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ABSTRACT

A Biologically Inspired Networking Model

for Wireless Sensor Networks. (December 2009)

Charalambos Charalambous, B.S., The University of Arizona

Chair of Advisory Committee: Dr. Shuguang Cui

Wireless sensor networks (WSNs) have emerged in strategic applications such as

target detection, localization, and tracking in battlefields, where the large-scale na-

ture renders centralized control prohibitive. In addition, the finite batteries in sensor

nodes demand energy-aware network control. In this thesis, we propose an energy-

efficient topology management model inspired by biological inter-cellular signaling

schemes. The model allows sensor nodes to cluster around imminent targets in a

purely distributed and autonomous fashion. In particular, nodes in the target vicinity

collaborate to form clusters based on their relative observation quality values. Sub-

sequently, the clustered sensor nodes compete based on their energy levels until some

of them gain active status while the rest remain idle, again according to a distributed

algorithm based on biological processes. A final phase of the model has the active

cluster members compete until one of them becomes the clusterhead. We examine the

behavior of such a model in both finite-size and infinite-size networks. Specifically,

we show that the proposed model is inherently stable and achieves superior energy

efficiency against reference protocols for networks of finite size. Furthermore, we dis-

cuss the behavior of the model in the asymptotic case when the number of nodes goes

to infinity. In this setting, we study the average number of cluster members.
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CHAPTER I

INTRODUCTION

Wireless communications have sprung into our daily lives and changed the way peo-

ple and devices communicate. One branch of wireless technology is wireless sensor

networks allow devices to connect to each other and collaborate on sensing various

physical phenomena ranging from stress on bridges, habitat evolution, traffic patterns,

target movement, and so on.

As technology advances, expectations are running high for wireless communica-

tions. For sensor networks in particular, the desire for reliable and affordable data

collection is enormous, especially given certain critical applications. However, sen-

sor networks have hard energy constraints as each sensor node is equipped with a

small battery of finite lifetime. In addition, the large-scale nature of wireless sensor

networks, with many consisting of hundreds, thousands, or even millions of sensor

nodes, imposes several limitations on coordinating the sensor nodes and controlling

the overall network topology. It is clear that sensor network design is challenging

given all the above issues.

In this chapter, we first introduce sensor networks and their applications in Sec-

tion A. We then present some of the challenges and design limitations, thus portraying

the motivation for this thesis in Section B. In Section C we briefly discuss certain

properties of inter-cell biological networks, and the lessons that they teach could us

in the pursuit of efficient sensor networks. Finally, in Section D we give an overview

of the main contributions of this thesis.

The journal model is IEEE Transactions on Automatic Control.
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A. Overview of Sensor Networks

Recent progresses in wireless communications and electronics have facilitated the de-

velopment of tiny multi-functional sensor nodes that are low-cost, low-power, and

capable of communication in short distances [1]. These tiny sensor nodes consist of

components responsible for sensing, data processing, and wireless communications.

Their main tasks are to sense physical phenomena, process data, and forward useful

information to a fusion center. In particular, the sensing unit is responsible for collect-

ing data from the surrounding environment. The processing unit is in charge of local

information processing, such as transforming raw sensed data into a certain digital

form via compression or quantization. Finally, the wireless networking unit transmits

the locally processed data to a fusion center or a hub node where information from the

different sensor nodes is fused to generate the final intelligence. Sensor networks are

usually composed of a large number of sensor nodes with a typical structure shown in

Fig. 1, where the sensor nodes could forward their data via other intermediate nodes,

or relays, to the hub node. Typical applications for wireless sensor networks include,

but are not limited to:

• Environment and habitat monitoring: Sensor networks can be deployed to ob-

serve various environmental parameters such as humidity or temperature [2],

physical phenomena such as forest fires [3] or floods [4], as well as habitat evo-

lution [5].

• Military applications: Sensors can be used for battlefield surveillance, target

detection and tracking, and homeland security [6].

• Health monitoring: Sensor networks can provide telemonitoring of human phys-

iological data [7].
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Hub

Fig. 1. A typical wireless sensor network.

• Traffic control: Image sensors may be used to monitor traffic conditions at

major intersections and highways [8]. An advanced scenario calls for sensors to

be attached on the vehicles themselves such that passing vehicles can exchange

information such as traffic jam locations [9].

For a more detailed description of sensor network applications please refer to [1]

and [10].

B. Challenges

With the trend towards ubiquitous wireless communications becoming ever-stronger,

the large-scale nature of sensor networks demands a high level of self-organization [11],

where the participating entities configure themselves into a networking structure that

requires minimum central management. As such, sensor nodes need to interact di-

rectly with neighboring nodes and constantly react to changing dynamics in their

local surroundings.

Such self-organizing systems typically feature flexibility, adaptiveness, robust-

ness, and scalability [11]. The requirement of self-organization in a wireless sensor

network (WSN) favors distributed protocols that allow sensor nodes, or clusters of
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sensor nodes, to perform localized sensing and processing [1, 12]. The absence of a

central authority means that the sensor nodes enjoy the sovereignty to decide upon

their own destiny, but should also bear the obligation to collaborate with other sensor

nodes. In particular, by the cooperative effort a system can achieve better sensitivity

and noise immunity via averaging across both space and time [12]. This is the key

for success in large-scale sensor networks since each individual sensor node is limited

in sensing range, transmit power, and processing capability [13, 14].

Among the self-organizing capabilities of sensor networks, autonomous topol-

ogy control is of paramount importance given its high-level influence over all other

aspects of sensor network operations. Many topology control approaches currently

available are centralized with inhibitive complexity. This renders them inappropriate

for large-scale networks that may operate under hostile conditions where connections

to a central controller are rarely guaranteed. Even for the current networking pro-

tocols that are optimized for distributed implementations, there exist considerable

drawbacks. The most notable one is the scalability issue: As the number of nodes

increases, the performance deteriorates at a faster pace. The result is that even the

most advanced available ad hoc protocols can only support dozens of nodes. This

calls for the design of protocols that could handle wireless sensor networks of perhaps

millions of nodes in an efficient manner. The fundamental reason for bad scalability

is the lack of distributed autonomy. Many current algorithms, while being designed

to be distributed, still possess some central elements in order to maintain a certain

level of functionality for the protocol as a whole. The effect of not having a purely

distributed protocol, illustrated by the issues of scalability, can be devastating on the

practical implementation of a large-scale sensor network.

