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A Biologically Inspired Visual Pedestrian Detection System

Fok Hing Chi Tivive, Member, IEEE, and Abdesselam Bouzerdoum, Senior Member, IEEE

Abstract—In this paper, we present a biologically inspired
method for detecting pedestrians in images. The method is
based on a convolutional neural network architecture, which
combines feature extraction and classification. The proposed
network architecture is much simpler and easier to train than
earlier versions. It differs from its predecessors in that the
first processing layer consists of a set of pre-defined nonlinear
derivative filters for computing gradient information. The
subsequent processing layer has trainable shunting inhibitory
feature detectors, which are used as inputs to a pattern classifier.
The proposed pedestrian detection system is evaluated on the
DaimlerChrysler pedestrian classification benchmark database
and its performance is compared to the performance of support
vector machines and Adaboost classifiers.

I. INTRODUCTION

In recent years, there has been much attention focused
on the problem of pedestrian detection in real-world images
due to its potential applications, for example, in video
surveillance and driver-assistance systems. The vision-based
pedestrian detection problem is very challenging from a
machine vision perspective because pedestrians can appear
in highly cluttered environments and have a wide range of
appearances due to different pose, body size, clothing, and
outdoor lighting conditions. The general idea of solving this
type of visual pattern recognition problem is to extract salient
features from the region of interest (ROI), features that can
differentiate the full human figure from another entity in the
scene. In a human face, facial features such as the nose,
eyes and mouth form vital cues for classifying faces from
non-face objects; however, for pedestrian classification more
abstract features are required.

In this paper, we propose a pedestrian detector inspired
by the human visual system. It comprises a hierarchical ar-
chitecture that preserves the topographical mapping between
the input image and the feature-extraction layers; the last
layer is reserved for classification of the input window into
pedestrian or non-pedestrian patterns. Here shunting neurons
are used as feature detectors, and the visual information
processing is segregated into two parallel pathways: the “on”
and “off” channels. Furthermore, the feature extraction and
classification stages are designed within the same framework
and optimized simultaneously with respect to one another.

The organization of the paper is as follows. Section II
presents a brief review of previous work on pedestrian
detection. Section III describes the architectural concepts of
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two well-known convolutional neural networks (CoNNs), fol-
lowed by the description of the proposed pedestrian detection
system and its training method in Section IV. The training
and testing procedures are described in Section V. Finally,
concluding remarks are presented in Section VI

II. PREVIOUS WORK ON PEDESTRIAN DETECTION

Most pedestrian detection systems have a recognition
stage in which a classification algorithm is employed to
discriminate a pedestrian from other objects, given a ROI.
In the literature, various techniques have been reported for
pedestrian classification; here, we only mention some of
the popular algorithms that have been successfully applied
in pedestrian detection systems (see [1], [2] for a compre-
hensive review on pedestrian detection). Papageorgiou and
Poggio [3] developed a trainable pedestrian detection system,
which uses an overcomplete dictionary of Haar wavelets for
feature extraction and support vector machines (SVMs) for
classification. Viola et al. [4], on the other hand, employed
Harr-like features in conjunction with the adaptive boosting
(AdaBoost) algorithm to develop a cascade of classifiers
using motion and appearance information. Zhao and Thorpe
[5] use stereo cameras and the disparities discontinuity algo-
rithm to segment an image into sub-image object candidates.
Then, a split-and-merge procedure is applied on these sub-
images to form objects that satisfy pedestrian size and
shape constrains. Finally, the gradient information of these
objects is passed to a multilayer perceptrons for pedestrian
classification. Another neural network-based algorithm for
pedestrian detection was proposed by Wohler and Anlauf
[6]. It is a time-delay neural network with spatio-temporal
receptive fields to extract information directly from the
temporal sequences of gray-scale image. Such an approach
avoids hand-tuning the network structure parameters, as it is
done during the training phase.

III. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are powerful hierarchical
multilayered networks designed for visual pattern recogni-
tion problems, such as face detection [7], handwritten digit
recognition [8], facial expression analysis [9], and video
quality assessment [10], just to name a few. These neural
networks are inspired by Hubel and Wiesel hierarchy model
of the visual cortex [11], where the processing elements
are structured in a hierarchical order to extract local fea-
tures from the input image. The earliest model of CoNNs
was proposed by Fukushima [12], called Neocognitron. Its
network architecture consists of several stages, and each
stage is made up of different layers, namely the S-layer
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(simple layer), the C-layer (complex layer) and the V-layer.
In these layers, the neurons are arranged into planes to
extract two-dimensional (2-D) information from the prior
layer, and each layer has a specific task. The role of the
S-layers is to extract simple features, whereas the C-layers
have the responsibility of compressing the extracted features
and blurring their locations. The V-layer provides a shunting
mechanism, which enables the S-layer to extract not only
learned features, but also distorted versions of these features.
Across the Neocognitron network, the S- and C-layers are
alternately arranged and the density of neurons in each layer
decreases along the network. The Neocognitron, however,
is a complex, massively connected network architecture that
is often trained using unsupervised learning. LeCun and his
colleagues [8], on the other hand, developed a convolutional
neural network architecture, dubbed LeNet-5, which was
trained with a supervised learning algorithm. Their network
is built upon three architectural concepts: local receptive
field, weight sharing, and spatial or temporal sub-sampling.
Rather than having an S-layer followed by a C-layer, LeNet-5
consists of alternating convolutional and sub-sampling layers.
Furthermore, the information processing units used in the
convolutional layers are sigmoid-type neurons. Both LeNet-
5 and Neocognitron share the following characteristics:

• Topographical mapping: the spatial topology of the
input is well captured by the network structure, using
the concept of local receptive fields.

• The feature extraction stage is integrated with the clas-
sification stage; the free parameters in both stages are
generated by learning.

• The number of trainable parameters is reduced using
the concept of weight sharing, leading to improved
generalization.

Both the Neocognitron and LeNet-5 have complex net-
work architectures with a large number of free parameters,
despite the weight sharing mechanism. LeNet-5, which was
initially developed for hand-written digit recognition, has
over 300,000 connections and 60,000 free parameters. The
Neocognitron, on the other hand, has a complex network
architecture comprising several types of processing units.
We have recently developed a CoNN architecture, called
SICoNNet, which employs the concepts of weight sharing
and receptive fields, but uses shunting inhibition for feature
extraction [13]–[15]. In order to reduce the number of inter-
connections between layers, two partial connection schemes
were developed: binary and toeplitz connections. SICoN-
Nets have been applied successfully to a number of visual
pattern recognition problems, namely face detection [13],
gender recogntion [16], handwritten digit recognition [17],
and texture segmentation [18]. In this paper, the SICoNNet
architecture is modified so as to reduce further the number of
free parameters, and the modified architecture is applied to
pedestrian detection. The next section describes the modified
SICoNNet architecture and its training algorithm.

IV. PROPOSED PEDESTRIAN DETECTION SYSTEM

A. Network Architecture

The proposed network model has some similarities with
LeNet-5 and Necognitron in that it is also based on the three
aforementioned architectural concepts of weight sharing,
local receptive fields, and sub-sampling. The first layer is the
input layer which is an array of input nodes of size N×M . It
is followed by three processing layers: two hidden layers for
feature extraction and the output layer for classification. The
second and third layers consist of planes of neurons (also
called feature maps) whose role is to extract local features
from the previous layer. The feature extraction mechanism
can be described as follows. In each feature map, the neuron
is connected to a local neighborhood of the previous input
plane. This local neighborhood is the receptive field of the
neuron and the set of weights linking the neuron to its
receptive field is shared among all the neurons of the feature
map, as shown in Fig. 1(a); in other words, the set of weights
of the neuron acts as a filter kernel that is convolved with
the previous input planes to extract local features. These
features are then sent to the last layer for classification of
the given input pattern. Instead of separating the feature
extraction and sub-sampling operations into two successive
layers as in LeNet-5, the receptive fields of adjacent neurons
are shifted by two positions in both directions (vertically and
horizontally). Therefore, the convolution and sub-sampling
layers are merged into a single layer. To avoid a network with
complex connections between layers, we let each feature map
branches out onto two feature maps, similar to a binary tree.
Figure 1(b) depicts the architecture of the proposed network.
The only constraint is that the subsequent layer should have
twice the number of feature maps as the preceding layer.

