example, 
the ith mitral cell and the jth granule cell for all i, j 
which represent the spatial locations of the cells. The 
ith mitral cell is the neighbor of the (i±1)th mitral cell 
and the (i×M/N)th granule cell. Due to the circular 
structure of the model, the 1st and the mth (gth) mitral 
(granule) cells are situated next to each other. 

The synaptic connection from granule to mitral 
cells is represented by an N×M matrix H0, and the 
synaptic connection from mitral to granule cells is 
represented by an M×N matrix W0. For example, H0ij 
is the connection strength from the jth granule cell to 
the ith mitral cell. Because we only assume local 
synaptic connections, H0ij≠0 only if the jth granule 
cell and the ith mitral cell are close to each other, 
implying a near diagonal matrix for H0 with most 
non-zero elements near the diagonal, and similarly for 
W0. The two matrices, H0 and W0, have the same 
dimensions (400×400), as well as the same distribu-
tion, in our computer simulations. 

The ring geometry of our bulb model implies 

that most of the non-zero elements are close to the 
matrix diagonal and corners, and we use the same 
distribution of the non-zero elements in W0 and H0. 
After creating the two matrices they are reduced to 
20% (H0=H0/5 and W0=W0/5). Conversely, an N×N 
matrix Z0 is used to describe intralayer connection 
inside the mitral layer. Thus in the beginning, all 
mitral nodes have the same strength level of inter-
connection, but during the learning process these are 
increased (strengthened) or reduced (restricted). 

2.1.2  Cortex model 

The piriform cortex has a laminar structure that 
can be subdivided into three layers, consisting of cell 
bodies and connection fibers of various types. In our 
cortex model based on the model by Liljenström 
(1991), three populations of network nodes, excita-
tory nodes corresponding to pyramidal cells and two 
kinds of inhibitory nodes corresponding to interneu-
rons are likewise organized into three layers. The 
most superficial layer of the cortex, Layer I, contains 
inhibitory interneurons and afferent fibers from the 
olfactory bulb, making excitatory connections with 
these nodes. 

The interneurons in Layer I are usually referred 
to as feedforward inhibitory cells (Shepherd, 1979; 
Wilson and Bower, 1989), although they also likely to 
receive feedback connections from nearby pyramidal 
cells (Hasselmo et al., 1990) from Layer II. Cell bod-
ies of excitatory pyramidal cells are the main con-
stituents of the middle layer, Layer II. The deepest 
layer of the olfactory cortex contains both pyramidal 
cells and interneurons, but to simplify the cortical 
model, only feedback inhibitory nodes are included 
on Layer III.  

Pyramidal cells make excitatory connections 
with interneurons in Layer I and Layer III. These 
neurons or ensemble of neurons make feedforward 
and feedback inhibitory connections with the py-
ramidal cells of Layer II (Fig. 2a), respectively.  

In the cortical model there are NI feedforward 
inhibitory nodes in the upper cortical layer, NII exci-
tatory nodes in the middle cortical layer, and NIII 
feedback inhibitory nodes in the bottom cortical layer, 
with Nlayer=NI=NII=NIII and NC=3×Nlayer. In our 
simulations Nlayer=400 nodes (for 20×20 layer di-
mensions) and NC=1200 nodes. There are interlayer 
connections between Layer I and Layer II and  
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between Layer II and Layer III. Intralayer connec-
tions exist only within Layer II, where an extensive 
association fiber system connects excitatory nodes 
with each other, both towards the back of the network, 
caudally, and towards the front, rostrally (Fig. 2b). 
The fibers spread out radially from the originating 
cells. Inhibitory-inhibitory connections may exist in 
the real cortex but have been excluded in this work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The synaptic strength between any two nodes j 

and i is given by a connection weight wij. In order to 
model a presumed decrease in a cell’s influence with 
distance, the connection strength is attenuated expo-
nentially over distance. For excitatory-excitatory 
connections the strength asymptotically approaches a 
minimum value. Inhibitory nodes in the top layer only 
make local connections with excitatory nodes in 
middle layer within a 3-mm range, corresponding to 
25 adjacent nodes (Fig. 2c). Also the connection 
probabilities are included in the model expression of 
the connection weights wij: 
 

wij=pijcSexp[(−dij/λS+aS)(1+aS)−1],           (1) 

where pij is the probability that a connection is made 
between nodes i and j and cS is a constant determining 
the synaptic strength in the connections of type S 
between nodes in Layer II or between nodes in Layer 
II and in Layer I or III. dij is the radial distance, 
measured in millimeters, between nodes i and j (Fig. 
2d) and has to be lower than the maximum connection 
range (in our simulation dij≤3 mm). λS is a space con-
stant and aS is a value which determines the minimum 
connection strength that is approached asymptotically 
(aS≠0 only for excitatory-excitatory connections).  