Among topology control issues, clustering and node scheduling [15, 16, 17, 18,

19, 20, 21, 22, 23] are two key aspects that directly affect the application-oriented
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network performance. Unfortunately, the current available approaches all bear similar

scalability problems as the general topology control for large-scale sensor networks.

C. Inspiration from Inter-cell Biological Networks

As we discussed over the issues of current topology control protocols, the existing

clustering and duty scheduling algorithms have scalability issues, especially when en-

ergy efficiency is one of the design concerns. It remains as a challenging problem how

to autonomously form energy-efficient clusters around targets in a large-scale sensor

network. Given the unsuccessful history in achieving the above goal, we have to chal-

lenge the way that traditional techniques tackle these issues and look for new alterna-

tives [24]. An attractive approach stems from biological research, where researchers

point out that living organisms consist of billions of networked cells interacting with

each other in a remarkably harmonic way. Comparing the robust biological inter-cell

networks with the struggling electronic networks, the contrast is clear: While current

sensor network protocols suffer from scalability and efficiency issues, inter-cellular

biological networks exhibit purely distributed behavior, stability, high efficiency, and

self-healing capabilities. In particular, although in the human body the main activ-

ities appear to be controlled by our brain in a centralized manner, it is interesting

to note that the development process through which a body grows from several stem

cells into a complex structure is solely controlled by distributed mechanisms. More

surprisingly, even in the matured body, many activities such as wound healing are

controlled by local cell clusters inside the corresponding tissues [25, 26].

Therefore, while the design of sensor networks is trying to overcome the issues

that we mentioned, the biological inter-cell networks already possess most of the el-

ements that we seek. Specifically, these networks are purely distributed in nature,
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highly efficient, and enjoy autonomous reconfiguration. The following question then

arises naturally: Could we design autonomous and distributed large-scale sensor net-

works by studying and learning from their biological inter-cell counterparts which

have been polished by natural selection for millions of years? Thus inspired, we seek

to design networking protocols via a methodology motivated by recent biological re-

sults, which indicate that billions of cells in organisms autonomously control their

growth and interactions in both collaborative and competitive manners.

D. Contributions

In this thesis, we first discuss the controlling mechanism behind successful biological

networks. We introduce terms such as inter-cell signaling and juxtacrine signaling.

The latter is a class of inter-cell signaling wherein cells interact only with cells with

which they are in direct contact. We narrow down our discussion to Delta-Notch

signaling, a form of juxtacrine signaling that involves the Delta and Notch trans-

membrane proteins. Given the nature of the feedback among neighboring cells, the

Delta-Notch signaling scheme gives rise to two mechanisms: lateral induction and

lateral inhibition. In the former, the participating cells adopt the same steady state

fate, while in the latter, they adopt different steady states. Thus, certain desired

spatiotemporal patterns are possible with such signaling schemes.

Once we understand how biological networks function, and how the cells inter-

act with each other, we translate the inter-cell signaling schemes into an inter-node

communication/control model for large-scale wireless sensor networks. The example

application that we have in mind is distributed target detection. When a target ap-

pears in the field of interest, sensor nodes first collaborate via lateral induction to cre-

ate a cluster surrounding the target. The nodes comprising the cluster subsequently
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compete via lateral inhibition to achieve active status while the rest remain idle. Ac-

tive nodes then compete to become the clusterhead. We provide the mathematical

formulation for the distributed clustering algorithm that conforms to the biological

models. We argue that such a process leads to compact clusters that do not burden

the network with distant intra-cluster communications. Moreover, we present the

mathematical formulation for the competitive side of the model, namely the process

for selecting the active cluster members as well as for electing the clusterhead.

We first focus on networks of finite size, where we provide stability analysis for

the proposed clustering algorithm. We compare our model to reference schemes and

illustrate its energy efficiency. We then turn our attention to networks of infinite

size and examine asymptotic results for our model. We introduce random geometric

graphs that offer a good abstraction for a wireless sensor network, and examine the

average numbers of cluster members.

This thesis is organized as follows. Chapter II provides biological background

that helps us understand the basis of the proposed model. Chapter III formally

defines the networking problem that we address. In Chapter IV we describe the pro-

posed network control model based on the inter-cell lateral induction and inhibition

mechanisms, with a focus on a biologically inspired clustering algorithm in networks

of finite size. We also examine infinite-size networks and certain asymptotic results

regarding our model. Finally, in Chapter V we conclude our work and identify open

challenges for future research.
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CHAPTER II

INTER-CELL BIOLOGICAL SIGNALING

Biologists found that during certain biological tissue development, e.g., in the tissue

growth of the chick inner ear, Notch protein [27] first drives multiple cells in the same

area to adopt similar characters to form a prosensory patch, and then mediates the

hair cell versus supporting cell differentiation within the patch. The first process is

controlled by Notch-signaling lateral induction, and the second one by Notch-signaling

lateral inhibition [27]. Both are inter-cell signaling schemes that we explain in this

chapter, motivating us to develop distributed sensor clustering and node activation

control models.

A. Juxtacrine Signaling

As we discussed before, with the help of what we know about inter-cell biological

networks, we may be able to find an efficient and distributed solution for topology

control in large-scale sensor networks. In cellular networks, biologists found that

during the body development, all the cells are roughly the same at a certain early

stage. This is reminiscent to the initial random deployment of sensor nodes. Then,

after some kind of interactions among themselves, the cells are grouped into multiple

clusters where each cluster evolves into a particular tissue. Furthermore, within each

cluster, some cells are determined to be active cells, while the rest become inactive

supporting cells. This whole process is controlled by inter-cell signaling schemes.

Inter-cell signaling is essential in the development of biological multi-cell systems.

The signals engaged may take various formats and act over a wide range of length

or time scales. In particular, inter-cell signaling generally involves the production of



9

ligand1 by the transmitting cells and its detection by specific receptors expressed by

receiving cells, where the ligand is the mediator of the signal [28]. Juxtacrine signaling

is a special class of inter-cell signaling, where ligands anchored in the membrane

of a cell bind to and activate receptors on the surface of immediately neighboring

cells [28]. As a result, signaling within a tissue can only occur among cells that are

in direct contact with each other. With suitable feedback among receptor activation

and expression levels of ligand, juxtacrine signaling is an efficient mechanism for the

long-range propagation of localized signals, and thus the generation of spatiotemporal

patterns [28].

B. Delta-Notch Signaling

A particularly well-documented juxtacrine signaling scheme is the Delta-Notch sig-

naling [27, 28, 29, 30], where both Delta and Notch are transmembrane proteins.

