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A biomaterial with a channel-like pore architecture
induces endochondral healing of bone defects
A. Petersen 1,2, A. Princ1, G. Korus1, A. Ellinghaus1, H. Leemhuis3, A. Herrera 1,4, A. Klaumünzer1,

S. Schreivogel 1,4, A. Woloszyk1,5, K. Schmidt-Bleek 1,2, S. Geissler 1,2, I. Heschel3 & G.N. Duda1,2,4

Biomaterials developed to treat bone defects have classically focused on bone healing via

direct, intramembranous ossification. In contrast, most bones in our body develop from a

cartilage template via a second pathway called endochondral ossification. The unsolved

clinical challenge to regenerate large bone defects has brought endochondral ossification into

discussion as an alternative approach for bone healing. However, a biomaterial strategy for

the regeneration of large bone defects via endochondral ossification is missing. Here we

report on a biomaterial with a channel-like pore architecture to control cell recruitment and

tissue patterning in the early phase of healing. In consequence of extracellular matrix

alignment, CD146+ progenitor cell accumulation and restrained vascularization, a highly

organized endochondral ossification process is induced in rats. Our findings demonstrate that

a pure biomaterial approach has the potential to recapitulate a developmental bone growth

process for bone healing. This might motivate future strategies for biomaterial-based tissue

regeneration.
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E
ndochondral ossification (EO) is the process of bone for-
mation through the replacement of a cartilage anlage. All
long bones in the mammalian skeleton develop through this

process during the fetal stage1. Later, during childhood and
adolescence, EO is responsible for the lengthening of the long
bones at the growth plate. Current biomaterial strategies for bone
defect healing primarily focus on approaches that provide
osteoconductive and osteoinductive environments2, mainly sti-
mulating intramembranous ossification. Clinically, however, only
few fractures with direct bone contact and stable fixation heal via
intramembranous ossification, but the majority of successful bone
regeneration cases are proceeding through the endochondral
route3. In this context, stimulating EO to regenerate bone has
gained remarkable attention over the last years1,4–7 and was
further strengthened through experimental evidence in vivo8–10.
It was shown that the endochondral pathway can be supported by
biomaterials when they were used for the delivery of progenitor
cells, either undifferentiated11,12 or pre-differentiated8–10,13,
growth factors14,15, or a combination of both16–18. Biomaterial
environments, engineered to locally provide growth stimulus
signals to transplanted cells, were able to support EO19. However,
until today no purely biomaterial-based solution exists that
induces EO for the regeneration of critical-size defects in long
bones, while these clinical situations still represent a severe
challenge.

Here we report on a unique cell- and growth factor-free
approach to induce EO in large bone defects solely via biomaterial
architecture. EO is linked to the presence of osteochondral pro-
genitor cells that, e.g., reside in the bone marrow niche20. The
recruitment of these cells into a biomaterial after in vivo
implantation represents an appealing alternative to cell or tissue
implantation regarding efficacy, safety, and treatment costs21,22.
Alternative to the use of chemoattractants, our approach to
provide a physical guiding structure could represent a simple, yet
effective way to enhanced progenitor cell recruitment supporting
the bone’s inherent capability to heal. Limited vascularization is
regarded a general obstacle for biomaterial-based in vitro and
in vivo tissue engineering solutions23,24, as vascularization might
be restricted depending on the specific pore diameter and
architecture25. However, the endochondral route of bone healing
addressed here is less dependent on an initial vascular supply
than strategies focusing on intramembranous ossification. This is
indicated by the fact that endochondral bone development starts
from avascular cartilage anlagen that are extensively vascularized
only during the subsequent transition to bone26. Despite the
presence of multiple local progenitor cell sources (marrow,
periosteum, and muscle)27, critical-sized bone defects are severely
limited in their healing capacity. Here we speculated that an
unfavorable self-patterning of the extracellular matrix (ECM)
limits the bone’s capacity to heal large defects by hindering cell
recruitment and subsequent tissue maturation cascades, and that
this could be overcome by the use of a specifically architectured
biomaterial. There is growing evidence that the structure of the
ECM has an important role in tissue regeneration28,29, and clear
evidence for a coupling between extracellular structure and tissue
differentiation can be found in organ development and mor-
phogenesis30. First evidence exists that collagen fiber orientation
can be controlled by biomaterial architecture to guide tissue
mineralization31,32. However, more in-depth investigations are
needed to employ this principle for bone tissue regeneration.

In this study, we were able to show that a biomaterial, engi-
neered to provide mechanical properties similar to the natural
ECM together with a unique channel-like macroporous archi-
tecture, enabled a structurally guided EO process across the bone
defect. This was achieved by a consistent, material-controlled re-
alignment of collagen fibers across the bone defect associated with

enhanced progenitor cell recruitment. The biomaterial was
characterized using human stromal cells and revealed its func-
tionality in rats. Taken together, we report a purely material-
based approach to induce in situ tissue regeneration via EO in
large bone defects. In light of translational applications such an
approach is highly desirable, as it omits the need for growth factor
or cell delivery33.

Results
Characterizing collagen fiber emergence in bone defects. To
gain information about the structural organization of the ECM,
we first characterized the appearance of collagen fibers in critical-
size segmental bone defects in rats via second harmonic imaging
(SHI) in the absence of any biomaterial. Five days after creating
the defect via an osteotomy, micro-computed tomography (μ-CT)
showed only minor tissue mineralization, limited to the surface of
the bone cortices (Fig. 1a). At the same time, first patterns of
collagen fibers had emerged in the periosteal and endosteal region
that tended to cross the marrow cavity (Fig. 1b, c, SHI). Until
3 weeks post osteotomy (post-op), a dense layer of collagen fibers
had formed around the ends of the bones in a dome-like shape.
Tissue mineralization was guided along the collagen fibers
forming a shell-like structured callus encasing the marrow cavity
until 6 weeks post-op (Fig. 1a, b). Although the formation of such
a bone shell has been considered before as failure of bone healing
in large defects34, the pre-patterning function of collagen fibers in
this process was not reported so far. With the maturation of
collagen fibers, a clear separation of the bone marrow compart-
ment and the periosteum from the soft tissue compartment of the
bone defect was observed (Fig. 1c, 3 weeks, dashed line). We thus
speculated that the specific ECM pattern that initially develops in
critical-size segmental bone defects functions as a physical barrier
that hinders endochondral bone regeneration. Consequently, we
hypothesized that we could induce EO with the aid of a highly
aligned biomaterial template that aligns ECM fibers along the
bone axis, and thereby supports cell recruitment and directional
tissue maturation across a critical-sized bone defect.

Pore architecture controls cell migration and ECM alignment.
To guide cell migration and to control ECM patterning, we
engineered a macroporous scaffold with highly aligned channel-
like pores (scaffold A) from porcine collagen (Fig. 2a). A uniform
pore size of 89 ± 15 μm (mean ± SD) was achieved by controlled
directional freezing and subsequent freeze-drying35. Collagen was
selected to produce a soft material with an elastic modulus in the
low kPa range (EAx= 8.5 kPa compressive stiffness in direction of
pores, see also Fig. 2b) mimicking the mechanical properties of
the early ECM in endochondral bone development36,37. Scaffold
B was cut from the identical raw material as scaffold A but with
pores perpendicular to the cylinder axis. Scaffolds R (random)
were produced from a collagen dispersion with identical collagen
content by a modification of the freezing parameters to serve as a
negative control with impaired structural integrity of the pore
walls (Fig. 2a, c). Along with a changed pore architecture, scaffold
R showed reduced stiffness (ERx/EAx= 0.2 in x direction) and a
reduced stiffness anisotropy (EAx/EAy= 7.7, ERx/ERy= 2.6) but
comparable denaturation temperature as scaffold A (Fig. 2b and
Supplementary Fig. 1a).

As a first step, we investigated in vitro the influence of the
scaffold’s pore architecture on two essential processes for tissue
regeneration: the migration of human bone marrow-derived
mesenchymal stromal cells (hBMSCs) into the pores and the
structural organization of the deposited ECM (fibronectin,
collagen). Three days post seeding, the median migration depth
was 2.7-fold higher in scaffold A (along the pores) compared
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Fig. 1 Distinct collagen fiber patterns forming in bone defect guide tissue mineralization. a 3D µ-CT reconstruction of the 5 mm rat femoral bone defect at

different time points showing progression of tissue mineralization toward the formation of a bone-like shell closing the marrow cavity. b Second harmonic

imaging showing the emergence of a fibrillar collagen matrix at the end of the bone (open arrowheads) preceding tissue mineralization (full arrowheads).