For our simulation the wij equation is simplified to: 
 

Sexp( / ),

0,

  

                             
hk ij hk hk

ij
hk hk

CL d P T
w

P T
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≥⎪⎩

,          (2) 

 
where CLhk is a constant determining the synaptic 
strength in the connections between nodes in Layer II 
or between nodes in Layer II and in Layer I or III. Phk 
is the random value and Thk is the probability con-
nection threshold, below which the synaptic connec-
tion between node i in Layer h and node j in Layer k is 
made. 

Olfactory information reaches the olfactory 
cortex from the olfactory bulb via a bundle of nerves, 
LOT. These fibers spread out and make excitatory 
connections with feedforward inhibitory cells and 
pyramidal cells on Layer I and Layer II. The output of 
the bulb model is modelled in our work with NLOT= 
400 separated input connections. 

Connection weights and parameters used in the 
model are only loosely constrained by physiological 
data and are chosen freely in order to reach the best 
performance in the pattern classification tasks. 

2.2  Network dynamics 

2.2.1  Bulb model 

The olfactory bulb can be viewed as the first 
central olfactory relay station extracting specific 
stimulus features, a function characteristic of the 
primary sensory areas in the brain (Doty, 2003; Lowe, 
2003; de Araujo et al., 2005). The cellular structure of 
the bulb is well established and in this work, the ol-
factory bulb was modelled using a simple approxi-
mation of excitatory mitral and inhibitory granule 
cells. The activity of mitral cells was spatially dis-
tributed such that odorants were represented in the 
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Fig. 2  Architecture of the cortical model. (a) General 
principle for connections between excitatory nodes 
(open circles) and inhibitory nodes (filled circles). 
Dashed lines indicate that connection strength decrease 
with distance. The model is taken from Liljenström 
(1991); (b) Overall structure of the model olfactory 
cortex with intralayer and interlayer connections. The 
arrows represent the input from the bulb model. The 
model is taken from Liljenström (1991); (c) The exci-
tatory nodes in middle layer, which make connections 
with inhibitory nodes in upper or bottom layer; (d) 
Maximum range (dij,max) of 3 mm for inhibitory- 
excitatory connections 
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bulb model by a distributed pattern of mitral cell 
activity (Mori et al., 1999; Leon and Johnson, 2003). 
Mitral cells adjacent to each other project to the same 
or neighboring glomerulus. 

The dynamics of each neural ensemble is de-
scribed using a first order differential equation based 
on physiological experiments of the olfactory system 
(Freeman, 1975). The mitral and granule layers on the 
model are mathematically represented by ordinary 
differential equations (ODEs). 

For mitral layer: 
 

dmi/dt=−ami+Iw(t)+Iei(t)+r,                 (3) 

w 0 01 1
( ) [ ( )] [ ( )]N N

ij j i ij ij j j ijj j
I t H Q g t M Q m tδ δ

= =
= − + −∑ ∑ ; (4) 

 
For granule layer:  

 

0 c1
d / d [ ( )] ( ) .N

i i ij j j ij ij
g t bg W Q m t cI t rδ

=
= − + − + +∑  (5) 

 
In Eqs. (3)–(5): 

 
Qj(x)=Sxtanh[(x−Th)/Sx], 

if x≤Th, then Sx=10Sx; if x>Th, then Sx=7Sx.   (6) 
 
a, b and c represent rate constants. The external input 
to the mitral layer is symbolized by Ie and Ic repre-
sents the cortical feedback input to granule layer. mi(t) 
and gj(t) symbolize the dynamic state of the ith and jth 
neural ensemble in the mitral and granule layer, re-
spectively. The positive, negative or zero value of the 
connection strength, M0ij, H0ij, or W0ij, represents the 
weight connection into the mitral layer and between 
the mitral and granule layers from neural population j 
to i; therefore, these matrix values define the system 
topology. Q(x) is the asymmetric sigmoidal input/ 
output transformation function used for mitral and 
granule cells, which was derived from the Hodgkin- 
Huxley equations, Th is a threshold defining the 
sigmoid shape, and Sx represents the maximum as-
ymptote of the sigmoid function (Freeman, 1979; 
Freeman and Skarda, 1985). δ corresponds to the 
specific axonal transmission delay and r represents 
the noise or spontaneous neural activity. 

