
Communicated by David Willshaw 

A Biologically Supported Error-Correcting Learning Rule 

Peter J. B. Hancock 
Leslie S. Smith 
William A. Phillips 
Centre for Cognitive and Computational Neuroscience, 
Departments of Computing Science and Psychology, 
University of Stirling, Stirling, Scotland FK9 4LA 

We show that a form of synaptic plasticity recently discovered in slices 
of the rat visual cortex (Artola et al. 1990) can support an error-correcting 
learning rule. The rule increases weights when both pre- and postsy- 
naptic units are highly active, and decreases them when pre-synaptic 
activity is high and postsynaptic activation is less than the threshold 
for weight increment but greater than a lower threshold. We show 
that this rule corrects false positive outputs in feedforward associative 
memory, that in an appropriate opponent-unit architecture it corrects 
misses, and that it performs better than the optimal Hebbian learning 
rule reported by Willshaw and Dayan (1990). 

1 Introduction 

Learning rules that correct errors are most often used in cognitive simula- 
tions and in the technological applications of neural nets. The Delta rule 
(Widrow and Hoff 1960) is a typical example. Three terms are required to 
specify the weight change: presynaptic activity, the postsynaptic activity 
produced by the net, and the postsynaptic activity specified by the train- 
ing signal. Performance improves gradually with repeated presentation 
of the whole training set. There is psychological evidence for such a rule 
(e.g., Sutton and Barto 1981), but no biological evidence has yet been 
presented for a rule of this kind. Learning rules based on biological evi- 
dence typically use just two terms to specify weight change: presynaptic 
activity and postsynaptic activity. They do not require multiple presenta- 
tions of the training set to reach their optimum performance. The many 
forms of this kind of learning are collectively called Hebbian rules. It is 
well established that the computational power of error-correcting rules 
exceeds that of the Hebbian rules. 

Recently Artola et al. (1990) reported a new form of synaptic plasticity 
in slices of adult rat visual cortex. They show that tetanic presynaptic in- 
put produces long-term potentiation (LTP) if postsynaptic depolarization 
exceeds a high threshold, and long-term depression (LTD) if it does not 
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Figure l: Simple version of the ABS rule, showing weight change for a synapse 
from an active presynaptic unit. 

exceed the high threshold but does exceed a lower threshold. The high 
threshold is related to NMDA receptor-gated conductances. At first sight 
this seems to be just another Hebbian rule, but it is unusual because LTD 
occurs when the postsynaptic unit is moderately active but not when 
it is less active. This nonmonotonic relationship of weight change to 
postsynaptic activation is the critical difference. 

A simple form of this rule is shown in Figure 1. We shall refer to it as 
the ABS rule. It resembles the proposal of Bienenstock et al. (19821, but it 
does not use the time averages of unit activity to specify weight change 
thresholds. 

To see a possible rationale for this rule consider the development of 
a feedforward associative net learning a random set of pairs of binary 
patterns. The net consists of M input units fully connected to N out- 
put units. These output units compute a weighted sum of their inputs 
(including the training signal) and give a binary output determined by 
whether the activation is above or below their output threshold. Initially, 
all the weights are assumed to be sufficiently small that the only output 
units to be active are those driven by the training signal. We assume that 
this signal reaches the threshold for weight increase. As the loading in- 
creases, some of the units that should, according to the training signal, be 
OFF start to become active. This activity triggers the weight decrement: 
the rule thus reduces specifically the weights that are causing problems. 
This is a simple form of error correction. A few high weights from active 
input units to inactive output units can be tolerated, and indeed should 
be because of the other patterns that have been learned. Reducing all 
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such weights, as a simple two term rule would, is likely to lead to other 
errors. 

Here we begin the computational study of this learning rule, and 
compare it with the Hebbian rule that Willshaw and Dayan (1990) have 
shown to be optimal of that class. They demonstrate the requirement 
for decreases in synaptic efficacy that on average match the increases. 
The optimal rule is the covariance rule (Sejnowski 1977), which they call 
Rule 1. Two simpler cases (Rules 2 and 3) are shown to give good but 
slightly less than optimal results. There is biological evidence for both of 
the simpler rules (Rauschecker and Singer 1979; Stanton and Sejnowski 
1989). 