White asterisks indicate the bone cortices. c Orientation analysis revealed that distinct patterns of collagen fibers develop already in the first days post

osteotomy and mature towards a dense, dome-like structure until 3 weeks post-op (detailed SHI recordings at regions indicated by dashed-line squares in

b). Green lines indicate collagen fiber anisotropy AC (length of line) and direction of primary fiber orientation ΦC (angle) within the local ROIs. The

formation of mineralized tissue (6 weeks, post-op, yellow asterisks) is guided by aligned collagen fibers toward the formation of the marrow-closing bone

shell. Autofluorescence imaging (AF) indicates the separation of the bone marrow and the periosteum (hash symbol) from the defect region (paragraph

symbol) by the deposited collagen fiber structure (dashed white line, 3 weeks post-op). Scale bars for b 1 mm; c SHI-images 50 µm, AF images 1 mm
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Fig. 2 Scaffold pore architecture guides cell migration in vitro. a Scanning electron microscopy (SEM) image showing the scaffold pore architecture with

highly aligned pores along the x axis (top left). Photograph of the scaffold as used in vitro (5 mm diameter, 3 mm height) (bottom left). SHG images of the

scaffold pore architecture for aligned scaffolds A and random scaffold R cut along (top middle and right) and perpendicular (bottom middle and right) to

the direction of directional freezing during production. b Mechanical stiffness of the prototypes in the two directions shown in a (median ± SD).

Characterization was performed on n= 3 technical replicates. c Analysis of pore wall integrity indicating a pronounced reduction of pore wall integrity

along the x direction in random scaffold R compared with scaffold A (median ± SD). Characterization was performed on n= 8 individual multiphoton image

stacks. A high wall integrity is a characteristic feature of the channel-like pore architecture of scaffold A. d Quantification of the migration distance dmig for

migration of hBMSCs along (scaffold A) and perpendicular (scaffold B) to the pore orientation 3 days after cell seeding. Images on the left show

representative cell distribution close to the surface of the scaffold 24 h post seeding (cross-sections stained for F-actin after cell seeding on the base of the

scaffold cylinder). Significance calculated by Mann–Whitney test (two-sided). ***p < 0.001, n= 8 biological replicates (hBMSCs from 8 different donors), n

= 2–3 technical replicates per donor. Boxplot in d shows the median, 25th and 75th percentile values (vertical bar, left and right bounds of the box),

whiskers indicate the 1.5-fold IQR; open squares indicate means; crosses represent maximum/minimum values. Scale bars for a 200 µm in SEM image, 2

mm in photography, 100 µm in SHG images; d 250 µm

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06504-7 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4430 | DOI: 10.1038/s41467-018-06504-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with B, indicating a directional cellular access to the material
(Fig. 2d). In scaffold R, almost equal migration in the different
spatial directions was observed (Supplementary Fig. 1b). When
hBMSCs were seeded homogeneously into scaffold A, cells and
early ECM structures (fibronectin) gradually adopted a uniform
alignment along the pore channels over time (Fig. 3a, c and
Supplementary Fig. 1c). As of day 7, collagen fibers became visible
and showed the same high structural anisotropy as fibronectin
fibers (Fig. 3b,c). In scaffold R, a clearly reduced alignment of cells
and ECM (fibronectin, collagen) inside the scaffold was found,
but a preferential orientation in the direction of scaffold freezing
during production remained (Fig. 3a–c).

The expression of bone healing-relevant genes in hBMSCs
cultured inside scaffolds A and R did not show any difference
demonstrating the similarity of the two materials aside of their
pore architecture (Fig. 3d). Compared with two-dimensional

culture on tissue culture plastic, collagen scaffolds promoted
the upregulation of chondrogenic (SOX9) and adipogenic
(PPARγ) genes, presumably because of the mechanically
softer environment38,39. In contrast, Vitoss® (Stryker, USA)
(scaffold V), a commercially available bone graft material used
as a reference, caused strongly elevated levels of osteogenic
markers osteocalcin (BGLAP) and osteopontin (OPN), while
reducing chondrogenic (ACAN) and adipogenic (PPARγ) genes.
Gene regulation was in agreement with the known pro-osteogenic
effects of β-TCP40, the main component of Vitoss next to
collagen.

Under pro-chondrogenic culture, hBMSCs inside scaffolds A
and R showed a production of ECM rich in glycosaminoglycans
(GAGs; Fig. 3e, Alcian blue staining). In addition, collagen type II
was found in regions of high cell density close to the scaffold
surface, indicating that cells had undergone density-controlled
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Fig. 3 Scaffold pore architecture controls ECM structure but not cell differentiation in vitro. a Representative confocal images (maximal intensity

projection) of hBMSC organization and matrix formation inside the scaffold pores 3 and 14 days post seeding. Top row shows F-actin of the cytoskeleton in

green, lower row shows fibronectin in red. Cell nuclei are shown in blue and scaffold in gray. b SHG maximal intensity projections reveal formation of highly

orientated collagen fibers inside the pores of scaffold A but a rather random orientation in scaffold R, 14 days post seeding. c Comparison of fiber

orientation distribution (percent of total) for F-actin, fibronectin (Fn) and collagen (Col) in scaffold A compared with scaffold R, 14 days post seeding. Polar

diagrams show mean value as solid line and standard deviation as color/gray band. n= 2–3 technical replicates. d Expression of osteogenic, chondrogenic

and adipogenic genes for hBMSCs cultured on plastic (2D) and inside scaffolds A, R, and the commercial bone graft substitute Vitoss® (V). It is noteworthy

that no significant differences were found between scaffolds A and R. Bar charts show fold-changes of expression compared with scaffold A (mean ± SD).

n= 4 biological and n= 3 technical replicates. e Representative histological images of in vitro chondrogenesis of hBMSCs in scaffolds A and R over 3 weeks

of culture in chondrogenic medium. Alcian blue staining (glycosaminoglycans) in top row and immunohistological staining for collagen II (red) in bottom

row. No noticeable differences between the scaffold types were observed. n= 3 biological replicates. f Pronounced increase of chondrocyte volume

and mineralization of the ECM indicate differentiation of scaffold-cartilage tissue into hypertrophic cartilage when cultured in hypertrophic medium for

additional 2 weeks (combined Movat’s pentachrome and von Kossa staining). g Verification of matrix mineralization inside scaffolds by µ-CT. Scale bars

for a, b 100 μm, e 200 µm (details) and 1 mm (overview), f 100 µm (details) and 1 mm (overview)
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differentiation into chondrocytes. Genes encoding type II and X
collagen were highly expressed upon induction in both scaffold
types (Supplementary Fig. 1d). Subsequent culture under
conditions fostering chondrocyte hypertrophy led to a noticeable
increase of chondrocyte volume and successive mineralization of
the surrounding ECM (Fig. 3f, g). Thus, hBMSCs were able to
execute an endochondral program inside scaffolds A and R as
shown previously for scaffold-free culture20. Cultivation of
hBMSCs in scaffold A using expansion medium without pro-
chondrogenic supplements before chondrogenic induction indi-
cated that the cells preserve their differentiation potential inside
the scaffold over time (Supplementary Fig. 1e).

ECM alignment is maintained across the mineralization front.
To test the potential of scaffold A to guide matrix formation
in vivo, they were implanted into 5 mm critical-size segmental
bone defects in rats (Supplementary Fig. 2)41. Scaffolds B, ran-
dom scaffolds R, and empty defects E (not filled with any
material) served as control groups. Via SHI, we verified a sub-
stantial impact of the pore architecture on collagen fiber aniso-
tropy and orientation 3 weeks post-op, comparable to the in vitro
findings (Figs. 4a and 3b). Fiber orientation in scaffold B was
perpendicular to the bone axis, whereas collagen fiber bundles in
the pores of scaffold A were spanning across the whole bone
defect and had a highly consistent orientation along the bone axis.
In scaffold R and empty defects E, orientation was less consistent
throughout the defect. Nevertheless, a trend for collagen fiber
orientation along the bone axis could still be noticed (Fig. 4b, c).
This indicated an intrinsic preference for tissue alignment across
the defect, abrogated only by scaffold B. However, at the
mineralization front, only scaffold A was able to counteract the
strong local tendency for fiber alignment parallel to the interface
(perpendicular to the bone axis) as found in empty defects
(Fig. 4c). Consequently, collagen fibers were observed to cross
through the mineralization front in scaffold A but only spor-
adically in scaffold R where the fragmented walls failed to con-
sistently control fiber alignment. This was a first indication that
the scaffold’s pore architecture was able to structurally connect
tissues across their various tissue maturation stages, suggesting
consequences for the healing process.