Extensive genetic and biochemical studies on the Drosophila fly embryo have identi-

fied the product of the neurogenic gene Notch (and its homologues in organisms other

than the fly) as the receptor for pattern formation activity, and the product of the

neurogenic gene Delta as the corresponding ligand, expressed in the cell delivering

the pattern formation mechanism [29].

Therefore, it has been well understood that in the Delta-Notch system, the ac-

tivation of the Notch pathway (the receptor) by Delta (the ligand) affects the Delta

activity of the receiving cell. Since the transmitting cell is also one of the neighbor-

ing cells of the receiving cell, the affected Delta activity in the receiving cell will be

fed back to the receptors of the transmitting cell, leading to interactive closed-loop

dynamics. As such, with the feedback loops being its basic premise, Delta-Notch

1Ligand: A small signaling molecule that binds to a protein or receptor.
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signaling between cells is the main controlling scheme for cell pattern generation. De-

pending on the nature of the Delta-Notch feedback loops among neighboring cells, the

pattern-generating processes can be classified into two different categories [27, 28, 31]:

lateral induction and lateral inhibition. In the following subsections, we explain the

mechanisms behind these two signaling schemes.

1. Lateral Induction

Lateral induction is a process by which a cell heading for a particular fate induces its

neighbors to adopt the same fate. Specifically, if the Notch activation up-regulates

Delta activity in the receiving cell, then this phenomenon propagates to neighboring

cells (including the original transmitting cell), stopping only when this externally-

driving up-regulation is beaten by internal degradation factors. Eventually a certain

region is formed where all the cells in it achieve saturated Delta expressions, corre-

sponding to the formation of a functional patch of cells in the early stage of biological

body development. Therefore, the main characteristic of the lateral induction mech-

anism is a feedback loop that is capable of amplifying initial similarities of membrane

levels in a neighborhood of cells, such that a homogeneous spatial pattern is gener-

ated. The feedback loop is illustrated in Fig. 2. In this two-cell system, active Notch

within one cell indicates the reception of induction from the neighboring cell, which

in turn up-regulates Delta activity in the former cell, increasing its ability to deliver

induction to its neighbor, and so on. Eventually both of the two cells will adopt the

same fate.

2. Lateral Inhibition

As a counterpart of the lateral induction mechanism, lateral inhibition is a process

by which a cell heading for a particular fate inhibits its neighbors from adopting the
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Delta

active

Notch

active

Notch

activated

Delta

activation

Notch

Delta

Fig. 2. The feedback loop in lateral induction for a two-cell system. Reception of

induction (Notch activation) increases the ability to deliver induction (Delta

activity).

same fate. The cells within such a functional patch usually develop further into the

differentiation stage, where some cells remain active while the rest are deactivated.

For example, during the development of chick inner ear, only a certain portion of

sensory hair cells remain active (to grow the hair) within the prosensory patch [27].

Such a differentiation process occurs when Notch activation down-regulates Delta

activity in the receiving cell. In turn, the former cell deactivates Notch levels in the

neighboring cells, whose Delta activity is in this way up-regulated. This phenomenon

propagates to neighboring cells, and eventually a “salt-and-pepper” pattern emerges

across the cell lattice where some cells achieve saturated Delta expressions, while

others have near-zero Delta expressions. Therefore, the feedback loop present in

the lateral inhibition mechanism is capable of amplifying initial differences of the

membrane levels in a neighborhood of cells, such that an inhomogeneous spatial

pattern is generated. Such an inhomogeneous pattern can be seen in Fig. 3. Cells
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Active cell

Inactive cell

Fig. 3. The “salt-and-pepper” pattern formed by lateral inhibition. Active (primary

fate) cells are scattered among inactive (secondary fate) cells.

with high levels of Delta activity and low levels of Notch activation (dark cells) are

considered to be the active cells, and correspond to what is called the primary fate in

the case of the developing nervous tissue [32]. These cells are scattered among cells

with low Delta activity levels and high Notch activation levels (white cells) that are

considered to be inactive, corresponding to the secondary fate [32].

One interesting property that arises due to the differentiation in the lateral in-

hibition process is what we will call as the inhibition property in this thesis. As is

apparent in Fig. 3, the steady-state patterns for a cellular network undergoing lateral

inhibition follow these two rules:

(i) No two active cells lie next to each other, and

(ii) No inactive cell can be completely surrounded by other inactive cells, i.e., every

inactive cell lies next to at least one active cell.
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3. Mathematical Setup of Delta-Notch Signaling

Theoretical biologists and mathematicians have successfully modeled the Delta-Notch

signaling process by sets of coupled ordinary differential equations (ODEs) [28, 29,

33, 34]. We consider the simple model in [29], where for the ith cell, ni denotes the

levels of Notch activation, and di denotes the levels of Delta activity. The following

set of ODEs governs the behavior of the ith cell:

ṅi = f(d̄i)− ni

ḋi = µ · (g(ni)− di),

where µ is a positive constant, d̄i represents the average Delta activity across the

neighbors of the ith cell, and f(d̄i) is a function representing the production rate of

the Notch activation in the cell, in response to the increasing amount of Delta activity

in neighboring cells. In particular, the function f(d̄i) models the effect of either lateral

induction or lateral inhibition jointly with the function g(ni). For example, in [29]

the related functions for lateral inhibition are given by

f(x) =
xk

a + xk
, g(x) =

1

1 + bxh
, (2.1)

where a and b are positive constants, k ≥ 1, and h ≥ 1. In the following chapters we

will show how to apply these models to control the network topology.

C. Summary

We have shown that the inter-cell signaling models foster collaboration and competi-

tion among interacting cells. Such behavior is reminiscent of the clustering and node

activation control in sensor networks. We thus wish to establish a networking model

that will feature the behavior of the distributed and efficient biological networks.
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CHAPTER III

BIOLOGICALLY INSPIRED NETWORKING MODEL

In Chapter I we introduced wireless sensor networks and the challenges that we face,

especially if the networks are large in scale. In Chapter II we turned our attention

to their biological counterparts, and described the notion of inter-cell signaling that

forms the basic premise of our proposed model. In this chapter, we translate the

biological dynamics to guide the design of certain control models in a large-scale sensor

network. Particularly, we propose a three-phase networking model in an attempt to

mimic the behavior of biological inter-cell networks. Specifically, as shown in Fig. 4,

the three phases of our model are:

1. Lateral Induction Phase: During the first phase of the model, the sensor nodes

collaborate to construct a functional cluster via lateral induction in a purely

distributed fashion.