The input-output relations [Eq. (6)] for the mitral 
and granule cells, respectively, are experimentally 
derived by Freeman (1979) and plotted in Fig. 3, with 
the threshold Th=1. However, the exact form of these 

relations is not essential to the system behavior, as 
long as the shape is qualitatively preserved. Since 
granule cells do not have axons, they are modelled 
using a larger linear range, and thus a less strong 
nonlinear threshold effect, than mitral cells (Fig. 3). 
In our simulation Sx=0.14 for granule nodes and 
Sx=0.29 for mitral nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.2  Cortex model 

Basically the piriform cortex structures belong-
ing to allocortex are thinner and structurally less 
complex (having three cortical layers) than the neo-
cortex (Liljenström, 1991; Wilson and Bower, 1992; 
Kowianski et al., 1999; Johnson et al., 2000). The 
architecture of the cortical model was based on the 
three-layered structure of the olfactory piriform cor-
tex (Liljenström, 1991), using similar network con-
nectivity, but relatively simple model nodes, repre-
senting populations of neurons. 

The two sets of inhibitory nodes have two dif-
ferent time constants and slightly different connec-
tivity to the excitatory nodes. All connections were 
modelled with distance-dependent time delays for 
signal propagation, corresponding to the geometry 
and fiber characteristics of the real cortex. 

The dynamics of a network node is denoted by 
the mean membrane potential u and is given by a set 
of coupled nonlinear first-order differential delay 
equations: 
 

d / d / [ ( )] ( )N
i i i ij j j ij ij i
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≠

= − + − + +∑ , (7) 
 
where τ characterizes the spontaneous decay, wij is the 
connection weight and δ corresponds to the specific 
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Fig. 3  Non-linear input-output functions for mitral 
(solid line) and granule (dashed line) nodes, based on 
Freeman and Skarda (1985) 
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axonal transmission delay. The external input to the 
upper and middle cortical layers from the mitral layer 
is represented by I and r is noise or spontaneous 
neural activity. The input-output relationship of a 
neuron population in the piriform cortex, gj(uj), is a 
continuous sigmoid function determined by recording 
evoked potentials (Freeman, 1975): 
 

exp( ) 1
( ) 1 exp j

j j j
j

u
g u CQ

Q

⎧ ⎫⎡ ⎤− −⎪ ⎪= − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

,       (8) 

 
where the gain parameter Qj is assumed to correspond 
to the level of any particular neuromodulator, such as 
acetylcholine. C is a normalization constant (in our 
computer simulation C=0.05). In this case, neural 
adaptation was implemented as an exponential decay 
of the output proportional to the time average of pre-
vious output, and thus the input-output relationship 
becomes: 
 

{ }2
( )exp ( )j j j j j T

g g u g uα α⎡ ⎤= − ⎣ ⎦ ,         (9) 

 
where 

T
 denotes the time average over the last T 

ms, and α is an adaptation parameter (Liljenström and 
Hasselmo, 1995; Liljenström, 2003). 

2.3  Network learning 

While time constants, signal velocities, and other 
system parameters are determined by physiological 
constraints, the connection weights should be ad-
justed properly for the best performance of the model. 
The same kind of model behavior can be found within 
several parameter regimes, but when the choice of 
values is limited by biological constraints, the varia-
tion in connection strengths also becomes more  
restricted. 

For our bionic model, two learning processes are 
used: Hebbian associative learning and habituation. 
These learning processes exist in a subtle balance and 
their relative importance changes at various stages of 
the memory process. The memory basins and attrac-
tors are formed via Hebbian learning under rein-
forcement, while the impact of environment noise 
including the background inputs without any infor-
mation is reduced by habituation. The learning proc-
esses are applied to the bulb model and the cortex 

model. 
In the bionic model the learning rules are im-

plemented into the following formulae. The output 
of the bulb model is used to measure the activity at 
the mitral layer (M) and the middle layer, Layer II 
(L), of the cortical model is taken as the activity 
measure. Over a period the presentation of input 
patterns (here the period of the input presentation is 
200 ms), the mean standard deviation of the output 
of the ith node SDai is used to present the activity of 
the ith channel (Mi and Li for bulb and cortical 
models, respectively). 