EO is controlled by scaffold pore architecture. Remarkably,
when analyzing the tissue composition histologically, islets of
chondrocytes were identified at the mineralization front within
scaffold A, verifying our initial hypothesis (Fig. 5a). This result
stands in strong contrast to the situation in empty defects where
no signs of an involvement of chondrocytes in tissue miner-
alization were found. A closer look revealed that the tissue
organization at the mineralization front was highly organized (see
Fig. 5b): chondrocytes appeared in a columnar organization and
were embedded in an aligned network of collagen fibers along the
pores. Toward the mineralization front, an increased diameter
indicated chondrocyte hypertrophy that was followed by gradual
mineralization of the surrounding fibrocartilage matrix. Vacated
chondrocyte lacunae created open channels and a high porosity
within the mineralized matrix allowing vessel capillaries to
advance from the bone marrow toward the mineralization front.
The described processes took place along the scaffold pore walls,
which finally became embedded in the mineralized matrix. Even
though anisotropy was reduced in the cartilage phase, orientation
of collagen fibers was maintained throughout the endochondral
process (Fig. 5c). In contrast, EO in scaffold R was clearly less
pronounced and only traces of cartilage were found (Fig. 5d, e).
Local alignment of collagen fibers parallel to the mineralization
front and perpendicular to the bone axis resulted from pore wall

fragmentation and appeared to hinder EO progression (Fig. 5f).
In scaffold B, consistent collagen fiber alignment parallel to the
mineralization front was associated with direct deposition of
mineralized tissue on the bone surface by osteoblasts, in the
absence of chondrocytes (Fig. 5g–i).

Three weeks post-op, cartilage was found in five of six animals
with scaffold A, in four of seven with scaffold R, in one of six with
scaffold B, and in zero of six of the empty controls E. The mean
area of cartilage was clearly greater in scaffold A compared with
all other groups with statistical significance against scaffold B and
E (Fig. 5j). Besides scaffold R that served as a negative control for
structural guidance by the scaffold walls 3 weeks post-op, the
commercial bone graft substitute Vitoss® (scaffold V) was used as
a reference for the bone-forming ability of the scaffold 6 weeks
post-op. At 6 weeks, cartilage completely filled the remaining
bone gap in 3/8 animals with scaffold A, whereas no cartilage was
found in the other animals of this group. No cartilage was found
in any animal with scaffold B, V, or in empty controls E. The
ingrowth of bone was 2.7- and 5.1-fold higher into scaffold A
compared with scaffold B at 3 and 6 weeks, respectively, whereas
it was 1.4-fold higher in scaffold A compared with scaffold R at
3 weeks (medians, Fig. 5k). Remarkably, in all animals EO was
observed exclusively inside the scaffold. The highest total
mineralized tissue area of all groups was found in specimens
with ongoing EO and significantly higher values were found for
scaffolds A compared with scaffold V, 6 weeks post-op
(Supplementary Fig. 3a). Material degradation was comparable
for scaffolds A, R, and B with a slightly stronger degradation for B
compared with A at 6 weeks (Supplementary Fig. 3b). A
significant reduction of scaffold area from 3 to 6 weeks post-op
indicated an ongoing degradation process.

Collagen fiber orientation is a key parameter for EO. The
limited amount of cartilage in scaffold R and the low amount of
bone ingrowth into scaffold B (pore orientation perpendicular to
bone axis) were first indications that the scaffold’s pore archi-
tecture had a direct influence on the EO process. A closer char-
acterization of collagen fiber orientation at the interface between
non-mineralized and mineralized matrix revealed that specific
structural conditions were associated with EO. The probability to
find cartilage was highest if both the angle ΦC,I of collagen fiber
orientation relative to the bone axis and the deviation ΔΦC,I

between fiber orientation in the non-mineralized compared with
the mineralized matrix were small (Fig. 6). We observed that for
most specimens of all groups ΔΦC,I was low (< 30°). This indi-
cated a close connection between collagen fiber orientation in the
non-mineralized and the mineralized matrix independent of the
growth process (endochondral or intramembranous). However, a
low value of ΦC,I representing collagen fiber orientation along the
bone axis was decisive for the dynamic progression of tissue
mineralization via EO (Fig. 6, inserted boxplot). Such a condition
was achieved most consistently in scaffold A, whereas high values
of ΦC,I were found for scaffold B and empty controls E. For
scaffold R, values of ΦC,I scattered in agreement with limited
structural guidance by the fragmented pore walls leading to the
sporadic occurrence of only small cartilage islands.

Biomaterial-controlled progenitor cell and vessel recruitment.
In search for the cellular origin of EO, we histologically char-
acterized the recruitment of cells into the scaffold depending on
the pore configuration. Although no unique cell surface marker
for adult osteochondral progenitor cells exists, recent studies
suggest CD146 as marker to discriminate between bone marrow-
derived multipotent stromal cells (BMSCs) and terminal differ-
entiated cells such as fibroblasts or trabecular bone-derived
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and its SD (gray band). Bone axis is ΦC= 0°. The fiber anisotropy can be read as the degree of polarization of the curve (long vs. short axis). Green lines

and according green numbers indicate the angle of primary fiber orientation. Analysis of the local fiber orientation at the interface (diagrams labeled “I”)

reveal stability of orientation along the bone axis only in scaffold A, whereas orientation in all other groups is dominated by the interface itself with fibers

parallel to it and perpendicular to the bone axis (see also Fig. 1c). n= 5–7 animals for c. Scale bars for a 1 mm; b collagen fiber anisotropy AC= 1

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06504-7

6 NATURE COMMUNICATIONS |          (2018) 9:4430 | DOI: 10.1038/s41467-018-06504-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


S
c
a
ff
o
ld

 A

a

S
c
a
ff
o
ld

 B

b

*

*

*

d

h

e

S
c
a
ff
o
ld

 R

*

*

g

3w

min. tissue area [mm2]

c

#

§

# §

§

3w

Cartilage area [mm2]

k

j

f

i

1 2

3
44SW

SW

5 6

6

SW

BMBM

6

BM

OBC

1

2 3 4 5 66

4

3

2

1

0.5

3
**

*
*

2

1

0
A A

0.0

A R

R

B

B B

E A B E V

6w

6w

Fig. 5 Biomaterial pore architecture is decisive for the induction of EO. a Movat’s pentachrome (MP) staining showing EO in scaffold A characterized

by cartilage (green) at the mineralization front 3 weeks post-op. Asterisks indicate cortical bone. b Magnifications of the cartilage zone in scaffold A

in a combined MP and von Kossa staining (mineralized matrix appears black) showing (1) pre-chondrogenic cells, (2) chondrocytes, (3) hypertrophic

chondrocytes, (4) mineralization of surrounding matrix, (5) vacated chondrocyte lacunae, (6) resulting channels populated with cells and blood vessels

(see also according sketch). SW indicates scaffold wall (appears red), C blood vessel capillaries, OB osteoblasts, BM bone marrow. c SHG image and local

anisotropy (green lines) revealing consistent collagen fiber orientation during the transition from the pre-cartilage zone (left of blue line) into cartilage

(between blue and magenta line, hash symbol) and mineralized matrix (right of magenta line, paragraph symbol). Full arrowheads indicate in vivo formed
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represent max./min. values. Significance via Mann–Whitney test (two-sided) with Bonferroni correction; *p < 0.05, **p < 0.01, n= 6–7 animals (3 weeks)

and 6–8 (6 weeks) per group. Scale bars for a, d, g 1 mm; b, c, e, f, h, i 100 μm
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osteoblast42. CD146-positive (CD146+) BMSCs were shown to
differentiate into cartilage and bone-like tissue in vitro43. In
contrast to osteoblast-like cells, CD146+ BMSCs are able to form
heterotopic bone ossicles and establish a hematopoietic envir-
onment upon implantation into mice42,43. Vessel walls in the
bone marrow44, but also in other tissues such as the muscle45,
were reported to act as a niche for progenitor cells.