2. Lateral Inhibition Phase: Once the cluster has been formed, the second phase

of the model involves competition among cluster members via lateral inhibition,

again in a distributed fashion. The competition winners are the nodes that gain

active status, while the remaining cluster members go to the “sleep” or standby

mode and may become active themselves in subsequent iterations of the lateral

inhibition phase.

3. Clusterhead Election Phase: The last phase of the model is a variant of the

lateral inhibition phase, where the active sensor nodes compete until one of

them becomes the clusterhead. Once the clusterhead is chosen, it serves as the

root of a minimum spanning tree (MST) and gathers data from the rest of the

cluster members.
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Cluster memberNonmember

Isolated node

1. INDUCTION

PHASE

Active member

Inactive member

2. INHIBITION

PHASE

3. CLUSTERHEAD

ELECTION

Clusterhead

Target

Fig. 4. The three-phase biologically inspired networking model. Phase 1 — Lateral-

ly-induced cluster: Sensor nodes with relatively good observation quality values

collaborate to form a cluster. Isolated nodes even with good observation quality

values are excluded. Phase 2 — Lateral inhibition: Cluster members compete

based on remaining energy levels to gain active status. Remaining nodes be-

come inactive cluster members. Phase 3 — Clusterhead election: Active nodes

compete based on energy levels and communication cost until one emerges as

the clusterhead.

A. Model Behavior in the Context of Target Detection

One example application that we take on for such a model to be deployed is energy-

efficient distributed target detection in a wireless sensor network. In the context of

target detection, the traditional cluster formation is usually based on the absolute

local node observation quality values. However, due to the presence of random noise

in the observation field, some scattered nodes that are far away from the target may

be included in the cluster, as long as they have good observation quality values. As

such, a non-compact cluster may be formed, which is not energy-efficient in terms

of data routing at later stages of networking operations. Bearing this in mind, our
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goal is to achieve a compact cluster via the biological lateral induction model in a

purely distributed manner. In this way, we aim to prevent isolated nodes, as in

Fig. 4, from joining the cluster and burdening the data collection process with distant

communications.

As far as the competitive inhibition process is concerned, cluster members decide

in a purely distributed manner whether they will be active or not, based on their

remaining energy levels. Cluster members with a low energy level compared to their

neighbors are considered less “fit” for the task, since they will deplete their energy

and die sooner than their more energy-apt counterparts.

In terms of clusterhead election, the competition among active nodes is based

on their remaining energy levels, and the overall communication cost as well. The

clusterhead should be a node with enough energy level to handle the responsibilities

that come with the role, and in a location that does not stress the active set with

undesired long hops in the minimum spanning tree.

We next describe the control flow in our networking model. For the target

detection application, the control starts when a large number of energy-healthy sen-

sor nodes are randomly deployed into the field of interest. Immediately following

their deployment, a preliminary hand-shaking mechanism is enforced such that sensor

nodes could determine their neighborhood. Specifically, each sensor node broadcasts

a “hello” message and waits for replies from the sensor nodes within its transmission

range. Naturally, the number of replies that a sensor node receives indicates the

number of its neighbors. Since our model relies heavily on neighbor interactions, we

assume that the initial topology constructed is a connected graph, i.e., there exists a

communication route (which is usually multi-hop) connecting each sensor node to any

other sensor node in the field. In idle status, all sensor nodes are in “sleep” mode in

order to conserve energy. During “sleep” mode, functions such as signal processing,
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Fig. 5. The timeline of events from deployment to data fusion.

decision-making, and neighbor communications are inactive. However, we assume

that the basic sensing unit at each sensor node is constantly active. In the event

that a target appears imminent, the sensor nodes whose sensing signals surpass a

certain threshold “wake up”. At this moment, the clustering mechanism via lateral

induction is invoked. The awaken sensor nodes contact their neighbors and exchange

the necessary information to run the induction model, and further act according to

the evolution of the model parameters.
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Once the cluster is formed, all nodes that are not cluster members go back to

their sleeping state. Cluster members by this stage know which of their neighboring

nodes are also cluster members and update their appropriate logs and tables accord-

ingly. The cluster members then contact their neighbors and exchange the necessary

information to run the inhibition phase. When this phase concludes, only a set of

the cluster members is determined to be active. The remaining inactive nodes go

back to the idle mode but still retain their cluster membership status, and are el-

igible to compete in subsequent iterations of the inhibition phase within the same

cluster. Such a rotation mechanism is performed such that energy is consumed in a

uniform fashion across the entire cluster, by choosing different sets of active nodes

across several iterations.

Especially for the phase of clusterhead election, we assume that the active sensor

nodes temporarily increase their transmission range by enough proportions so as to

be able to communicate with all other active sensor nodes within a single hop. Next,

the clusterhead election algorithm is run and the clusterhead is elected. We next

assume that the active sensor nodes construct a minimum spanning tree to route

their data to the clusterhead. When the clusterhead gathers all the sensing reports

from the active nodes, it forwards, after some appropriate processing, the data to a

fusion center that is responsible for final data fusion and analysis. The above timeline

is illustrated in Fig. 5.

B. Model Assumptions

The design of inter- and intra-cluster communication protocols, neighborhood dis-

covery, and tree construction are beyond the scope of this thesis, and we therefore

assume that their mechanisms are predefined. To conform to the juxtacrine signaling
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models, we also assume that sensor nodes only exchange parameter values with their

direct neighbors, thus ensuring that decisions on their fate are performed locally and

distributively. Other assumptions we make are that the nodes are immobile and there

is a single and stationary target in the network. In addition, the observation signal

strength decays smoothly as the nodes are located further away from the target, but

the observation quality values may be random due to the random strength of obser-

vation noises at different nodes. Moreover, the remaining energy levels of the sensor

nodes are not identical across different nodes.
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CHAPTER IV

ANALYSIS OF THE BIO-INSPIRED NETWORKING MODEL

In this chapter, we first focus our attention on the clustering process via lateral induc-

tion in the context of energy-efficient target detection, as we discussed in the previous

chapters. We formally define the induction process mathematically. In addition, we

give a discrete-time formulation of the model, which is more suitable for electronic

networks that execute algorithms in discrete time. We then perform stability analysis,

and we discuss the issue of convergence as well. Afterwards, we provide simulations

to verify the clustering algorithm, and examine its energy efficiency. We also study

the lateral inhibition process as well as the clusterhead election algorithm. Finally,

we conduct certain asymptotic study over the case of infinitely-large networks, where

we give an empirical estimate over the average number of cluster members.