 

a 1
1 / S

i kk
SD S SD

=
= ∑ .                 (10) 

 
The response output period is divided into S equal 
segments. Accordingly, SDk is the standard deviation 
of the kth segment, and SDai is the mean value of all 
these S segments. SDa is an (1×N) vector representing 
the activity of all nodes in the mitral or middle corti-
cal layer (in our computer simulation N=400). Thus 

aSD  is the mean activity over the period of the 
presentation of input patterns: 
 

a a1
1 / N

ii
N SD

=
= ∑SD .                 (11) 

 
According to modified Hebbian rule, each pair 

of M or L nodes co-activated by the stimulus has their 
lateral connections strengthened, where w(m)ij or 
w(L)ij represents the connection within mitral or cor-
tical middle layer respectively and w(m-m)ij or 
w(II-II)ij indicates the weights of the connections 
from Mi to Mj and from Mj to Mi or from Li to Lj and 
from Lj to Li. The nodes with activities larger than the 
mean on the layer are considered as activated ones 
and strengthened with the Hebbian coefficient (Hheb). 
In contrast those with activity less than the mean are 
not considered to be activated ones and these con-
nections are decreased by the Habituation coefficient 
(Hhab) and the simulation period (T). A bias coeffi-
cient K is defined in the modified Hebbian learning 
rule to avoid the weight space saturation (Wang et al., 
2005): 

 
Begin  

If ( )a a a a(1 ) ; (1 ) ;i jSD K SD K i j> + > + ≠SD SD  

w(m)ij=Hhebw(m)ij; 
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Else if ( )a a a a(1 ) ; (1 ) ;i jSD K SD K i j> + > + =SD SD  

w(m)ij=0; 
Else w(m)ij=Hhab^(Tw(m)ij). 

End 
 

The same procedure is used for the bulbar mitral 
layer and middle cortical layer. For the habituation 
learning, a decrease in excitatory output synapses oc-
curs continuously at each time of stimulus presentation 
for every node that receives input without reinforce-
ment. Unlike the Hebbian learning, the reduction is 
reversible and does not require pairwise activation. 

Several samples for each class are given during 
training. At the end of the training session the con-
nection weights are fixed for the classification test. 
The amplitude of N activity outputs taken from the 
middle layer of the cortical model is calculated and 
defined as a feature vector for every trial, as well as 
the mean activity of those trials belonging to the same 
class.  

The feature vector corresponds to a point in 
N-space. A cluster of points in N-space is formed by a 
set of training trials within the same stimulus class. 
The mean is defined as the gravity center of the 
cluster representing the class. The inputs of different 
classes form multiple clusters of feature vectors, each 
with its own gravity center. When a test pattern is 
given, its feature vector is calculated and the Euclid-
ean distances from the corresponding feature vector 
to those trained pattern cluster centers are calculated. 
The class of the pattern is determined by the mini-
mum distance to a center (Wang et al., 2005). 
 
 
3  Results 
 

In order to demonstrate the pattern classification 
performance of the bionic model, a standard test set, 
BCW, available from the UCI Machine Learning 
Data Repository (Wolberg, 1991) was selected. These 
data were gathered by William H. Wolberg from the 
University of Wisconsin Hospital, and each sample 
consists of nine different features of breast tumors 
with values ranging from 1 to 10. The cancer data 
were grouped into two classes, benign (444 samples) 
and malignant (239 samples) for a total of 683 com-
plete data. The main reason for choosing this specific 
dataset is that it is available for public download and 

it has been studied by other researchers, making the 
results easily comparable (Brunzell and Eriksson, 
2000). 

Nine feature channels were used as input into the 
mitral layer in the bulb model. The bottom layer of the 
cortical model provided inhibitory feedback to the 
middle excitatory layer, and the top layer sent feed-
back signals to the granule cells from the bulb model. 
Cortical model output was taken from the middle 
layer, and was classified using a Euclidean distance 
algorithm. After the training process, the centers of 
gravity for two classes (benign and malign) were 
calculated and the connection weights were fixed. 
The minimum Euclidean distance between the centers 
for each class during the training process and the 
cortical output during the test process were used as a 
decision criterion for the final recognition of each 
kind of cancer. Furthermore, during the classification 
stage, the connection weights of the cortical model 
were fixed to the values obtained during the training 
stage. 

The performance of the bionic model was com-
pared to three standard artificial neural networks 
(ANNs): a back-propagation network (BPN), a sup-
port vector machine (SVM) classifier, and a radial 
basis function (RBF) classifier. The ANNs as well as 
the bionic model took part in the benchmark study of 
a standard dataset. 