We confirmed CD146-expressing cells around vessels in the
marrow and the periosteum (Supplementary Figs. 5a and 6).
Remarkably, CD146 signal in all tissues adjacent to the osteotomy
(marrow, periosteum, and muscle) increased dramatically in
response to the osteotomy (day 5 post-op), indicating a
progenitor cell activation and subsequent recruitment to the site
of injury (Supplementary Fig. 5b). In this situation, the scaffold
pore architecture had a clear influence on cell recruitment into
the bone defect: although low CD146 signal was found in the
center of the scaffold B, an abundant number of CD146+ cells
was found in scaffolds A and R (Fig. 7a, left). The high density of
CD146+ cells in scaffold R can be explained by the pore wall
fragmentation that permitted cell recruitment from all directions,
i.e., from all adjacent tissues, whereas scaffold A was primarily
accessible for cells from the bone marrow (Supplementary Fig. 7).
In empty defects E, CD146 signal was restricted to a region close
to the mineralization front of the bone callus. Concerning further
cell types characterized, all scaffolds (A, R, B) prevented myofiber
ingrowth, whereas CD68-positive cells (macrophages, giant cells)
indicating a normal host response to the implanted materials
were found in comparable density in the center of all scaffolds
(Supplementary Fig. 8).

As oxygen supply is known to have a regulatory function in
progenitor cell fate and tissue differentiation46,47, we next
characterized the distribution of α-SMA (alpha-smooth muscle
actin)-positive, mature vessels. Vessel density was low toward the
axial middle line and high in the periphery for scaffolds A and B,
whereas the distribution was more homogeneous in scaffold R
(Fig. 7a, right). Remarkably, cartilage occurred preferentially in a
central zone toward the middle axis of the scaffold that showed
high CD146 signal but low vessel density (Fig. 7a, line chart and
dashed lines). Motivated through this finding, we quantified
vessel density and CD146 signal locally in a region of 500 μm
from the cartilage or from the mineralization front (in samples
without cartilage) toward the center of the defect. In this region,
vessel density was lowest for scaffold A, significantly higher for
scaffold R and empty controls E and intermediate for scaffold B,
3 weeks post-op (Fig. 7b). This is in agreement with the different
accessibility of the materials for vessel ingrowth from surround-
ing tissues (muscle and periosteum) (Supplementary Fig. 7). In
line with gradual scaffold degradation, vessel density equilibrated
for all groups until week 6 post-op (Supplementary Fig. 3c).
When the ratio between CD146 signal and vessel density was
calculated, significantly higher values were found for scaffold A
compared with all other groups (Fig. 7c, boxplot). The data
coincided well with both the quantity of cartilage (Fig. 5j,
3 weeks) and the amount of mineralized callus grown into the
scaffold (Fig. 5k, 3 weeks). In scaffolds B, and in empty controls,
CD146 signal was predominantly associated with a perivascular
cell location in spatial vicinity of, but not colocalizing with α-
SMA signal (Fig. 7c, d). However, in scaffold A, and to a lesser
extend in scaffold R, CD146+ spindle-like cells were also found
distant from any vessels in the pre-cartilage region (Fig. 7c). We
concluded that there are two sources for CD146+ cells that
invade into the scaffold: (i) pericytes entering the scaffold from
surrounding muscle and the periosteum accompanied by blood
vessel ingrowth and (ii) perivascular BMSCs migrating into the
scaffold from the bone marrow without pronounced vessel
ingrowth. Consequently, only the physical barrier of the scaffold
walls in group A, which opposes vessel ingrowth from
surrounding tissues and supports migration from the bone
marrow, was able to create a pro-chondrogenic environment low
in vessels but rich in CD146+ cells. Moderate cell proliferation
and limited cell density changes at the cartilage front supported
the assumption that EO within scaffold A was primarily based on
the chondrogenic differentiation of osteochondral progenitor cells
and not on chondrocyte proliferation (see Supplementary Fig. 4).
Finally, we found chondrocytes progressing into hypertrophy
during EO to be histologically positive not only for CD146 but
also for CD271, indicating that the cell source for EO may indeed
be BMSCs originating from the perivascular niche48 (Fig. 7e).

Structured EO leads to directional bone healing. In contrast to
the low vessel density in the pre-cartilage zone, a larger number
of α-SMA-negative capillaries reached the mineralization front
from the bone marrow side in scaffold A compared with B, R,
and E (Supplementary Fig. 9). In bone development, chondrocyte
hypertrophy stimulates capillary ingrowth that is associated with
matrix mineralization in primary ossification centers. It thus
seems likely to be that α-SMA-negative capillaries, which reach
the mineralization front in scaffold A, contribute to the pro-
gression of mineralization at the end region of the EO process
(facing the bone marrow). According to histology and in vitro
μ-CT, the morphology of the mineralized matrix was clearly
affected by the scaffold’s pore architecture. The lowest value in
the mean degree of anisotropy AM of the mineralized trabecular
network was found for scaffold R compared with scaffold A and B
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(Fig. 8a). Even though the differences did not reach statistical
significance, the results are in agreement with lowest anisotropy
values of collagen fiber orientation found for scaffold R (Sup-
plementary Fig. 3d). However, highly significant differences were
found in the primary orientation ΦM of the mineralized trabe-
cular network for scaffold A in comparison with scaffold B and
empty control (Fig. 8b). Although values of ΦM for scaffold R
were strongly scattered, a very consistent trabecular alignment
along the bone axis was found for scaffold A (see also μ-CT
reconstruction in Fig. 8c). This suggests that the above-mentioned
enhanced capillary ingrowth from the metaphysis supporting
the EO mineralization process is facilitated by the aligned
architecture of the mineralized trabecular network. Scaffolds B
with pore orientation perpendicular to the bone axis resembled

the compact mineralized matrix structure found in the empty
defect.

Six weeks post-op, μ-CT showed highest volume of newly
formed bone in the defect for scaffold A with bone volumes of
BV= 9.3( ± 6.7) mm³ compared with 5.9( ± 2.9) mm³ for scaffold
B and 5.1( ± 2.1) mm³ for empty controls (mean ± SD). A similar
trend was observed for the ratio of bone volume over total volume
with BV/TV= 0.24( ± 0.15) for scaffold A, 0.14( ± 0.05) for
scaffold B, and 0.16( ± 0.07) for empty controls (mean ± SD).
However, the variation of data within the groups was high. This
was the consequence of an interference of the callus formed at the
fixator pins with the callus formed within the bone defect at this
time point. Morphologically, a hollow dome with a dense
mineralized callus shell formed in empty controls closing the
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medullary cavity (Fig. 8d). In scaffold B, the medullary cavity
closure happened already at the cutting plane of the osteotomy as
a consequence of mineralization guided perpendicular to the bone
axis along the scaffold’s surface and pore orientation (Fig. 8d). In
contrast, mineralized tissue was growing in a directional manner
along the bone axis in scaffold A. The finger-like morphology of
the bone surface (Fig. 8e, A vs. B, E) indicated an ongoing
mineralization process in those animals that were histologically
characterized by a bridging of the osteotomy gap with bone and
cartilage. Finally, the geometry of the mineralized callus in the
defect analyzed by μ-CT confirmed a guided growth along the
bone axis for scaffold A and a hindrance of bone growth into
scaffold B (Fig. 8e).

Discussion
A multitude of studies have shown that EO can be induced by
combining biomaterials with progenitor cells11,49, by progenitor
cells in combination with organic ECM components50,51, by pre-
differentiated cells8,52, platelet-rich plasma53, growth factors, and

demineralized bone matrix54. Progenitor cells bear an inherent
potential for tissue genesis and were shown to induce ectopic
EO20. Based on this, one might be tempted to assume that the
availability of biological components (cells, factors) at the site of
injury is per se not sufficient for EO to happen in large, critical-
size bone defects. However, we show here that an endogenous
healing cascade can be activated solely by the architecture of a
biomaterial scaffold without the delivery of any additional
bioactive component. EO in a critical-size bone defect was
induced by controlling the structural alignment of the ECM and
cell recruitment through the specific pore architecture of a
macroporous biomaterial. Even though the influence of bioma-
terial architecture on soft and mineralized tissue organization is
evident31,32,55, existing materials have not yet induced such a
fundamental switch in the route of bone healing—from intra-
membranous to endochondral—as we present here.