2 ABS Rule Definition 

This study of the ABS rule is designed for direct comparison with the 
results of Willshaw and Dayan (1990). They considered the storage in a 
single-layer feedforward associative net of s2 pattern pairs, each consist- 
ing of an input vector A h )  and an output vector &). The components 
of each A(w) are set to 1 with a probability of s, and to a low value c with 
probability (1 - s) (we are substituting s for their p to avoid confusion 
with probability p later). Part of their conclusion is that the value of c 
is not important, given appropriate output thresholds and their rules, so 
we always set it to 0. Components of a B(w) are set to 1 with a proba- 
bility of T and 0 with a probability of 1 - T .  The activation of an output 
unit, X,, is given by the weighted sum of its inputs: 

i=l 

If the activation is above the unit’s threshold 8,, its output 0, is set 
to 1, otherwise to the low value c (0): 

1 if X, > O., 0 -  
- 0 otherwise 

The simple form of the learning rule shown in Figure 1 may be defined 
by 

AW,, = A+ if X, 2 Of and A , ( w )  = 1 
A- if 0- < Xj < O+ and A,(w) = 1 
0 otherwise 

We do not need a specific value for O+ in our simulations. We assume 
that the target output signal is strong enough to drive units into weight 
increment and that the signals from the adaptive weights are not.’ Here 

’ Artola et a / .  show that, under bicuculline disinhibition, the internal signals from 
the adaptive weights can drive the cell sufficiently to cause weight increment. Since 
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we also assume that the training inputs consist of binary signals. With 
these two assumptions we can reformulate the ABS rule as follows: 

AW,, = A+ if B3(w) = 1 and A,(w) = 1 
A- if B,(w) = 0 and X ,  > 8- and A , ( w )  = 1 
0 otherwise 

These two forms of the ABS rule are equivalent if each unit is seen as 
having two different inputs, the modifiable connections of the associative 
memory and the training signal with which the associations are being 
made: 

M 
x, = C,4,(w)I/I/,, + D,(dJ)d 

r= l  

Here rl is the strength of the training signal, set such that only it can 
drive the unit sufficiently to reach the weight increment threshold. 

This specification of the rule allows weights to change between being 
positive and being negative, which is not biologically plausible (Crick 
and Asanuma 1986). One of the implications of Willshaw and Dayan’s 
work is that negative weights are required for optimal storage. To allow 
direct comparison with their rules we have allowed negative weights in 
the first experiments reported below. This is then corrected in the section 
discussing an architecture with opponent units. 

Note that Q- < Q3, in order to prevent falsely high outputs. The unit 
is active above B- ,  but not sufficiently active to be counted as ON in 
binary terms. However, if the difference is too large, the rule resembles 
the simple binary rule and there is a danger of overcorrection. 

3 The Effects of Error Correction 

Hebbian rules with binary signals lead to a distribution of activation 
levels after learning illustrated by Figure 2a. The overlapping tails of 
the desired high and desired low distribution are where the errors occur. 
The ABS rule is able to cut the tail off the high end of the desired low 
distribution, while the full three-term Delta rule is able to correct errors 
in both directions, (Fig. 2b, c). Obviously there comes a point where the 
Delta rule will also fail, but it occurs at higher loadings than for two-term 
rules. Note that we are using threshold logic units, which may not be 
biologically plausible. However it is clear that no form of output function 
could prevent errors if the two distributions overlap. 

With additional circuitry the ABS rule is also able to correct misses. 
The requirement is to replace the single output units with mutually 

this would lead to a runaway self-association, with strong weights getting stronger, we 
assume that the threshold was reached because of the disinhibition, and that normally 
other inputs would also be required. 
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Figure 2: Idealized activation frequency distributions after learning for a single 
output unit, plotted separately for when it should have low and high outputs. 
(a) Result of simple binary two term rules: the region of overlap indicates that 
errors will be made, wherever the threshold is put. (b) The ABS rule corrects 
false positive errors, reducing the region of overlap. (c) The Delta rule corrects 
errors in both directions. 

inhibitory opponent pairs. This may be regarded as a simplification of 
the local inhibition that is common in cortex. Whenever a unit is trained 
to be ON, its opponent is trained to be OFF, and vice versa. False positive 
outputs are corrected as before. The way that misses are corrected can be 
seen by considering why a unit that is below its output threshold has too 
little activation. Part of the reason is that its own weights are too low, but 
it is also being inhibited by its opponent cell. By symmetry, this unit is 
responding too strongly and will reach the weight decrement threshold. 
Its activity will be decreased, reducing the inhibition and allowing the 
other unit to give a higher output. 

The simple two-term rules learn in a single pass: unless weights are 
limited in some way further presentations of the training set will not 
affect the result, only the size of the weights and activation. As with the 
Delta rule, the ABS rule gives improved performance with additional 
presentations. 