Before classifying the BCW dataset with the 
novel bionic model, the cortical surface that receives 
input from the bulb model and the size of training set 
were optimized. Also some features of the ANNs 
were optimized in order to minimize the number of 
misclassifications during the tests. 

3.1  Optimization of the feedforward channels 

We optimized the bionic model with respect to 
the number of inputs to the cortical surface from the 
olfactory bulb via the feedforward channels. It has 
been reported that in monkeys the olfactory input to 
the entorhinal cortex is about 12.5% of that to the 
entorhinal surface area (Amaral et al., 1987), whereas 
in rats it is at least half (Haberly, 2001). 

Initially, the bulb and cortical models were con-
nected by a full connection. In order to find the op-
timal number of feedforward channels arriving with 
signal information from the bulb to the cortex, the 
number of channels was varied from 9 to 400 as SN2, 
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where SN=(3, 4, 5, …, 20). Furthermore, the channels 
were placed into the cortical layers equidistantly, as 
shown in Fig. 4. Keeping the rest of the model pa-
rameters constant, the area of the cortical surface that 
received input from the bulb was varied from a 
minimum (2.5%) to a maximum area (100%), where 
each configuration was tested fifteen times. The cor-
rect classification rate of the model was used as an 
indicator of the optimal area amount.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to optimize the configuration of the 

bionic model, the classification rates with different 
configurations of connection were calculated for sta-
tistical testing. As the classification rates did not fol-
low a normal distribution, the non-parametric method, 
Kruskal-Wallis test (Kruskal and Wallis, 1952), was 
applied to test the statistical difference when the cor-
tical surface receiving input from the Mitral layer of 
the bulb model varied. The statistical significance of 
the differences in the classification rates across the 
fifteen observations between the groups shaped by the 
configuration of cortical surface receiving input from 
bulb model was evaluated. Over the eighteen groups 
the P value was lower than 0.01, demonstrating that at 
least one group was significantly different from the 
others. The Kruskal-Wallis test also revealed a sig-
nificant difference between the configurations for 
numbers of channels higher and lower than 35% of 
the cortical surface. Therefore, based on Kruskal- 
Wallis test results, any configuration higher than 35% 
will produce better classification rates. Due to the 
clear peak that appeared at the cortical surface opti-
mization (Fig. 5), the 38% of cortical surface receiv-
ing input was selected as the optimal configuration.  

 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Creation of the ANNs 

The first ANN used in our benchmark was a 
BPN, which has been one of the most studied and 
used algorithms for neural networks learning. It 
minimizes the error function in weight space using the 
method of gradient descent. Its structure is relatively 
simple and highly related to the application under 
consideration. In our experiments we created a BPN 
with three-layered (input-hidden-output) structure, 
and usually one hidden layer suffices for many ap-
plications (Patterson, 1996; Duda et al., 2001). The 
number of nodes for the input layer was set at 9 nodes 
(BCW dataset dimension) and the number of nodes 
for the output layer was fixed at 2 nodes (kind of 
cancers, benign and malign). As BPNs are sensitive to 
the number of neurons in their hidden layers (too few 
neurons can lead to underfitting and too many neu-
rons can contribute to overfitting) and due to the fact 
that there is no explicit rule to determine the number 
of hidden nodes, a test varying the hidden neuron 
number was undertaken and the best result was used 
for the configuration of twelve hidden nodes. 

The second ANN tested was an SVM classifier, 
which is a novel type of learning machine based on 
statistical learning theory (Cortes and Vapnik, 1995). 
It has gained popularity during the last decade due to 
its many attractive features and promising empirical 
performance. The formulation embodies the Struc-
tural Risk Minimisation principle, as opposed to the 
Empirical Risk Minimisation approach commonly 
employed within statistical learning methods. Given a 
set of points that belong to either of two classes, an 
SVM finds the hyperplane leaving the largest possible 
fraction of points of the same class on the same side, 
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while maximizing the distance of either class from the 
hyperplane. In our study the SVM classifier with a 
linear kernel function was designed. 

The last ANN used in our work was the RBF 
classifier. These classifiers emerged as a variant of 
ANNs in the late 80’s (Margalit, 1988; Renals, 1989), 
but their roots are entrenched in much older pattern 
recognition techniques. The RBF has an associated 
width parameter, which is related to the spread of the 
function around its center. The optimal value of the 
spread parameter must be found for each given 
problem. For this reason, and since it is related to the 
specific data to be classified, the RBF classifier was 
optimized with respect to the spread parameter. 
Varying the spread parameter, the BCW data were 
classified, and the best classification results were 
found for a spread value of 30 (Fig. 6).  