We propose that CD146+ BMSCs migrate from the bone
marrow vascular niche along the aligned pores into scaffold A
and participate in the EO process. This is supported by our
observation that hBMSCs cultured inside scaffold A in vitro were
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reconstruction of the mineralized matrix in the VOIs used for quantification in a and b. The red dot indicates the position of the VOI at the growth tip of the

mineralized callus. d Movat’s pentachrome staining showing guided EO along the scaffold pore orientation for A and no ingrowth for B and V compared

with the formation of a bony shell for empty controls E, 6 weeks post-op. e 3D µ-CT reconstruction of the resulting bone geometry for A, B, and E, 6 weeks
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capable to initially produce the characteristic, highly aligned ECM
found in vivo, and subsequently execute an endochondral pro-
gram under the appropriate biochemical stimuli. In vivo, the
growth of vessels into the scaffold was strongly limited for scaf-
fold A, indicating a limited oxygen supply that favors chon-
drogenesis of BMSCs over osteogenesis25,56. However, it is also
known that the bone marrow niche is low in oxygen57 and
restriction of vascularization might rather preserve the stemness
of BMSCs inside scaffold A58. In line with this, cartilage was
found only as a thin intermediate phase of EO preceding
mineralization, indicating that the chondrogenic differentiation of
BMSCs is tightly interlinked with the spatiotemporal progression
of the EO process itself. We suggest that for initial EO to converge
into a spatially well-controlled process, the gradual diffusion of
signaling molecules towards BMSCs in the pre-cartilage region is
required to induce and orchestrate their proliferation and chon-
drogenic differentiation59. This is supported by theoretical and
experimental work that showed facilitated diffusion along aligned
fiber networks compared with perpendicular or random
structures60,61. Regarding the late events in the EO process,
terminal chondrocyte hypertrophy and matrix mineralization
are coupled to vascularization. Capillaries, however, can reach
the chondro-osseous junction only if linearly arranged hyper-
trophic chondrocytes produce channel-like structures in the
trabecular mineralized matrix as found for scaffold A (Fig. 5b).
Together, according to our explanatory model summarized in
Fig. 9, scaffold-induced ECM structuring allows EO to happen
via improved communication at two important EO junctions:
the transition into the cartilage phase and the transition from
the hypertrophic into the mineralized matrix phase. The strong
correlation between collagen fiber orientation and the occurrence

of EO (Fig. 6) clearly demonstrates that scaffold-controlled
ECM alignment is involved in the regulation of the EO process,
whereas BMSC recruitment and vessel restriction provide
the necessary environment for EO to take place. Even though
we have evidence that scaffold-induced EO is also observed
under increased scaffold stiffness (Supplementary Fig. 11), the
robustness of the process against the variation of other material
parameters such as pore size and degradation remains to be
proven. The similarity of the here-reported scaffold-induced
ossification with the highly aligned and spatially controlled
EO in the bone’s growth plate62 motivate a future in-depth
comparison of the maturation cascades and involved regulating
factors.

In summary, we demonstrate that within the channel-like
pores of a scaffold that was engineered to provide a guiding
structure for ECM alignment and progenitor cell recruitment, a
switch from intramembranous ossification closing the bone
marrow cavities toward a directional EO across the bone defect
could be achieved. Developmental engineering in vivo has
recently been suggested as a method to support bone fracture
repair along the endochondral route via a mimicry of the early
fibro-cartilaginous ECM6. Our results demonstrate that tissue
structure is one of the key parameters to be taken into account in
such an approach. A more rigorous incorporation in biomaterial
design strategies is suggested.

Methods
Cell isolation and culture. hBMSCs were obtained from donors undergoing total
hip joint replacements. The study was approved by the ethics committee of the
Charité – Universitätsmedizin Berlin and all donors gave informed written consent.
hBMSCs from eight donors were used. hBMSCs were isolated by density gradient
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separation and subsequent adhesion to tissue culture polystyrene. Cells were
cultured in medium consisting of Dulbecco’s modified Eagle’s medium
(DMEM, Sigma, 1000 mg l−1 glucose) supplemented with 10% fetal bovine serum
(FBS, Biochrom AG), 1% penicillin/streptomycin (P/S, Biochrom AG), and 1%
L-glutamine (glutaMAX, Invitrogen). Medium was exchanged twice per week
and the cells were trypsinized (PAA Laboratories GmbH) when a confluency of
80% was reached. Experiments were performed at passage 4–5 (differentiation)
and 5–6 (migration).

Human fibroblasts (data provided in Supplementary Fig. 1b) were isolated from
skin obtained from orthopedic surgeries. The study was approved by the ethics
committee of the Charité – Universitätsmedizin Berlin and all donors gave
informed written consent.

Scaffold fabrication. Highly porous collagen scaffolds with aligned pores of
homogeneous pore size were produced by controlled directional freezing and
freeze-drying of a 1.5% (wt/wt) collagen dispersion35,63–65. A constant temperature
gradient was initially realized between two parallel, temperature-controlled metal
plates that enclose the collagen dispersion (thickness: 10 mm, area of mold: 100 ×
100 mm). Then, the temperature of both plates was lowered at the same constant
rate (Power-Down technique). After ice nucleation at the colder plate, a stable ice
front develops (constitutional supercooling) and ice crystals grow parallel in finger-
like morphology through the collagen dispersion with a constant ice front velocity
defined by the applied cooling rate. Collagen is pushed between the ice crystals
creating aligned, channel-like, pores after freeze-drying (scaffolds A and B).
The final pore size and orientation is defined by the finger-like ice crystal mor-
phology which is determined by the combination of applied temperature gradient
(1 Kmm−1) and cooling rate (0.01 K s−1). Random pore architecture (scaffold R)
was realized by freezing in absence of controlled ice crystal growth and morphology.
Scaffolds were crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide
hydrochloride, freeze-dried, and sterilized via Ethylene Oxide treatment (HA2
Medizintechnik GmbH, Germany). The mean pore size was evaluated as the average
distance between pore walls on microscopic images of multiple sections of the
bulk material. Stiffness was characterized on three to four individual specimens via
a monoaxial compression test using a BOSE ElectroForce TestBench system
(TA Instruments ElectroForce Systems Group). The denaturation temperature,
indicating the degree of crosslinking and the stability against degradation, was
analyzed via a Differential Scanning Calorimeter Q100 (TA Instruments, USA).

Second harmonic generation imaging of collagen fibers. Collagen fibrils exhibit
endogenous second harmonic generation (SHG) signals arising from their well-
known non-center-symmetric molecular structure66,67. SHI was performed on a
Leica SP5 II microscope using a × 25 water immersion objective with a numerical
aperture of 0.95. The SHG signal was generated by a Spectra Physics Ti:Sapphire
laser (Mai Tai HP) with 100 fs pulse width at 80 MHz and wavelength of 910 nm.
SHG signal from collagen was detected at 450–460 nm (half excitation wavelength).

Analysis of scaffold pore wall integrity. SHG images of empty scaffolds wetted
with phosphate-buffered saline (PBS) were binarized and scaffold wall integrity was
analyzed based on the length of the individual walls in x direction (according to
coordinates indicated in Fig. 2a). ImageJ plug-in AnalyzeSkeleton was used to
quantify maximum length of the wall segments in each image (Longest Shortest
Path). Walls with a length > 310 μm (half image width) were regarded as intact
walls. Data were normalized to the number of intact walls found in scaffold A.

3D cell migration into collagen scaffolds. To create a cell layer, 2 × 105 cells
(cell suspension of 2000 cells μl−1 in expansion medium) were seeded in the center
of a custom-made silicone rings with an inner diameter of 7 mm within a 12-well
plate. After 1 h of incubation, the silicone ring was removed and the dense layer
of attached MSCs was washed twice with PBS to eliminate non-adherent cells.
Cylindrical scaffolds (type A, B and R, 5 mm diameter, 3 mm height) were pre-
wetted in expansion medium and placed on top of the cell layer to allow cell
migration into the scaffold and 800 μl of medium were carefully added. Pre-wetting
was important to avoid that loosely-attached cells were soaked into the dry scaffold.
After 24 h, scaffolds were detached from the well, washed twice with PBS and
transferred to new wells. It was ensured that the cell layer was on the bottom side
during the whole experiment. Finally, 1.3 ml of serum-free medium consisting of
DMEM supplemented with 1% P/S, 1% non-essential amino acids (NEA, Biochrom
AG), and 1% Nutridoma-SP (Sigma) was added. Scaffolds were fixed 72 h post
transfer in 4% paraformaldehyde (PFA). Cryosections of 25 μm thickness were
prepared from the region around the midplain of the scaffold and stained for cell
nuclei (4′,6-diamidino-2-phenylindole, DAPI). Overview images were recorded via
a fluorescence microscope (Zeiss Axioskop 40) and positions of nuclei relative to
the scaffold surface were analyzed via digital image analysis using ImageJ software.
The median of the migration distance perpendicular to the surface was calculated
for each scaffold from at least two images. For hBMSCs, quantification was
performed on eight biological replicates for the comparison between scaffold A and
B (orientation perpendicular to A) (Fig. 2b) and additionally on two biological
replicates for the supplementary comparison between A, B, R, and RT (orientation

perpendicular to R) (Supplementary Fig. 1b). Supplementary data for hDFs were
assessed on one biological replicate.