In LeNet-5 and its predecessors [7], [9], the processing
elements employed in the network are sigmoid-type neurons,
where the neuron performs a weighted sum of the input
signals, which is added to a bias term before passing through
a nonlinear activation function to generate a neural response.
The Neocognitron, on the other hand, has three types of
processing elements, including the V-cell that enables the
network to be invariant to distortions and translations. In
recent years, a new type of artificial neuron, based on the
mechanism of shunting inhibition, has been introduced for
pattern classification and regression [19], instead of the
traditional sigmoid neuron. Shunting inhibitory neurons have
the capability to produce more complex decision boundaries
than the simple hyperplane; for example, a single shunting
inhibitory neuron can solve linearly non-separable problems
such as the 3-bit parity and XOR problems [20]. This type
of neuron has been employed for feature extraction in the
SICoNNet architecture. The response of a single static feed-
forward shunting inhibitory neuron is given by

z =
g
(

�W · �I + b
)

a + f
(

�C · �I + d
) , (1)

where z is the activity of the neuron, �I denotes the inputs
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Fig. 1. Proposed network architecture: (a) the connection strategy between the neuron and its input plane, and (b) a schematic diagram of the network.

within the receptive field arranged in a vector form, a is the
passive decay rate, �W and �C are the “excitatory” and “in-
hibitory” weights, respectively, b and d are constant biases,
and f and g are the activation functions. One advantage the
shunting neuron has over sigmoid and radial basis function
neurons is that the input-output characteristic is adaptive;
for example, using the logarithmic sigmoid for the activation
functions f and g, and choosing randomly the weights and
biases, we obtain the input-output transfer characteristics
presented in Fig. 2. Clearly, this shows the input-output
transfer characteristics of a shunting inhibitory neuron can be
altered by varying the weights and biases only. This means
that a single shunting neuron is able to generate complex
decision boundaries if the right weights and biases can be
found.

Fig. 2. The input-output transfer characteristics of a shunting inhibitory
neuron.

For the final layer of the network, the processing elements

can be simply linear or sigmoid neurons. More complex
classifier can be employed, but the objective here is to inves-
tigate the efficiency of the network using shunting inhibitory
neurons as feature detectors. The weights and biases in both
hidden layers can be obtained with a training algorithm, but
this may increase the complexity of the network and its
training time. Therefore, we have used shunting inhibitory
neurons with adjustable weights only in the second hidden-
layer. In the first hidden-layer, shunting neurons are used as
nonlinear bandpass filters, with predefined set of weights,
to extract “coarse information” from the input layer. The
information extracted by the first hidden-layer is refined by
the second feature extraction layer. Bandpass filters were
chosen because many approaches to pedestrian detection in
the literature are based on edge information. In our approach,
we use directional Gaussian derivative filters for the weight
vector �W in (1). These filters are obtained by convolving
a Gaussian filter with 2-D derivative masks. These masks
are the basic horizontal (MH ), vertical (MV ), and radial
derivatives (MR) shown below:

MH =

⎛
⎝

1 1 1
0 0 0

−1 −1 −1

⎞
⎠ , MV =

⎛
⎝

−1 0 1
−1 0 1
−1 0 1

⎞
⎠

MR =

⎛
⎝

−1 −1 −1
−1 8 −1
−1 −1 −1

⎞
⎠ .