 
 
 
 
 
 
 
 
 
 
 
 
 

3.3  Optimization of training set 

Other optimization tasks were required to de-
termine the optimal training set size, showing how 
fast the novel bionic model and the other three ANNs 
could learn and recognize the two types of cancer 
patterns (benign and malign). Picking the minimum 
size of the training set for an ANNs is a challenge. A 
training set that is too large leads to long training time 
and a too small set results in unstable learning.  

For the cancer data classification, a training set 
with 110 samples per class was created and the 
number of samples used during the training of each 
network was varied in order to find the optimal 
number of training samples. After each network had 
been trained, the whole BCW dataset, consisting of 
683 patterns, was classified. 

Fig. 7 shows the performance of the BPN (Fig. 

7a), SVM classifier (Fig. 7b), RBF classifier (Fig. 7c), 
and the olfactory bionic model (OBM) (Fig. 7d) using 
training set of different sizes during the training 
process. The OBM exhibited the best learning capac-
ity, reaching the optimal value (97.45%) using fewer 
samples (13 instances per class) during the training 
process when the other ANNs needed a large number 
of data points to achieve good classification results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4  Classification rates 

Table 1 shows the results of the benchmark study 
for the three classical ANNs and the OBM. The BPN 
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was the classifier with the worst results with respect 
to classification rate or training set size. The SVM and 
RBF classifiers achieved good results, but the size of 
the training set required in both cases (24.89% of 
BCW dataset) was higher than that required by our 
bionic model (7.62% of BCW dataset). Thus the 
OBM was able to learn and recognize the cancer data, 
achieving the best results and demonstrating its ca-
pacity in pattern recognition tasks.  

 
 
 
 
 
 
 
 
 
 
Even when the training time of all these ANNs 

was shorter than that of our bionic model, they used a 
training set volume higher than the bionic model. Our 
bionic model, as a form of biological intelligence, 
reached the best correct classification (97.56%) and a 
remarkable performance (classification rate higher 
than 97%) for a small training sets with at least 13 
instances per class (3.81% of BCW dataset). Mean-
while the ANN classification rate using 15 instances 
on the training set (Table 2) was poorer than that of 
the bionic model (BPN: 71.39%, SVM: 93.55%, RBF: 
67.34%, and OBM: 97.19%). The achieved results 
show the model excellence in a practical pattern 
classification task and justify the efforts to embody its 
ODE in analog very large scale integration (VLSI) 
(Principe et al., 2001). 

 
 
 
 
 
 
 
 
 
 
The OBM results were better than those 

achieved by the ANNs, as regards both the training set 
size and correct classification rate. Furthermore, the 

performance of the OBM sorting BCW dataset was 
even better than previous results reported by Brunzell 
and Eriksson (2000) after several feature reduction 
methods, like Mahalanobis based linear transforma-
tion (97.1% of correct classification), canonical 
variables (96.6% of correct classification), Young, 
Marco and Odell’s method (96.5% of correct classi-
fication), and principal component analysis (96.6% of 
correct classification).  
 
 
4  Discussion 
 

In this work, a novel model mimicking the main 
features of the olfactory system has been analyzed, 
and its performance on the BCW dataset classifica-
tion demonstrated. Our bionic model is constructed 
from two principal parts: a bulb model and a cortex 
model. The bulb model is composed of mitral and 
granule cells, whereas the cortical model mimics the 
three-layered structure of the mammalian piriform 
cortex. 

A standard set with breast cancer data was used 
to test the pattern recognition capacity of our model. 
The performance of the bionic model was also com-
pared with three classical ANNs: a BPN, an SVM 
classifier, and an RBF classifier. Computer simula-
tion using our OBM showed its great capacity to learn 
and classify patterns based on a very small training set 
and a few learning trials, reflecting remarkable bio-
logical intelligence to an extent. However, when 
considering the memory requirements and the com-
putational time to convergence, our bionic model still 
cannot compete against conventional ANNs for 
solving practical problems. The current digital com-
puters are the bottleneck for the models based on 
biological neurous systems due to the time required to 
solve ODE by numerical integration. In this sense, the 
implementation of the bionic models in analog VLSI 
(Principe et al., 2001) and random graph theory arise 
as promising research.  
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