3D ECM formation in collagen scaffolds. Scaffolds of cylindrical shape
(D= 4 mm, h= 3 mm) were seeded homogeneously by dipping them into a cell
suspension of 10,000 cells μl−1 for MSCs and 7500 cells μl−1 for fibroblasts
(supplementary data, lower cell density for fibroblasts to compensate the higher
proliferation rate). Scaffolds were placed into individual wells of a 12-well plate
without additional medium. After 1 h of incubation scaffolds were washed in PBS
to remove non-adherent cells. Scaffolds were transferred to new wells and 1.4 ml
of medium were added. Medium was DMEM (1000 mg l−1 glucose for BMSCs,
4500 mg l−1 for fibroblasts) with 10% FBS, 1% Glutamax (BMSCs only), 1% P/S,
1% NEA (fibroblasts only), and ascorbic acid (0.23 mM for BMSCs, 1.36 mM for
fibroblasts) (Sigma). Medium was exchanged twice a week. Cylindrical scaffolds
were fixed in 4% PFA and cut along the cylinder axis to be imaged for fibrillar
collagen (SHI, for details see imaging of in vivo samples). Subsequently, the same
samples were stained for cellular actin filaments (Alexa fluor 488 Phalloidin,
#A12379, Thermo Fisher), fibronectin (anti-fibronectin antibody, #ab23750,
Abcam plc), and cell nuclei (DAPI, #D3571, Thermo Fisher) for imaging via
confocal microscopy. Linear LUTs (lookup tables) covering the full data range were
used for representation.

Analysis of in vitro cell and ECM fiber anisotropy. The degree of cell (F-actin
cytoskeleton) and ECM (fibronectin) anisotropy of in vitro samples was analyzed
from maximum projections of confocal image stacks (60 μm stack depth, 4 μm
z-plane spacing). Image stacks were recorded with a Leica SP5 II confocal laser
scanning microscope (Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany)
equipped with a × 25 water immersion objective. Collagen fibers were visualized via
SHG imaging (for details see in vivo histology). Distribution of fiber orientation
was analyzed via the ImageJ plug-in OrientationJ (by Daniel Sage) on two to three
technical replicates (scaffolds) and three confocal image stacks per scaffold. Time
dependency of cell and ECM anisotropy was evaluated from two biological and two
to three technical replicates for hBMSCs (Supplementary Fig. 1c).

Gene expression of BMSCs cultured inside collagen scaffolds. BMSCs isolated
from four different human donors were used. Influence of the scaffold material on
gene expression was evaluated by seeding 2500 cells μl−1 into cylindrical scaffolds
(D= 5 mm, h= 3 mm) as described above. Cell-seeded scaffolds were cultured for
7 days in expansion medium (DMEM with 1000 mg l−1 glucose, 10% FBS, 1%
Glutamax, 1% P/S). Total RNA isolation and purification from cell-seeded scaffolds
was performed using PureLink® RNA Mini Kit (Thermo Scientific) in combination
with the On-column PureLink® DNase Kit (Thermo Scientific). Subsequently,
mRNA was transcribed into cDNA (iScriptTM cDNA Synthesis Kit [Bio-Rad]) and
quantitative PCR was performed based on SYBR green. Mean normalized
expression ratios, using HPRT as the reference gene, were calculated using the
efficiency corrected ΔΔCt method and fold change expressions were determined in
comparison to the control. Four biological and three technical replicates were
included in the analysis. Primer sequences for the genes of interest are listed below.

Osteocalcin (BGLAP): forward 5′-TGAGAGCCCTCACACTCCTC-3′, reverse
5′-CGCCTGGGTCTCTTCACTAC-3′

Osteopontin (OPN): forward 5′-CACTACCATGAGAATTGCAGTGA-3′,
reverse 5′-CTGCTTTTCCTCAGAACTTCCA-3′

Collagen typ I, alpha1 (Col1A1): forward 5′-AGCCGGAGATAGAGGACCAC
-3′, reverse 5′-GGCCAAGTCCAACTCCTTTT-3′

Aggrecan (ACAN): forward 5′-GGGTTTTCGTGACTCTGAGG-3′, reverse
5′-ATGGGGTCGATGAAATAGCA-3′

SOX9: forward 5′-GGAGACTTCTGAACGAGAGCG-3′, reverse 5′-CCGTTC
TTCACCGACTTCCTC-3′

PPARγ: forward 5′-TGCAGTGGGGATGTCTCATA-3′, reverse 5′-CAGCGG
GAAGGACTTTATGT-3′

HPRT: forward 5′-TATGGACAGGACTGAACGTC-3′, reverse 5′-TGATGTA
ATCCAGCAGGTCA-3′

For data provided in Supplementary Fig. 1d:
Collagen typ II, alpha1 (Col2A1): forward 5′-CTGGAAAAGATGGTCCCAAA-

3′, reverse 5′-CAGGGAATCCTCTCTCACCA-3′
Collagen typ X, alpha1 (Col10A1): forward 5′-CCCAACACCAAGACACAG

TTC-3′, reverse 5′-AGGACTTCCGTAGCCTGGTT-3′

Chondrogenic differentiation of BMSCs in vitro. Cell seeding density was
increased to 10,000 cells μl−1 and scaffold volume was reduced (D= 2 mm, h= 3
mm) to support chondrogenic differentiation of BMSCs. Scaffold were pre-cultured
in BMSC expansion medium. Following 1 day or 14 days of pre-culture (collagen
fiber formation), scaffolds were incubated for 21 days in serum-free chondrogenic
differentiation medium consisting of DMEM (4500 mg l−1 glucose)
supplemented with 1% P/S, 1% GlutaMAX™ (Gibco), 100 nM dexamethasone
(Sigma)68, 10 ng ml−1 transforming growth factor (TGF)-β1 (Peprotech)68,
50 μg ml−1 (0.23 mM) L-Ascorbic acid 2-phosphate (Sigma), 40 μg ml−1 (0.35 mM)
L-Proline (Sigma), and 0.1 mgml−1 (0.91 mM) sodium pyruvate (AppliChem).
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To induce chondrocyte hypertrophy, scaffolds were further cultivated for 14 days
in serum-free hypertrophic medium. Medium was chondrogenic differentiation
medium with removal of TGF-β1 and sodium pyruvate, reduction of dexamethasone
to 1 nM and addition of 10 nM T3(3,3′,5-Triiodo-L-Thyronine) (Sigma), 50 pgml−1

IL1-β (Peprotech)69, and 10mM β-glycerophosphate (Sigma)69.
Specimens were fixated (4% PFA) and mineralization of specimens cultured

under hypertrophic conditions was analyzed via μ-CT (Skyscan 1172 F, Bruker)
with 4.98 μm isotropic resolution at 80 kV source voltage and 124 μA source
current. Subsequently, the cylindrical specimens were cryo-cut to the half-diameter
and 10 μm cryosections were prepared. Sections were stained for Alcian blue
(GAGs), collagen type II (staining details see in vivo histology, no pretreatment)
and Movat’s pentachrome combined with von Kossa staining for visualization of
chondrocyte hypertrophy and mineralization. Collagen fibers were visualized via
SHG imaging on the flat cutting surface of the specimens after cryo-sectioning
to the mid-plane of the cylindrical scaffolds.