A. Distributed Clustering Algorithm via Lateral Induction

We model the clustering process via lateral induction with a set of two ordinary

differential equations for each sensor node, with a system analogous to the biological

counterpart in [29]. For the ith sensor node, let us denote with qi(t) ∈ [0, 1] the

time-evolving relative observation quality value of the sensor node in reference to

its neighbors, where qi(t)|t=0 is the absolute observation quality value of the sensor

node, reflecting the signal-to-noise ratio (SNR) observed over the target. We assume

that the SNR reading of each node has been normalized to be in the range [0,1],

according to a predefined maximum SNR reading. Let si(t) ∈ [0, 1] denote the time-

evolving cluster membership indicator, where its steady state value being above a

certain threshold means that the sensor node is selected as a cluster member. When

the steady state value is below that threshold, then the sensor node is not selected
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as a cluster member. Specifically, the system of ordinary differential equations for

sensor node i is given by

q̇i = −qi + fs(si)

ṡi = µ · (− si + fq̄(q̄i)), (4.1)

where µ is a positive constant, and the functions fs(si) and fq̄(q̄i) are in the form of

f(x) defined in (2.1), with a and k particularly chosen for each function. The notation

q̄i indicates the average relative observation quality value over all the neighbors of the

ith sensor node. In particular, with Ni denoting the set of all the neighbors of sensor

node i, then

q̄i =
1

|Ni|
∑

j

qj, ∀j ∈ Ni,

where |Ni| stands for the cardinality of the set Ni.

1. Discrete-time Formulation

The system of ODEs shown in (4.1) is a continuous-time model. Since in a sensor

network protocols have to be executed in a discrete-time manner, we need to trans-

form the above equations into difference equations. There are numerous methods to

transform differential equations to difference equations. Here, we choose the Forward

Euler method [35] for the convenience of analysis. According to this method, the

derivative y′(t) = f(t, y(t)) can be approximated as

y′(t) =
y(t + T )− y(t)

T
,

with T being the step size. By rearranging parameters appropriately, the above

equation becomes

y(t + T ) = y(t) + Tf(t, y(t)).
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We thus construct an appropriate sequence and index the time by 1, 2, . . . , n, n+1, . . .,

at integer multiples of T , and we then solve for y according to the iterative evolution

of the equation

yn+1 = yn + Tf(tn, yn),

where tn+1 = tn + T . We denote by qi,n the relative observation quality value of the

ith sensor node at iteration step n, and by si,n the cluster membership indicator of

the ith node at iteration step n. Hence, the equations in (4.1) can be transformed

into a set of difference equations for each node:

qi,n+1 = qi,n + T{fs(si,n)− qi,n}

si,n+1 = si,n + Tµ{fq̄(q̄i,n)− si,n}. (4.2)

2. Compact Clustering via Lateral Induction

The reasoning behind applying induction model to the clustering problem is sim-

ple. First, it is highly likely that a sensor node whose neighbors have good observa-

tion quality values over the target, has a comparable observation quality value itself.

Meanwhile, with energy conservation as one of the main design objectives, it is de-

sirable to have a compact cluster that is energy-efficient in data routing. As such,

we want an induction model where a node is more likely to be selected as a cluster

member if its neighbors are selected, and vice-versa. In addition, large-scale networks

usually operate in noisy environments and thus the distribution of observation quality

values across a network is random in nature. As a result, a far-away node might have

a much better observation quality value than all its neighbors. With our model, it is

likely that this sensor node would be denied cluster membership if its neighbors have

a low average observation quality value, such that no far-away isolated sensor nodes

are included in the cluster. On the other hand, a node might be selected as a clus-
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ter member even though it might have a mediocre observation quality value, if it is

located in a neighborhood of nodes with high observation quality values. Therefore,

we see that the collaborative nature of the lateral induction process leads to com-

pact clusters. Such clusters do not burden intra-cluster communications, by denying

cluster membership to good, yet isolated, nodes. Meanwhile, they favor compact

neighborhoods of good sensor nodes.

Mathematically, the collaborative interaction among sensor nodes that is re-

sponsible for the cluster construction is mediated by the average relative observation

quality value within the neighborhood of a particular sensor node, since this average

value affects its cluster membership indicator value. In turn, a given sensor node also

affects the cluster membership indicator values of its neighbors, and the feedback loop

continues. For the model in (4.1), by adjusting the system constants a and k in the

functions fs(si) and fq̄(q̄i) accordingly, we can change the shape of these functions

responsible for the evolution of the induction parameters. In this way, we can control

the final cluster size in the steady state in order to fit the needs of a specific sensing

application.

3. Convergence Speed

In (4.2), the constant µ represents the ratio between the decay rates of q and s, and

is therefore a measure of the relative time-scales over which the levels of the relative

observation quality and the cluster membership indicator values vary [29]. Increasing

the values of µ and/or k increases the convergence speed [29]; however, extremely

large values may lead to numerical issues in discrete implementations, resulting in

instability. Actually, the continuous-time biological induction model is inherently

stable. In a wireless network though, operations are performed in discrete-time steps

by nodes that have finite-bit accuracy. Therefore, selecting extremely large values for
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µ and/or k might lead to instability caused by numerical issues. Theoretically, the

particular choice of µ does not affect the possible steady states of the system, which

are determined by the choices of a and k in the functions fs(si) and fq̄(q̄i). However,

when the system admits several equilibrium points, which of the steady states the

system settles in is influenced by µ and initial conditions.

4. Stability Analysis

For a system of a large number of nodes, stability issues can only be verified by

simulations due to the associated analytical complexity. However, we could gain

some insight by studying some small-size systems analytically. We now consider a

simple continuous-time system consisting of just two sensor nodes to examine the

stability of the induction phase. The equations in (4.1) therefore become:

q̇1 = −q1 + fs(s1), ṡ1 = µ{−s1 + fq̄(q̄2)}

q̇2 = −q2 + fs(s2), ṡ2 = µ{−s2 + fq̄(q̄2)}, (4.3)

where the subscripts correspond to sensor nodes 1 and 2. Equilibrium points of the

system in (4.3) are given by

(q∗1, s
∗
1, q

∗
2, s

∗
2) = (fs(s

∗
1), s

∗
1, fs(s

∗
2), s

∗
2), (4.4)

where s∗1 and s∗2 are the fixed points of the composite function (fq̄ ◦ fs ◦ fq̄ ◦ fs) with

s∗1 = fq̄(fs(s
∗
2)) and s∗2 = fq̄(fs(s

∗
1)). For functions fs and fq̄ having the form of f(x)

in (2.1), there are three equilibrium points with q∗1 = q∗2 and s∗1 = s∗2. A steady state x

is linearly stable if (fs ◦ fq̄ ◦ fs ◦ fq̄)
′(x) < 1, but unstable otherwise. Fig. 6 shows the

phase plane of the relative observation quality values for this two-node example. The

nullclines q1 = (fs ◦ fq̄)(q2) and q2 = (fs ◦ fq̄)(q1) indicate the cases where q̇1 = 0 and

q̇2 = 0 respectively. The various trajectories in the phase plane plotted for different
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Fig. 6. Phase plane for the system of two nodes. There are three equilibrium points