4 Simulation Experiments 

4.1 Single Unit Architecture. The performance of the ABS rule was 
tested by repeating the experiments of Willshaw and Dayan (1990), who 
measured signal-to-noise ratios and the number of bit errors for a feedfor- 
ward associative net. Their computations of signal to noise ratio assume 
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the distributions are gaussian. The ABS rule distribution (Fig. 2b) is not 
gaussian, so that the figures produced are not directly comparable. We 
therefore report only the actual numbers of errors produced, since mini- 
mizing this is more important. 

The bit errors were counted by two methods. Initially we used the 
threshold set by Willshaw and Dayan‘s method, which is designed for 
gaussian distributions. As might be expected from Figure 2, the ideal 
threshold for the ABS rule is rather lower than for the simpler Hebbian 
rules. An optimal threshold can be found by searching through the ac- 
tual responses of each unit in the region where desired low and desired 
high outputs overlap to minimize the number that are wrong. This pro- 
cedure produced significantly better results. We have not yet looked for 
a method of setting something like the optimal threshold for each unit 
without recourse to such serial search procedures. 

The optimal Hebbian rules of Willshaw and Dayan (1990) specify the 
sizes of the weight change parameters for given bit probabilities. The ABS 
rule decrements the weight only when an error occurs, so that if Willshaw 
and Dayan’s conclusion that the expected value of the weight should be 
zero still holds, the size of the decrement has to be larger than is given by 
their binary homosynaptic depression Rule 3. This rule gives a weight 
increment of 1 - T and a decrement of T (T  is the output bit probability). 
We therefore fixed the increment size at 1 - T,  and experimented with a 
range of values for the decrement size. The initial value of all the weights 
was zero, there being no need here for the symmetry breaking required 
by some other methods. The results are shown in Table 1. 

A number of things are apparent from Table 1. The absolute level 
of performance is good, and improves as bit probability decreases. It 
learns 200 patterns when the bit probability is 0.1 with on average only 
0.05 bits in error out of 20, so at least 190 of the 200 output patterns 
will be completely correct. As predicted, for both bit probabilities, the 
optimal size of A- is larger than the value specified by Willshaw and 
Dayan’s Rule 3. Near the optimum, the precise value of A- is not critical. 
In both cases the average value of the weights is near zero at optimal 
performance. These results were used to set the sizes of the weight 
changes to their optimal value in the following experiments. 

We next compared the ABS rule with the optimal Hebbian rule (Rule 1) 
of Willshaw and Dayan (W&D) over a range of bit probabilities. The re- 
sults are given in Table 2. The ABS rule does better at all bit probabilities 
and in contrast to normal Hebbian rules, its performance improves with 
training. However, there is little room for improvement at low bit prob- 
abilities and the limit is quickly reached. 

4.2 Opponent Architecture. In the simple architecture of the preced- 
ing experiments the ABS rule corrects false positives. In an architecture 
with twice as many output units arranged in mutually inhibitory pairs it 
also corrects misses. The internal activations for each unit are calculated 
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Table 1: Results from a net with 512 input units and 20 output units, with 200 
patterns, averaged over 10 runs, with 5 training cycles. Weight increment is A+, 
weight decrement A-. Avg weight is the average of all weights to all 20 output 
units. Bit errs is the average number of errors per 20-bit pattern, counted using 
the threshold used by W&D. Min errs is the number of bit errors given by an 
optimal threshold for each unit. 

A- 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

Bit prob s,r = 0.1, A+ = 0.9 Bit prob s,r = 0.5, A+ = 0.5 

Bit errs 

0.135 
0.06 
0.05 
0.05 
0.05 
0.05 
0.05 
0.052 
0.053 

Min errs 

0.065 
0.018 
0.0125 
0.0055 
0.003 
0.0025 
0.002 
0.001 
0.0015 

Avg weight Bit errs Min errs 

1.8 
0.43 
0.19 6.38 5.97 
0.06 3.86 3.58 

-0.02 1.6 1.41 
-0.03 1.04 0.85 
-0.09 1.01 0.81 
-0.16 1.01 0.82 
-0.19 1.05 0.86 

1.1 0.94 

Avg weight 

50.3 
26.4 
9.3 
3.26 
1.61 
1.32 
1.09 
0.82 

Table 2: Results from a 512 input, 20 output net with 200 random input-output 
patterns, averaged over 10 runs with different pattern sets. Bit errors refers to 
the average number of errors per pattern, counted using the threshold used by 
W&D. Min errors is the number of bit errors given by an optimal threshold for 
each unit. 

