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Models of the electro-mechanical activity of the cardiac muscle can be very
useful in computing stress, strain and action potential fields from three-dimens-
ional image processing. We designed a chemically-controlled constitutive law of
cardiac myofibre mechanics, acting on the mesoscopic scale and devoted to be
embedded into a macroscopic model. This law ensues from the modelling of the
collective behaviour of actin-myosin molecular motors, acting on the nanoscopic
scale to convert chemical into mechanical energy. The resulting dynamics of
sarcomeres, acting on the microscopic scale, is shown to be consistent with the
“sliding filament hypothesis”, which was first introduced by A. F. Huxley [1].

Excitation-Contraction Model on the Myofibre Scale

The contractile elements (CE) of myofibres are able to produce stress while
shortening in response to a chemical input u(t), mainly depending on the calcium
concentration. We propose, as a constitutive relation in the myofibre direction
between stress σ and strain ε, the following set of controlled differential equations
(modified from [2], [3]) of visco-elasto-plastic type:{

k̇c = − (|u|+ |ε̇|) kc + k0 |u|+ kc(0) = σc(0) = 0
σ̇c = − (|u|+ |ε̇|) σc + kc ε̇ + σ0 |u|+ σ = kcξ0 + σc + ηε̇

(1)

The system is able to account for : shortening from resting conditions (ε̇ = 0)
in response to u(t), passive behaviour of CE (u = 0) as described in [4], static
relation between ε and σ, and isotonic contraction (σ̇c = 0 and ε̇ < 0) as in
Hill’s experimental model. For the purpose of ultrasonographic-image processing,
the system is further being embedded into a partial differential equation model
including reaction-diffusion equations to rule the propagation of action potential.

Excitation-Contraction Model on the Sarcomere Scale

On a microscopic scale, the sarcomere is made up of thin and thick parallel
filaments. When ATP is available and the intracellular level of calcium reaches
a threshold, myosin heads of the thick filament become likely to bind actin sites
on the thin filament. The elastic free energy W of the actin-myosin interaction
is responsible for muscle contraction: stress response to strain causes relative
sliding of the actin over the myosin filament. Let n(ξ, t) be the density of cross-
bridges with strain ξ at time t and ε the strain (normalized by the ratio of rest
to maximal length of cross-bridges). Then, Huxley’s model is:

∂tn+ ε̇ ∂ξn = f(1− n)− gn, σ(t) = −
∫ +∞

−∞
∂ξW (ξ)n(ξ, t)dξ + ηε̇ (2)
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The following choice of f(ξ, t) and g(ξ, t), the positive rates at which cross-
bridges respectively fasten and unfasten, is consistent with myofibre behaviour:

f(ξ, t)= |u(t)|+ for ξ ∈ [0, 1] (=0 elsewhere), g(ξ, t)= |u(t)|+|ε̇(t)|−f(ξ, t) (3)

In the particular case −∂ξW (ξ) = k0ξ0 + σ0ξ, we notice, as in [5], that the total
stiffness kc and total elastic stress σc are respectively proportional to the zero
and first-order moment of n:

kc(t) = k0

∫ +∞

−∞
n(ξ, t)dξ and σc(t) = σ0

∫ +∞

−∞
ξn(ξ, t)dξ (4)

where k0 and σ0 are constants related to physical parameters of crossbridges.
The system (1) is a set of equations of moments derived from (2), (3) and (4).

Excitation-Contraction on the Molecular-Motor Scale
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1 (1’). AM+ATP→M.ATP+A
g. Myosin unbinding
2. M.ATP→M.ADP.P
Myosin free motion
3 (3’). M.ADP.P+A→AM.ADP.P
f . Myosin binding controlled by Ca2+

4 (4’). AM.ADP.P→AM+ADP+P
Myosin sliding on actin

Two-state model for a single motor[6] and Four-phase ATP-cycle

The motion of a myosin head is described by a Langevin equation with η, friction
coefficient, b, thermal normalized gaussian white noise, and Fext, external force:

ηẋ = −∂xWi(x) +
√
2ηkBTb(t) + Fext, i = 0, 1 (5)

The myosin is likely to move one way, as the thermal fluctuations are rectified
by the periodic “sawtooth” potential W1 (probable moves are 1→1 and 1→1′).
Collective behaviour of motors[6]. Applying the Fokker-Planck formalism to (5),
n(t, ξ) appears as the average density of myosin heads bound a distance ξ away
from the nearest local minimum of W1.

Conclusion and Perspectives

We have proposed a controlled contraction model on the myofibre scale consistent
with models designed on the sarcomere and molecular scales. A more precise
model accounting for detailed Ca2+ action is under development.
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[6] F. Jülicher, A. Ajdari, and J. Prost. Modeling molecular motors. Reviews of Modern
Physics, 69(4), October 1997.