{a, b, c}, of which point b is an unstable saddle point, and points a and c

are stable equilibria. For large values of µ, it is the initial values of q1 and q2

that determine which of the two stable equilibrium points the system settles

in. Here µ = 10.

initial conditions of q1 and q2, show that there is one unstable equilibrium point and

two stable equilibrium points. In particular, the equilibrium points a and c are stable,

while point b is an unstable saddle point. As discussed before, the location of the

equilibrium points depends on the parameters a and k. In this two-node example,

a = 0.01 and k = 3.5 for the function fs, a = 0.01 and k = 7.5 for the function fq̄,

and µ = 10. The three equilibrium points are a = (0, 0), b = (0.4705, 0.4705), and

c = (1, 1).
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We next discuss how to achieve one of the two stable equilibrium points in this

system. When µ À 1, we can make the quasi-steady-state assumption [29] that

fq̄(q2)− s1 = 0, fq̄(q1)− s2 = 0,

and thus the system in (4.3) reduces to

q̇1 = −q1 + (fs ◦ fq̄)(q2), q̇2 = −q2 + (fs ◦ fq̄)(q1).

The phase plane in Fig. 6 shows that when µ À 1 it is the initial values of q1 and

q2 that determine which of the two stable homogeneous equilibrium points will be

attained eventually. Analogous analysis for µ ¿ 1 can be performed, leading to the

conclusion that it is the initial values of s1 and s2 that determine the final steady

state (results not shown). Hence, we have chosen a value for µ = 10 À 1 for the

simulations, reflecting our desire to decide upon cluster membership based on the

relative observation quality values, i.e., the qi’s.

5. Simulation Results

The performance metric by which we assess the clustering algorithm is the total energy

consumed by the cluster as a whole to deliver sensing reports to the clusterhead, i.e.,

the total energy required for each cluster member to forward its sensing report to the

clusterhead via a route constructed in the MST.

a. Setup

We assume that the sensor node with the best observation quality value is chosen

to serve as the clusterhead and is therefore the root of the MST constructed by the

Kruskal algorithm [36]. The weight function for the Kruskal algorithm is represented

by the square of the distance between the cluster members. The initial absolute
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observation quality value of the ith node depends on its distance from the target,

di, target, as:

qi(0) =
e
−d2

i,target
2σ2

zi

, (4.5)

where σ is a deviation measure of the spread of the observation quality distribution.

The parameter zi denotes the variance of the observation noise and is assumed to

be uniformly distributed with mean 1 between [1 − α, 1 + α], where α stands for

the spread of the noise variance. Essentially, qi(0) represents the normalized SNR

at each sensor node and qi(t)|t>0 represents the time-evolving relative SNR. For such

a function, the observation quality values decay exponentially as the square of the

distance from the target increases; hence the observation quality function over the

field of interest is roughly a “bell-shaped” curve. We assume that si(0) = 0, ∀i. The

energy required to transmit b bits of data from one node directly to another (single

hop) that is located at a distance d away, is defined as:

ETX(k, d) = εbd2, (4.6)

where ε is the transmission system constant, according to the radio model defined

in [16].

We compare our algorithm to a reference scheme loosely based on the initial

stage of the Dynamic Convoy Tree-based Collaboration (DCTC) algorithm [37], which

creates a tree of nodes surrounding a target as it traverses across the network. The

root of the tree is responsible for reconfiguring the tree, by adding or pruning nodes

as the target moves. The initial tree construction of the DCTC algorithm is achieved

by the nodes that are awake and close to the target.

We simulate in MATLAB for different levels of spread of noise variance, α, for a

randomly-deployed sensor network over a square field of side length 10 m. There are
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Fig. 7. Energy consumption in the clustering algorithm. Total energy required for all

the cluster members to forward their sensing reports to the clusterhead, over

the spread of observation noise variance. A compact cluster requires less total

energy than one which includes distant nodes.

220 sensor nodes in the field, and each node has a transmission range of 1.5 m. In

addition, the target is situated at the center of the field, σ = 2, each sensor node has a

320-bit sensing report to forward to the clusterhead, and ε = 100pJ/bit/m2 [16]. We

take the average over 200 random network configurations for each of 10 different levels

of α. We set the threshold for the cluster membership indicator as 0.9. Furthermore,

we adopt parallel synchronous updates of the state vectors across the networking

sensor nodes, which are done according to the discrete model in (4.2).
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Nodes Members Target Clusterhead

Reference algorithm

Nodes Members Target Clusterhead

Fig. 8. Compact clusters via the induction process. The proposed algorithm produces

a more compact cluster than the reference algorithm. There are 13 cluster

members in both cases. Lines connecting nodes stand for the MST routes.

In both schemes, once the cluster members are selected, we assume that all

nodes increase their transmission power until they are neighbors with all other cluster

members. Then, the MST is formed by the Kruskal algorithm. Once the MST is

constructed, the nodes readjust their transmission powers in order to maintain the

MST routes with minimum required power. Energy is expended according to the

model in (4.6).

b. Energy Efficiency, Observation Quality, and Compactness

Under low noise spread conditions the two algorithms perform comparably, as shown

in Fig. 7. As the spread of the observation noise variance increases, leading to sensor

nodes being increasingly misled about their actual distance from the target, the differ-

ence in performance becomes clear. Fig. 7 shows that the proposed algorithm expends

less overall energy to forward messages from the sensor nodes to the clusterhead for
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Fig. 9. Average observation quality of cluster members. It is plotted as a function of

the spread of observation noise variance. Energy efficiency within a compact

cluster comes at a certain expense of observation quality.

the same number of cluster members, especially for relatively large spread of noise

variance. This implies that, via inter-node collaboration, the clustering technique via

lateral induction constructs a more compact cluster. This attribute can be seen in

Fig. 8. This example run of the induction process shows that our proposed model

chooses cluster members from sensor nodes that are physically closer to each other,

than if the sensor nodes were chosen without any regard towards their surrounding

environment.
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Fig. 10. Energy consumption by induction algorithm. Total energy required for all

the cluster members to forward their sensing reports to the clusterhead, as a

function of the number of nodes in the network and the spread of observation

noise variance.