Animals. The study was approved by the local authorities (LaGeSo Berlin, G 0415/
12 and G 419/12). Sixty-four female Sprague–Dawley rats with an average weight
of 290 g at day of surgery were randomly divided into eight groups (four groups A,
B, R, E, to be killed after 3 weeks and four groups A, B, V, E, 6 weeks). The rats
were purchased from Charles River Deutschland GmbH, Germany, had free access
to food and water and were kept in the animal facility for at least 7 days before
surgery. All animal experiments were carried out according to the policies and
procedures established by the Animal Welfare Act, the NIH Guide for Care and
Use of Laboratory Animals, and the National Animal Welfare Guidelines. The
study was approved by the local authorities. Animal number per group was chosen
based on a statistical power-analysis, mandatory for the approval of the animal
study. In the study four animals died as a consequence of anesthesia for μ-CT
imaging; five animals were suffering from bone lysis at the fixator pins and were
killed ahead of schedule; further two animals were excluded from analysis because
of pin lysis. One additional animal was excluded because the scaffold was pushed
out of the defect due to forces from surrounding tissues (histological evaluation).

Animal surgery. The rats were administered an intraperitoneal injection of
ketamine hydrochloride (60 mg kg−1, ketamine 50 mg, Actavis, Island) and
medetomidine (0.3 mg kg−1, Domitor, Pfizer, Karlsruhe), as well as the antibiotic
clindamycin (45 mg/kg, Ratiopharm, Ulm) subcutaneously. Using an anterio-
lateral approach the femur was exposed by bluntly separating the gluteus super-
ficialis and biceps femoralis muscles. The external fixator (RatExFix, RISystems,
Davos) with bending stiffness of 254 Nmm−1 (ExFixHigh)70 was mounted by four
titanium (Ti-6Al7Nb) threaded pins manually screwed into the femur after pre-
drilling each pin hole. A 5 mm femoral defect into the mid shaft of the femur was
created by performing a double transverse osteotomy. Scaffolds (type A, B, R, V) of
cylindrical shape (4 mm diameter, 5.5 mm height) were wetted in saline solution
and inserted into the bone defect (slight press-fit due to 10% oversize). Scaffolds
were labeled with numbers to blind the veterinarian during surgery. For empty
controls, the gap remained unfilled. Fascia and skin were sutured and the analgesic
tramadol hydrochloride (20 mg kg−1, Grünenthal, Aachen) was administered
subcutaneously and for a period of three days diluted in the animals’ drinking
water. To recover from anesthesia the animals received an intraperitoneal injection
of the antidote (1.5 mg kg−1, Antisedan, Pfizer, Karlsruhe). Immediately after
surgery, the rats were allowed to resume normal activity and given unrestricted
access to food and water again.

Radiographic images were taken at week 2, 3 (3 week animals), and at week 2,
4, 6 (6 weeks animals) following the same anesthesia protocol as described above.
In vitro μ-CT was performed after sacrificing the animals at week 3 or 6. All
animals were given numbers to blind the investigators during data analysis of
the different groups.

Histological staining and evaluation of in vivo samples. Animals were killed at
the indicated time points, femora were dissected and fixated in 4% PFA for 48 h at
4 °C. Samples were washed and placed into PBS before in vitro μ-CT was per-
formed. Subsequently, femora were quick-frozen in liquid nitrogen and cut along
the long axis in the plane of the pins of the external fixator using a custom-made
sample holder and a low-speed saw (IsoMet, Buehler GmbH, Germany). One half
was placed into 15% ethylenediaminetetracetic acid (EDTA, Herbeta Arzneimittel,
Germany) for decalcification and subsequent embedding in paraffin, the other half
was dehydrated in an ascending ethanol row for embedding in poly-
methylmethacrylate (PMMA).

SHI for visualization of collagen fibers was performed on the remaining PMMA
blocks of embedded samples after preparation of histological sections. Overview
images of the bone defect were recorded using a Leica SP5 II microscope equipped
with a × 25 water immersion objective with a numerical aperture of 0.95 (tile scan).
SHG signal was generated by a Spectra Physics Ti:Sapphire laser (Mai Tai HP) with
100 fs pulse width at 80MHz and wavelength of 910 nm. SHG signal from collagen
was detected at 450–460 nm. For quantification of collagen fiber orientation, single
z-planes at a depth of 4 μm or 8 μm from the surface of the PMMA block were
selected.

Autofluorescence signal (AF) was recorded via two-photon microscopy at
800 nm laser wavelength excitation and detection at 380–680 nm. AF imaging was
performed on a Leica SP5 II microscope using a × 25 water immersion objective
with a numerical aperture of 0.95.

All imaging data obtained from confocal or two-photon microscopy was
represented using linear LUTs covering the full data range.

Movat’s pentachrome staining was performed on 4 μm paraffin sections for
discrimination of tissue types (collagen in bright yellow, cartilage in blue-green,
GAGs bright blue, osteoid dark red, elastic fibers red, cytoplasm light red, and
nuclei brown black). A combination of von Kossa staining (visualization of calcium
deposits in black) and Movat’s pentachrome staining was performed on 7 μm
PMMA sections (heavy duty microtome) for information on tissue types and tissue
mineralization.

Immunohistological stainings for Ki-67 and CD68, as well as combined
stainings CD146/CD271, CD146/von Willebrand Factor (vWF), and CD146/α-
SMA were performed on 4 μm paraffin sections. For Ki-67, heat-induced epitope
retrieval (waterbath, 8 min, 90 °C) was performed in TRIS-EDTA-buffer at pH 9.
Primary anti-Ki-67 antibody (rabbit monoclonal, #ab16667, Abcam) was used at
1:25 dilution. For CD68, primary anti-CD68 antibody (mouse monoclonal,
#BM4000, Acris) was used at 1:2000 dilution. For combined CD146/CD271 and
CD146/α-SMA staining, heat-induced antigen retrieval was preformed using citrate
buffer at pH 6 (3 min, pressure cooker). Primary anti-CD146 antibody (rabbit
monoclonal, #ab75769 clone EPR3208, Abcam) was used at 1:300 dilution, primary
anti-CD271 antibody (mouse monoclonal, #MAB365 clone 192-IgG, Millipore) at
1:30 dilution, and primary anti-α-SMA antibody (mouse monoclonal, #ACTA2
clone 1A4, Dako) was used at 1:400 dilution. For vWF, pretreatment was 0.1%
pepsin in 0.01 N HCl (15 min, room temperature (RT)). Primary anti-vWF
antibody (rabbit polyclonal, #CP039B, Biocare) was used at 1:200 dilution. All
primary antibodies were diluted in Antibody-diluent (DAKO) and incubated
overnight at 4 °C. For detection via bright-field microscopy (avidin/biotin
complex), biotinylated secondary antibodies (2%, 30 min, RT), Alkaline-
Phosphatase Standard-Kit (50 min, RT), and Alkaline-Phosphatase-Substrate Kit
(incubation time controlled under microscope) were used (all from VECTOR
Laboratories, Inc.). Methylgreen (VECTOR) was used for counterstaining of nuclei
in Ki-67 stainings (25 min, RT), and hematoxylin (Mayer’s) in CD68 and α-SR1
stainings. Sections were imaged via bright-field microscopy using a Zeiss Axioskop
40 (Ki-67, CD68) or via confocal microcopy using a Leica SP5 II confocal
microscope (CD146, CD271, vWF, α-SMA). Histomorphometric quantification of
scaffold, cartilage, and mineralized matrix area were performed via digital image
analysis using ImageJ/Fiji software and custom-made data analysis macros
(available from corresponding author upon request). For detection via confocal
microscopy, secondary antibodies used were CY3 (anti-rabbit, #711-165-152,
Dianova) at 1:200, Alexa Fluor® Plus 647 (anti-mouse, #A32728, Thermo Fischer)
at 1:200, and Alexa 488 (anti-mouse, #A-11001, Thermo Fischer) at 1:400 dilution.
Cell nuclei were visualized by DAPI (#D3571, Thermo Fisher) at 1:1500 dilution
(15 min, RT).

Immunohistological staining for α-SMA (quantifications shown in Fig. 7a,b)
and α-SR1 were performed on 5 μm PMMA sections. Primary anti-α-SMA
antibody (mouse monoclonal, #ACTA2 clone 1A4, Dako) was used at 1:400
dilution (overnight, 4 °C). For α-SR1, heat-induced antigen retrieval was preformed
using citrate buffer at pH 6 (30 min, waterbath at 90 °C). Primary antibody was
anti-α-SR1 (mouse monoclonal, #ab28052, Abcam) at 1:50 dilution. For detection
via bright-field microscopy, the avidin/biotin complex was used as described above
(Supplementary Fig. 8b). For immunofluorescence (α-SMA stainings shown in
Fig. 7b, Supplementary Figs. 5c and 9), a secondary antibody coupled to Alexa
Fluor® 488 (anti-mouse, #A-11001, Thermo Fischer) was used at 1:400 (1 h, RT).
DAPI was used for counterstaining of nuclei at 1:1500 dilution (15 min, RT). Signal
from α-SMA and nuclei were recorded via confocal microscopy. In addition,
AF signal was recorded via two-photon microscopy at 800 nm laser wavelength
excitation and detection at 380–680 nm. α-SMA-negative capillaries in
Supplementary Fig. 9 were detected by the presence of erythrocytes (anuclear+
bright AF signal from hemoglobin) in vascular structures.