W & D Rule 1 

Bit Min 
s,r errors errors 

0.5 1.07 0.89 
0.4 0.97 0.82 
0.3 0.72 0.56 
0.2 0.35 0.25 
0.1 0.08 0.027 
0.05 0.03 0.003 

ABS 5 epochs 

Bit Min 
errors errors 

1.03 0.86 
0.82 0.63 
0.54 0.32 
0.24 0.06 
0.05 0.004 
0.02 0.0 

ABS 10 epochs 

Bit Min 
errors errors 

0.77 0.50 
0.64 0.29 
0.48 0.12 
0.24 0.015 
0.05 0.004 
0.02 0.0 

ABS 20 epochs 

Bit Min 
errors errors 

0.71 0.34 
0.61 0.13 
0.47 0.044 
0.23 0.005 
0.05 0.004 
0.02 0.0 
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as before, the units then inhibit each other by subtracting some fraction 
K of the opponent unit's activation: 

During training, for each unit where the target is 1, its opponent unit 
is set to 0, and vice versa. The weight change procedure for each unit is 
the same as for the single-sided architecture. 

We are not suggesting that such an orderly arrangement of pairs of 
units is biologically plausible. This design is a simplification that matches 
the assumption of binary training signals. However, local mutual inhi- 
bition is widespread in the cortex and a more realistic simulation might 
contain a layer of units such as that suggested by von der Malsburg 
(1973). Here we only wish to demonstrate the possibilities of the learn- 
ing rule and have kept the architecture as simple as possible. 

The opponent architecture also allows the problem of negative weights 
to be addressed. Effectively, we are simply splitting each weight in two, 
and putting the inhibitory part on a separate unit. For this to work re- 
quires only that the weight decrement threshold 0- be above zero. The 
value is not critical, since the weights and activations are automatically 
adjusted appropriately. A value of 50 proved satisfactory for the weight 
change parameters in use here. 

Results are given in Table 3. This system can learn 200 patterns with- 
out errors, though convergence to this accuracy is quite slow, requiring 

Table 3: Results from a net with 512 input units and 20 x 2 output units trained 
with 200 random input-output patterns, for a variety of parameters. In all cases 
A+ is 0.02, and there are 30 training cycles. 

Bit probability A- K; Min bit errors per pattern - 

0.5 0.1 0.5 1.28 
0.5 0.1 0.8 0.03 
0.5 0.1 0.9 0 
0.5 0.1 1.0 0.37 

0.5 0.15 0.9 0 

0.3 0.1 0.9 0 
0.2 0.1 0.9 0.007 
0.1 0.1 0.9 0.048 
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30 or 40 training epochs. Performance is distinctly better than the single- 
sided architecture, which still makes about 0.1 errors per pattern after 40 
epochs. 

The system is sensitive to the value of IE. (the strength of the mu- 
tual inhibition), with 1 giving distinctly worse performance than slightly 
lower values. The value of A- is less critical, a good value being five 
times the size of A+. Performance tails off as the bit probability de- 
creases: precisely the opposite of the simpler architecture, although with 
bit probabilities as low as 0.2 this system still does better than the opti- 
mal Hebbian rule. The reason for the effect of bit probability is clear: if 
one unit is ON with a probability of 0.1, then its opponent is O N  with a 
probability of 0.9. The required values of A+ and A- are very different 
for the two opponent units. Choosing appropriate values does allow all 
the patterns to be learned. Although a mechanism for adjusting weight 
change sizes to suit the measured bit probability is possible, we prefer a 
more biological solution with small groups of mutually inhibitory units 
(like a winner-takes-all cluster), each of which responds approximately 
equally often. 

5 Stability 

An important question concerning any learning rule is its stability and 
convergence, both in terms of errors and synaptic weights. Consider an 
individual weight Wa,. It will be incremented for those patterns where 
A,(w) = B,(w) = 1. Assuming input and output bit probabilities s and r 
are equal, weight increment would be expected on R/r2  patterns. Weight 
decrement is expected for some of the cases where A,(w) = 1 and B,(w) 
= 0, specifically those when the unit activation X ,  > 8-. Zero weight 
change is achieved if 

a - p  [ X j  > 0-(B,(w) = 01 
62 R 
r2 r(l - r )  
-A+ = ~ 

This rearranges to give 

r 
- - - --p [x, > O-IB,(w) = 01 
A+ 
a- (1 -?-) 