However, this comes at a certain expense of observation quality. As Fig. 9 shows,

for the same number of cluster members, the average observation quality values of

the cluster members are lower than those of the reference scheme. This is due to

the fact that the lateral induction process might force sensor nodes within a compact

neighborhood into joining the cluster as a result of “peer pressure”, even though

they may not have comparably high observation quality values. At the same time,

the induction process might exclude sensor nodes with very good observation quality

values from joining the cluster, if they are isolated in a vicinity of nodes with poor

observation quality values. As a result, sensor nodes of mediocre observation quality

might become cluster members, sacrificing in quality what we gain in energy efficiency.
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Fig. 11. Convergence of the induction algorithm. Average number of iteration steps

needed to settle within 5% and 1% of the steady state, versus the value of the

constant µ. The system settles faster as µ increases.

By adjusting our model constants, we could control the tradeoff between the gained

energy efficiency and the lost average observation quality. Furthermore, the results

depicted in Fig. 10 show that as the network size and the spread of observation noise

variance increase, the proposed algorithm improves the relative energy efficiency.

c. Convergence

In order to examine the effect of the constant µ on the convergence speed, we simulate

a network consisting of 200 sensor nodes, deployed in a square field of side length 10 m.
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Each node has a 1.5 m transmission range. The step size in (4.2) is T = 0.05. We

average the number of steps necessary for each node to settle within 5% and 1% of its

final values, over 200 different random network configurations, for different values of

µ. Simulations are performed for values of µ ≥ 10, so as to conform to the discussion

in Section 4. Results in Fig. 11 show that the average number of steps needed to

reach the steady state decreases as µ increases, even though the incremental speed

improvement decreases over higher values of µ.

B. Inhibition Phase

For the differentiation process via lateral inhibition, we have a set of two ODEs for

each node that is a cluster member. For the ith node, we denote with ei(t) ∈ [0, 1] the

time-evolving relative remaining energy level of a node with reference to its neighbors,

where ei(t)|t=0 is the absolute remaining energy level of the node. We assume that

this reading has been normalized to be in the range [0,1] for each node, according

to a maximum energy level. Let ai(t) ∈ [0, 1] denote the time-evolving active status

indicator, where steady state values being above a certain threshold mean that the

sensor node is selected as an active cluster member, and values being below that

threshold indicate that it is not selected. Specifically, the system of ODEs for node i

is given by:

ėi = −ei + fa(ai)

ȧi = ν · (− ai + gē(ēi)), (4.7)

where ν is a positive constant, and the functions fa(ai) and gē(ēi) are in the form

defined in (2.1), with the constants particularly chosen for each function. The notation

ēi indicates the average relative remaining energy level over all the neighbors of the
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ith node. As in the induction phase, the continuous-time model can be transformed

into a system of difference equations, for which the details are skipped.

Recall that the induction phase has created a compact cluster of “observation-

quality-fit” sensor nodes. The purpose of the inhibition phase is to choose, among the

cluster members, the ones that are most energy-fit in terms of their available energy

levels. For example, a node might be suitably located to have a good observation

quality value over the target, but might have depleted most of its battery, rendering

itself unsuitable for a long active status. As such, we want an inhibition model where

a sensor node is more likely to be selected as an active member if its neighbors are

not as suitable, energy-wise, to be selected themselves. In addition, we would like

for the active nodes to be uniformly spread out across the entire cluster, to maintain

a smooth average observation quality when switching between different active sets

over time. Indeed, with an inhibition setup, not all the resulting active nodes will

be the ones with the most remaining energy levels in the entire cluster, but the ones

with remaining energy levels that are comparably high in their own neighborhood.

Hence, active nodes will be distributed throughout the whole cluster, in the “salt-

and-pepper” pattern already observed in biological systems as we discussed before.

Mathematically, the competitive interaction among sensor nodes that is respon-

sible for the active set formation is mediated by the average relative remaining energy

level within the neighborhood of a particular node. This average level affects the ac-

tive status indicator value of that node. In turn, the node affects the active status

indicator values of its neighbors, and the feedback loop continues. As in the induction

phase, the constant ν represents the ratio between the decay rates of e and a, and is

therefore a relative measure of the convergence speed of the inhibition process.
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C. Clusterhead Election Phase

The model for the clusterhead election phase is a variant of the lateral inhibition

model, with nodes competing to become the clusterhead, which is usually needed

within an active set in a given cluster. We model the clusterhead election process via

lateral inhibition with a set of three ODEs for each sensor node that is an active cluster

member. The first ODE involves ei(t), defined in the same way as in the previous

section. Second, let di(t) ∈ [0, 1] denote the time-evolving distance indicator, defined

as follows:

di = 1−
∑

disti,Ni

maxi
∑

disti,Ni

, (4.8)

where
∑

disti,Ni
is the sum of the square of the distance from sensor node i to each

of its neighbors, which in this case are all active cluster members, given the one-hop

coverage assumption made earlier. In other words, each sensor node i sums up the

square of the distance from every other sensor node in the active set, and normalizes

it by dividing with the maximum such quantity. The square of the distance is used

since we assume that the energy required for node communication is proportional to

distance squared, as in (4.6). Thus, a low value of di means that the node is not

suitably located to serve as the clusterhead since it will incur a higher communica-

tion cost. Finally, let ci(t) ∈ [0, 1] be the time-evolving clusterhead indicator, where

a steady state value above a certain threshold means that the sensor node is selected

to be the clusterhead, and a value below that threshold indicates that it is not se-

lected. Due to the fact that such a kind of inhibition takes place on a complete graph

comprising all active cluster members, only one node will emerge victorious from this

competition since the inhibition property holds. Specifically, the system of ODEs for
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node i is given by

ėi = −ei + fce(ci)

ḋi = −di + fde(ci)

ċi = ξ · (− ci + wegē(ēi) + wdgd̄(d̄i)), (4.9)

where ξ is a positive constant, and we and wd are nonnegative constants that represent

weights on the energy and distance factors, respectively. Moreover, we +wd = 1. The

functions fce(ci), fde(di), gē(ēi), and gd̄(d̄i) are in the form defined in (2.1), with the

constants particularly chosen for each function. The notations ēi and d̄i indicate

the average relative remaining energy level and average relative distance indicator

value over all the neighbors of the ith node, respectively. As in the induction and

inhibition phases, the continuous-time model can be transformed into a system of

difference equations, while the constant ξ is a measure of the convergence speed of

the clusterhead election phase, with details skipped here.