All antibodies were tested on reference tissues reported to serve as positive
controls. Results were evaluated by an experienced histologist. Negative control
stainings were performed without using the primary antibody.

For heatmap representation of vessel density, CD146, CD68, and α-SR1 signal
intensity distribution (Fig. 7a and Supplementary Fig. 8), regions of interest (ROIs)
were manually selected to cover the bone defect region for empty defects E and to
cover the scaffold area within the defect region for groups A,R,B. Regions of
mineralized tissue, cartilage, and muscle prolapsed into the bone defect were
excluded from the analysis. All ROIs were stretched to a uniform rectangular shape
using a customized macro in ImageJ using the plug-in “Landmark
Correspondences” by Stephan Saalfeld. Vessels were marked manually for each
animal in each group. Intensities of CD146, CD68, α-SR1 signal were summed for
all animals within the respective group creating 32 bit images. Mean vessel densities
and mean signal intensities (CD146, CD68, α-SR1) within sub-ROIs (20 ×
16 squared sub-ROIs) were calculated, normalized to the number of animals per
group and represented in a mosaic-heatmap-format using ImageJ. Preprocessing
of the images in ImageJ was cell nuclei and background-subtraction (thresholding)
for CD146 and background-subtraction (thresholding) for CD68 and α-SR1.
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For the analysis of local blood vessel density and local CD146 signal intensity at
the callus front (boxplots in Fig. 7b, c), ROIs of 500 μm from the interface between
mineralized and non-mineralized tissue toward the direction of the non-
mineralized tissue were defined. The ROIs were restricted to the bone defect region
for group E and the scaffold region within the bone defect region for groups A,R,B
excluding muscle tissue. Cartilage (avascular) was excluded from the analysis.
In regions of cartilage, the interface between cartilage and non-mineralized tissue
(preceeding cartilage) rather than the interface between mineralized and non-
mineralized tissue was used as boarder for the ROI (see also sketch in Fig. 7c).
Blood vessels (showing a lumen, positive for α-SMA) within the ROIs were counted
manually from bright-field images using ImageJ and mean blood vessel density
nvessel was calculated from the number of vessels divided by the area of the ROI.
Mean CD146 signal intensity in the ROIs was analyzed from confocal microscopy
images using ImageJ (following image processing described above).

In vivo collagen fiber orientation and anisotropy. Primary orientation and local
anisotropy of collagen fibrils in in vivo samples was analyzed from SHG images
using the freely accessible ImageJ plug-in FibrilTool71. FibrilTool provides
information about the primary orientation and the degree of anisotropy of a fiber
network. FibrilTool was implemented into a macro performing orientation analysis
within multiple sub-ROIs of defined size within a grid-like pattern covering the
osteotomy region (used for Fig. 1c: sub-ROI size 45 × 45 μm, Fig. 4b and 5c, f, i:
sub-ROI size 194 × 194 μm). A green line in each sub-ROI indicates the degree
of anisotropy (AC= length of line, 0 < AC < 1) and direction of primary
orientation (ΦC= angle of line relative to horizontal orientation).

To quantify the distribution of collagen fiber orientation inside the bone
defect (Fig. 4c, polar diagrams labeled “D”), ROIs were manually selected to
cover the scaffold area for groups A,R,B and to cover the bone defect region
for empty defects E. Regions of mineralized tissue, cartilage and muscle were
excluded from the analysis. Fiber orientation at the interface (Fig. 4c, polar
diagrams labeled “I”) was quantified in manually selected ROIs of 320 μm width
(in the direction of the bone axis) across the full height of scaffold/bone defect.
Distribution of fiber orientation was analyzed via the plug-in OrientationJ,
normalized to 1 (divided by the sum of values for 0 to 360°) and plotted as polar
diagrams. The direction of primary fiber orientation, indicated by green lines and
according numbers in Fig. 4c, was analyzed as the maximum of a Gaussian
distribution fitted to the distribution of fiber orientation depending on the angle Φ
in Cartesian coordinates.

For the correlation between collagen fiber orientation and occurrence of
cartilage (Fig. 6), fiber orientation on both sides of the interface between the
mineralized and non-mineralized matrix was analyzed using FibrilTool. ROIs of
320 μm width (in the direction of the bone axis) and 1300 μm height
(perpendicular to bone axis) were manually selected at the tip of the mineralized
callus on the proximal and the distal side of the segmental bone defect. The
incidence of cartilage depending on fiber orientation was evaluated from AF images
and Movat’s pentachrome staining on histological sections.

In vitro µ-CT. For analysis of mineralized matrix anisotropy and mineralized
callus shape, in vitro μ-CT was performed at 3 and 6 weeks post-op (vivaCT 40,
Scanco Medical, Bassersdorf, Switzerland), respectively. Femora were scanned
using 10.5 μm isotropic resolution, with 55 kV source voltage, 145 μA source
current, and 150 ms integration time. The volume of interest (VOI) was defined to
include the 5 mm defect region and 0.5 mm in the proximal and distal directions
from the cutting plane of the bone defect. A global threshold of 60% (callus shape
and mineralized matrix anisotropy) relative to the mineral density of the intact
tibia, equivalent to 351 mg HA ccm−1 was used to distinguish mineralized tissue
from poorly mineralized and unmineralized tissue.

Analysis of mineralized ECM orientation and anisotropy. Cylinders of 705 μm
diameter and 378 μm height (VOIs) were cropped out from in vitro μ-CT image
stacks at the tip of the proximal and distal mineralized callus via ImageJ. Position
of the VOIs was defined as follows: cylinder axis= bone axis, cylinder base= first
plane and position where a circle of 705 μm diameter is filled by mineralized callus
starting from the middle of the bone defect, cylinder end= startplane+ 378 μm.
Two VOIs were extracted from each in vivo specimen (proximal and distal callus
tip). Thresholding was applied to gray scale at 60% cortical bone gray value. BoneJ
plug-in (http://bonej.org) was used for the analysis of anisotropy AM on binarized
image stacks and primary direction of anisotropy ΦM was calculated from the
eigenvector with smallest according eigenvalue.

Analysis of mineralized callus shape. Based on reconstructed μ-CT data, height
of the mineralized callus d and the cross-sectional callus area A0 at half callus
height were analyzed to compare geometry of the newly formed mineralized bony
callus between the scaffold groups and the empty control group. Callus height was
defined as the distance between the osteotomy plane and the tip of the mineralized
callus (callus tip= first plane where the cross-sectional area was ≥ 0.20 mm² when
moving from the callus tip into the callus). The ratio d/A0 gives information about
the shape of the callus. At comparable total callus volumes, directional bone healing

across the defect (cylindrical shape) is represented by higher values of d/A0 com-
pared with a non-directional pattern (half sphere-like shape).

Analysis of cell density at the cartilage front. Imaging of collagen fibers and cell
nuclei were performed directly on PMMA blocks to avoid structural artefacts
and associated alterations of cell density due to sectioning. DRAQ5 (1:500) was
pipetted on the block in the osteotomy region and incubated for 1 h at RT.
Blocks were washed with PBS (3 × 15 min). Confocal and multiphoton image stacks
were recorded for cell nuclei (DRAQ5) and collagen fibers (SHI), respectively
(see Supplementary Fig. 4b). Position of cell nuclei were manually marked on
maximum projections of image stacks. Distribution of nuclei along the bone axis
(x axis) was quantified in a histogram with a class width of 150 μm. Cell density
was calculated from the number of cells per interval divided by the area (image
height x class width). Data were analyzed from four specimens (scaffold A) and is
provided as Supplementary Fig. 4c.

Statistics. All statistical analysis was performed in Origin Pro 2015G (OriginLab
Corporation). In vivo experiments were replicated at least twice (animal surgery
performed at different days). No significant difference between the results was
found. In vitro experiments were repeated at least twice with identical results.
The exact number of repeats for in vitro experiments are given in the figure
captions. Details of the statistical analysis are provided in Supplementary Table 1.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information files.
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