Any directional derivative masks can be computed by com-
bining the horizontal and vertical derivatives, i.e.,

Mθ = cos(θ) · MH + sin(θ) · MV . (2)

Overall, we have designed nine derivative masks: the radial
derivative and eight directional derivative masks oriented
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at 00, 22.50, 450, 67.50, 900, 112.50, 1350, and 157.50

angles. While the weight vector �W in (1) is replaced by the
derivative of the Gaussian mask (G′), the weight �C is simply
a 7× 7 Gaussian mask (G) with σ = 1. We should note that
the same Gaussian mask is used to compute the directional
derivative masks. The remaining parameters in (1), the bias
and passive decay rate, are set to zero. Hence, the feature
map response at the first hidden-layer is given by

ZL2 =
G′ ∗ I

G ∗ I
. (3)

Each of these feature maps is then connected to two feature
maps in the subsequent layer, without sub-sampling. Fur-
thermore, the “on” and “off” responses are segregated into
separate channels; i.e., in the second hidden-layer half of the
feature maps process positive responses, whereas the other
half process the negative responses:

z+
L3 =

g
(

�W · max(�ZL2, 0) + b
)

a + f
(

�C · max(�ZL2, 0) + d
) , (4)

z−L3 =
g
(

�W · min(�ZL2, 0) + b
)

a + f
(

�C · min(�ZL2, 0) + d
) , (5)

where the receptive field [W ] and [C] have size of 5 × 5.
Before passing the feature to the classification stage, the
feature maps undergo a sub-sampling operation by shifting
the receptive fields of adjacent neurons by two positions,
horizontally and vertically. Here only one output neuron is
required, and we simply use a linear neuron to perform
classification. More complex classifiers could be used at the
expense of simplicity and with increased computational cost.

B. Training Method

Most CoNNs, such as LeNet-5, are trained with an online
algorithm, i.e., the parameters of the network are adjusted
after every input pattern. This is mainly due to the com-
plexity of the network architecture and the large number
of free parameters. Although online algorithms can process
a large number of input patterns relatively quickly, they
are not always able to optimize the cost function. Since
the proposed network has a relatively simple architecture—
the only free parameters are the weights and biases of the
second hidden-layer and the output neuron—the Levenberg-
Marquardt algorithm [21] has been used to train the new
network architecture. During the initialization phase, the
network is initialized with random values taken from a
uniform distribution in the range [−1, 1]. The passive decay
rate constant, however, is constrained so as to avoid dividing
by zero in (1), i.e.,

a ≥ ε − inf(f), (6)

where ε is a small positive constant and inf(f) denotes the
infimum of the activation function f—we should note that
f must be bounded from below. Therefore, the hyperbolic

tangent function is chosen as the activation function f ,
whereas the exponential function is used for g. The above
constraint in (6) is enforced during the weight initialization
and training phases. The target outputs for pedestrian and
non-pedestrian patterns are set to 1 and −1, respectively.

V. EXPERIMENTAL PROCEDURE

In this section we introduce the experimental procedure
and present the experimental results. First the database
employed for training and testing the pedestrian detection
system is described in the next subsection, followed by the
experimental results and a discussion.

A. Pedestrian Detection Database

Many researchers have used their own databases for
training and testing their pedestrian detection systems; these
databases often consist of only few hundreds of pedestrian
images and a set of scenery images that do not contain people
standing in an up-right position, e.g., the MIT pedestrian
database [3] and the INRIA database [22]. Recently, the
DaimlerChrysler research center has established a benchmark
database for further research in pedestrian classification—
the database is publicly available on the Web1. It contains
three training sets and two test sets. Each set contains 4800
segmented pedestrian images of size 18× 36, i.e., the height
and width are 36 and 18 pixels, respectively. Instead of
randomly collecting windows from the scenery images which
can be “easy” non-pedestrian patterns when the scenery
image has uniform background like the sky or pavement,
the researchers from the DaimlerChrysler research center
employed a bootstrapping strategy with a pedestrian detector
to select negative samples for the training and test sets [23].
Some examples of the pedestrian and non-pedestrian images
from DaimlerChrysler database are shown in Fig. 3.

(a) Pedestrian examples 

(b) Non-pedestrian examples 

Fig. 3. Examples of pedestrian and non-pedestrian images contain in the
training and test sets.