That this is at least moderately stable may be seen by considering the 
situation where the value of A+ is too high. Weights will tend to increase, 
leading to an increased probability of exceeding 8-  and provoking a 
weight decrement. Conversely, an overlarge value for A- will reduce the 
probability of exceeding 0-, allowing the weights to build up. Exceeding 
8-  does not necessarily imply registering an error, provided there is a gap 
between 8- and the binary output threshold 8,. As with many systems 
a suitably pathological input sequence will break it; in practice with the 
runs reported here we saw just an occasional single bit error in the epochs 
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Figure 3: (a) Course of learning for optimal Hebbian and simple and opponent 
ABS rules, 512 input units, 20 output units/pairs, 200 random patterns of bit 
probability 0.5, average o f  10 experiments. Both ABS rules had A+ = 0.02 
and A- = 0.1. 6'- was 0 for simple, 50 for opponent ABS. Latter had weights 
constrained to be positive and initial weights 4.0. (b) Expanded scale, showing 
effects of adding an upper weight bound of 6 to opponent ABS. Other details 
as (a). 

following initial convergence. Overall convergence is smooth, as shown 
by Figure 3. 

As the error rate is reduced, the ratio of A+/& required for weight 
stability will also decrease. Work in progress with adjustment of the ratio 
indicates that performance is indeed improved. 

As the ABS rule contains a purely Hebbian increment component, it 
is clear that there is no upper limit on the weights: a single input re- 
peatedly applied would cause all the active weights to grow indefinitely. 
Although frequently ignored in simulation work, any real synapse (in 
brains or silicon) will clearly have an upper limit on its strength. So the 
behavior of the ABS rule with an upper weight bound is important. It 
was checked by simply clipping any weight that exceeded a limit. This 
was arbitrarily set a t  6, an intentionally very tight constraint given that 
the weights start at 4, and that some normally reach around 15 while 
learning 200 patterns in 30 epochs. As would be expected, the perfor- 
mance deteriorated noticeably, but the system still converges well and 
approaches zero errors (Fig. 3b). The weights were followed beyond 50 
epochs and do not change significantly. In practice, therefore, the ABS 
rule is stable and tolerant of constraints. 

6 Discussion 

We have shown that a learning rule based on the form of synaptic plastic- 
ity reported by Artola et al. (1990) can correct false positives and misses. 
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It can learn more random paired associates than the optimal classical 
Hebbian rule, and its performance continues to improve with repeated 
presentations of the training set. 

In essence the rule assumes that during training the required out- 
puts are signaled by distinctively high levels of postsynaptic activation. 
Lower levels of postsynaptic activation within a specified range can thus 
be treated as false positives and the weights from active input lines re- 
duced. This entails two further assumptions. (1) The maximum sizes of 
the weights produced by this rule must be limited so that they cannot 
produce levels of postsynaptic activation that mimic the training signals. 
(2) The functionally effective level of postsynaptic activation must be 
less than the level required for weight increment, otherwise the learning 
would not be effective at test. Both assumptions are biologically plausible 
because the weight must be limited, and it is known that neural output 
activity can be functionally effective at activation levels well below the 
NMDA threshold. 

In our formulation of the rule for the opponent architecture we cal- 
culate the internal activations according to the modifiable weights, then 
use the output signal to decide the weight change. In reality, one of the 
units will be being driven hard on by the output signal. This should 
thoroughly inhibit the other unit, which would therefore never reach the 
decrement threshold, causing the rule to revert to a simple Hebbian. A 
plausible solution to this problem is given by the possibility of dendritic 
processing. The patch of the dendrite receiving the modifiable input 
may then reach decrement threshold, while the inhibition prevents the 
cell from firing. 

A simple biological mechanism could provide the predicted change 
in ratio of weight increment to decrement as error rate declines. The 
size of the decrement could be controlled by the concentration of some 
substance, an enzyme perhaps, at the synapse. Frequent weight decre- 
ment events would use up the stock of enzyme, reducing the size of the 
change. A low error rate would result in occasional, larger decrements. 

Further work on the ABS rule to be reported elsewhere (Hancock et 
al. 1991) shows that it compares favorably with the classical perceptron 
learning rule (PLR) in the early stages of learning. The PLR does not 
perform particularly well on the first pass of training data and there 
has traditionally been a divide between single-pass Hebb-like rules and 
multipass error-correcting rules. The ABS rule thus raises the possibility 
of obtaining the benefits of both, with a relatively good performance on 
a single pass, but continuing to improve with further training. The rule 
also works well in autoassociative architectures. 

Important unresolved issues on which we are currently working in- 
clude the extension of the rule to nonbinary signals, and its role in mul- 
tilayer architectures when combined with other biologically supported 
learning rules. 
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