D. Asymptotic Analysis for Networks of Infinite Size

So far in this chapter, we described and studied the clustering model based on lateral

induction, the node activation model based on lateral inhibition, and the clusterhead

election model also based on lateral inhibition. For finite-size networks, the above

models can be directly applied and the performance can be verified by simulations.

However, for networks of super-large size, it is hard to verify the performance by

simulations. In this section, we attempt to look at asymptotically large wireless

sensor networks, and study the asymptotic behavior of the proposed models, with a

focus on the induction case. Specifically, we provide estimates for the average value

of the cluster size after the completion of the induction phase.
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1. Random Geometric Graphs

Before we get into the details, we introduce some notation and definitions. We let

n denote the number of nodes initially present in the field, i.e., the number of nodes

deployed in the area of interest. Each sensor node has a transmission range of r

meters and we assume that it can successfully communicate with every node that lies

within its transmission range. We model our network as a random geometric graph

(RGG) [38], denoted by G(n, r).

An RGG is mathematically defined over a metric space S and a distance measure

δ. Let V denote the node set, with n = |V | being the cardinality of the set V , i.e.,

the number of nodes in the metric space. The nodes are randomly deployed in S.

The edge set E defines connections between nodes, given as

E = {(u, v)|(u, v ∈ V ) ∧ (0 < δ(u, v) ≤ r)} . (4.10)

In other words, two nodes u and v are connected by an edge if and only if the distance

between them (according to the distance measure δ) is less than the parameter r.

In our WSN scenario we let S = [0, 1]2, that is, our metric space is the unit square

in the two-dimensional Euclidean space. The nodes are uniformly and randomly

deployed over the unit square. Thus, for sufficiently large n, we also associate a node

density to our RGG, which is also equal to n. The distance measure used to determine

the edge set is the Euclidean distance between two nodes. An example of a random

geometric graph consisting of 100 nodes is shown in Fig. 12.

2. Transmission Range and Connectivity in RGGs

One of the most prominent properties of RGGs is connectivity. We are usually inter-

ested in the transmission range of the nodes such that the WSN is connected with
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Fig. 12. A typical random geometric graph. The metric space is the unit square,

n = 100, and the transmission radius conforms to (4.11).

high probability (whp). The transmission range r is now a function of the number

of nodes n; r(n). As the number of nodes n present in the network goes to infinity,

there exists a critical transmission range rc above which the RGG graph G(n, r(n))

nodes is connected whp. Specifically, the critical radius for connectivity [38, 39] is

rc =

√
log(n)

n
, (4.11)
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Fig. 13. Average number of cluster members.

where log(n) is the natural logarithm. In the asymptotic case where n goes to infinity,

an RGG with a transmission range according to (4.11) is connected whp. That is,

limn→∞ P ({G(rc(n), n) connected}) → 1.

3. Average Number of Cluster Members

We denote by M the set of cluster members after the completion of the induction

phase. Let m = |M | be the cluster size, and m̄ be the average value of m. We are

interested in estimating the average number of cluster members, when the observation
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quality function has the form as defined in (4.5). Given a RGG consisting of n sensor

nodes, i.e., G(n, r), and an induction evolution given by (4.1), an empirical estimate

of the average number of cluster members after the completion of the induction phase

is given as:

m̄ = αnlog(πlogn) + β, (4.12)

where the term πlogn is the average node degree, as can be shown for the given RGG.

The terms α and β depend on σ, as well as the thresholds of the switching function in

the induction algorithm. The above result can be verified by the following numerical

simulations.

For different random realizations, we assume that all networks are deployed over

the unit square. The transmission range of each node is as defined for critical con-

nectivity in (4.11). The target to be detected is situated at the center of the field,

namely at coordinates (0.5, 0.5). We set the threshold for the cluster membership

indicator as 0.5. We adopt parallel synchronous updates of the state vectors across

the networking nodes. Fig. 13 shows the simulated average cluster size simulations

for RGGs of size up to n = 5000, where each point is average over 500 random runs.

We see that there exists an affine relationship between the average number of cluster

members and the quantity n log(π log n). As the number of nodes in the network

increases, the number of cluster members increases linearly as well.

Fig. 14 shows the average number of cluster members over network size, for differ-

ent values of the constant parameter σ in the observation quality function as defined

in (4.5). As expected, larger values of σ mean that the observation quality values

decay more slowly with distance, and hence more sensor nodes have the opportunity

to become cluster members.
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E. Summary

In this chapter we first studied the proposed network control model over three as-

pects: the clustering control via the induction model, the node activation control over

the inhibition model, and the clusterhead election over a modified inhibition model.

Various stability and convergence issues were also discussed. We then conducted some

asymptotic study over infinitely-large networks, where we gave an empirical estimate

of the cluster size.



42

CHAPTER V

CONCLUSION

In this thesis, inspired by inter-cell biological models, we first proposed a distributed

clustering algorithm for WSNs based on the biological lateral induction model, and a

subsequent algorithm for further node activation control based the biological lateral

inhibition model. In addition, we proposed a clusterhead election algorithm based

on a variant of the biological lateral inhibition model. Such a three-phase protocol

is event-driven and runs in a purely distributed fashion. Specifically, when a target

appears in the field, the sensor nodes create a compact cluster in the vicinity of the

target by collaborating as a functional cluster. Then, via the competitive inhibition

phase, only a subset of the cluster members remain active while the rest stay in

idle mode to save energy. Finally, a clusterhead is elected among the active cluster

members to collect and forward sensing reports.

Simulations for the induction algorithm on a network of finite size show that,

by fostering collaborative interaction, the clustering phase of our model improves

the energy efficiency through the construction of compact clusters. In addition, this

procedure is purely distributed; all decisions by the nodes are performed locally by

observing their neighboring environment. In the case of networks of infinite size, we

examine the average number of cluster members.

A. Future Work

We can investigate a recovery model for large-scale wireless sensor networks in the

premise of inter-cell signaling. Much like an organism heals from wounds, we would

like the sensor nodes to respond to attacks in a way that will not compromise the

network. A proposed solution is that nodes surrounding an affected area form a
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protective patch via local lateral induction, in a way reforming the cluster. Then, the

nodes proceed with a subsequent phase of local lateral inhibition until some nodes

around the affected region become active, and such active patterns could change

periodically to save energy.
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