B. Experimental Results and Discussion

In [24], Munder and Gavrila employed the Daimler-
Chrysler pedestrian database to study several classification
methods for pedestrian detection. These classifiers are the
convolutional neural network developed by Wohler and An-
lauf [6], SVMs, and the Adaboost classifier. Moreover, they

1The DaimlerChrysler pedestrian classification benchmark dataset is
available at: http://www.gavrila.net
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Fig. 4. Detection vs false positive rate of six classifiers trained on different combination of training sets 1, 2, and 3 and and evaluated on test sets T1
and T2. The solid ROC curves illustrate the performance of the system with the average response to the input pattern and its mirror-image, whereas the
dotted curves are obtained by using only the response to the input pattern.

used principal component analysis and wavelet transform for
feature extraction. To compare with these approaches, we
employ the same training and testing procedure; that is, we
generate three classifiers, and each classifier is trained with
two out of three training sets and the remaining set is used for
validation. All three classifiers are then tested on the two test
sets to produce six different receiver operating characteristic
(ROC) curves. Each curve represents the detection rate of the
classifier versus false positive rate on a given test set. In other
words, at a certain acceptable false positive rate, the detection
rate of the classifier can be determined from the ROC curve.
Finally, the six ROC curves are averaged to produce the
final curve that is used to compare the performance of the
proposed method with the results obtained in [24].

From our previous studies on human gender recognition
[16], [25], we found that by taking the average response to
the input pattern and its mirror-image, a slight improvement
in the classification accuracy is obtained; in other words, the
input pattern and its folded version along the Y-axis are sent

to the network and both responses are averaged to produce
the final score of the input pattern. Here, we also investigate
the performance of the pedestrian detection system with
and without the network response. In the DaimlerChrysler
pedestrian database, the training sets are labelled as 1, 2, 3
and the test sets as T1 and T2. Therefore, each network
is trained on a combination of two training sets, i.e., 12,
13 and 23, and evaluated on T1 and T2. The experimental
results presented here are obtained from a single trial, i.e.,
each network is trained once only. The ROC curves for each
network are shown in Fig. 4, where each figure has two
ROC curves: the dotted curve is generated directly from the
network response to the input pattern, whereas the solid ROC
curve is computed from the average response to the input
pattern and its mirror-image. The ROC curves in the first
row of Fig. 4 are for networks evaluated on test set T1, and
those in the second row are obtained from T2. The ROC
curves show that the data set T1 is slightly more difficult
to classify than T2, and the patterns in training set 12 are

2008 International Joint Conference on Neural Networks (IJCNN 2008) 707
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Fig. 5. ROC curves averaged over the six classifiers.

more representative than those in the training sets 23 and 13.
Across all six figures, the area under the dotted ROC curve is
smaller than the area under the solid ROC curve; this shows
that using the input pattern and its mirror-image improves
the detection performance slightly.

To benchmark the proposed method with other existing
approaches, we compare the detection rate of our method
with those of SVMs, CoNN and Adaboost classifier, given
in [24]. In Fig. 8 of [24], the detection rate of the eight-
stage cascade Adaboost classifier is around 85% at 10% false
positive rate. At similar false positive rate, the SVM method
achieves detection rates in the range of 75% to 90% (see
Fig. 5(c) and (d) of [24]), and the detection performance
of the CoNN developed by [6] is around 70%. Compared to
these methods, the proposed system achieves a higher classi-
fication accuracy, with a detection rate exceeding 90% at the
same false positive rate as shown in Fig. 5. These results are
obtained using a single hyperplane at the classification stage,
which means that the proposed system achieves efficient
feature extraction using the shunting inhibitory neuron as
feature detector.

VI. CONCLUSION

In this article, we have proposed a biologically inspired
pedestrian detection system. It comprises two feature ex-
traction layers, followed by a single unit as classifier. The
feature extraction layers contain feature detectors that are
based on the biophysical mechanism of shunting inhibition.
In contrast to existing systems, such as CoNNs, our system
has a much simpler architecture with fewer free parameters,
as its first processing layer contains pre-defined nonlinear
derivative filters. The experimental results demonstrate that
the proposed approach has the capability to extract useful
local features directly from the input image, features that
can be classified with a single hyperplane. The performance
of the proposed system compares favorably with systems that

use wavelets for feature detection and SVMs and Adaboost
for classification.
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