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Abstract—This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a

new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score

level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing

the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and

fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people

(1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the

equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).

Index Terms—Biometrics, multimodal systems, hand-based identification, K-L transform, eigenpalms, eigenfingers.
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1 INTRODUCTION

BIOMETRICS is an emerging technology [1], [2] that is used to
identify people by their physical and/or behavioral

characteristics and, so, inherently requires that the person
to be identified is physically present at the point of
identification. The physical characteristics of an individual
that can be used in biometric identification/verification
systems are fingerprint [3], [4], hand geometry [5], [6], palm
print [7], [8], [9], face [4], [10], iris [11], [12], retina [13], and ear
[14]; the behavioral characteristics are signature [2], lip
movement [15], speech [16], keystroke dynamics, gesture,
andgait [1], [2]. Biometric systemsbasedona single biometric
characteristic are referred to as unimodal systems. They are
usually more cost-efficient than multimodal biometric
systems. However, a single physical or behavioral character-
istic of an individual can sometimes fail to be sufficient for
identification. For this reason,multimodal biometric systems
—i.e., systems that integrate two or more different biometric
characteristics—are being developed to provide an accepta-
ble performance, to increase the reliability of decisions, and to
increase robustness to fraudulent technologies [17]. The
biometric community puts a lot of effort into working on
technical standards in the field of biometric fusion [18].

Although systems based on fingerprints and eye features
have, so far at least, achieved the bestmatching performance,
the human hand also contains a wide variety of features
—e.g., shape, texture, and principal palm lines—that can be
used by biometric systems. These features of the humanhand
are relatively stable and the hand image fromwhich they are
extracted can be acquired relatively easily. Furthermore, it
has been reported [1], [19] that identification systems based
on hand features are the most acceptable to users.

Our multimodal biometric identification system is based
on features extracted from hand images by means of the
Karhunen-Loeve (K-L) transform. Features extracted by
projecting palm images into the subspace obtained by the
K-L transform are called eigenpalm features, whereas those
extracted by projecting strip-like images of fingers are called
eigenfinger features. Fusion at the matching-score level is
used. The final decision (the user is identified or rejected) is
based on the modified k-NN rule and thresholding.

The rest of the paper is organized as follows: Section 2
presents related work in the field of palm print, finger, and
hand-geometry-based biometric systems, biometric systems
using the K-L transform, and information fusion in multi-
modal biometric systems.An overviewof our system is given
in Section 3. Section 4 deals with the problem of template
generation. In Section5,matchingand fusion at thematching-
score level are described. The experimental results are
reported in Section 6. The conclusions and future work are
presented in Section 7.

2 RELATED WORK

Mostbiometric systems thatuse thehumanhandarebasedon
either palm or hand-geometry characteristics. Palm print-
based biometric systems normally use the following char-
acteristics: prominent palm-line features, the end points of
these lines, texture, global texture energy, or some combina-
tion of these characteristics [7], [8], [9], [20], [21], [22].

Hand-geometry-based systems usually involve determin-
ing the lengths and widths of the hands and fingers at
different points [5], [6], [23]. Most of these systems use hand-
position constraints, such as pegs. In [24], a system based on
deformable shape matching is proposed. A number of
commercial systems based on hand geometry [25] and palm
prints [26], [27] are available.

K-L-transform-based techniqueshavebeenwidelyused in
the field of biometrics, particularly in face-recognition
techniques (eigenfaces) [28], but they have also been used
for lip tracking (eigenlips) [15] and hand-gesture recognition
throughhand contours (eigencontours) [29]. In a recent paper
[30], Lu et al. also use eigenpalms for palm print recognition.
The images of the palm prints are captured at a resolution of
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484� 384 pixels. They are then aligned and their size is
normalized. From these images, the palm subimages with a
fixed size (128� 128 pixels) are extracted and transformed
using the K-L transform. The extraction of the features
involves the proposed eigenspace method with feature-
vector lengths of 50, 100, 150, and 200. These features can
then be clustered by using the weighted Euclidean distance.
The test database consists of 191 people, each of whom
provided eight images of their left palm and eight images of
their right palm. Experiments using different numbers of
training samples and different lengths of the feature vector
are described. The best recognition rate of 99.149 percent is
achieved for four training samples and 100 features. Error
rates of FRR = 1 percent and FAR = 0.03 percent were also
reported.

In general, multimodal biometric systems require
integration schemes to fuse the information obtained from
the individual modalities. Various levels of fusion are
possible [31], [32]:

1. Fusion at the feature-extraction level, where the
features extracted using two or more sensors are
concatenated.

2. Fusion at the matching-score level, where the
matching scores obtained from multiple matchers
are combined.

3. Fusion at the decision level, where the accept/reject
decisions of multiple systems are consolidated.

In papers [33], [34], the fusion of hand-geometry and
palm print features at the matching-score and decision
levels are described. Jain and Ross [35] describe an
interesting approach to the realization of a multimodal
biometric verification system based on face, fingerprint, and
hand-geometry features that uses fusion at the matching-
score level based on learning user-specific matching thresh-
olds as well as the weights of an individual biometric trait.
Some other references related to fusion at the matching-
score and decision levels are [36], [37], [38], [39].

3 SYSTEM DESCRIPTION

Fig. 1 shows the block-diagram of the proposed multimodal
biometric identification system based on the fusion of
eigenpalm and eigenfinger features at the matching-score
level. In the image-acquisition phase, a hand image is taken
using a low-cost scanner. The spatial resolution of the images
is 180dotsper inch (dpi)/256gray levels. In thepreprocessing
module, some standard image-enhancement procedures are
applied. Based on the hand contour and reference (stabile)
points, the six regions of interest are localized: a square palm
region and five strip-like regions of the fingers. Geometry
normalization is applied to the original gray-scale hand
image for each region of interest to obtain the corresponding
subimages. After that, the lighting normalization is per-
formed using histogram fitting. The normalized palm print
subimage and fivenormalized strip-like finger subimages are
transformed by the Karhunen-Loeve (K-L) transform into six
feature spaces called “eigenpalms space” and “eigenfingers
space,” respectively. The feature spaces are spanned by a
certain number of the largest eigenvectors of the correspond-
ing covariance matrices. The dimensionality of the feature
spaces is determined during the training phase of the system.
The outputs of the feature-extraction modules, for the
sample x, are six feature vectors: the palm-feature vector Px

and five finger-feature vectorsFi
x; i ¼ 1; 2; . . . 5. Thematching

between the corresponding vectors and the templates from a
database is performed in the subsequent six matching
modules. After the normalization of the matcher’s outputs,
fusion at thematching-score level is obtained bymeans of the
total similaritymeasure. In the decisionmodule, the (k, l)-NN
rule, with k = l = 3, is used to establish identity, and after
thresholding based on the total similarity measure, a final
decision is made (the user is identified or rejected).

4 TEMPLATE GENERATION

The template, as a mathematical representation of the
biometric data in our system, consists of six feature vectors:
the palm-feature vector Px and five finger-feature vectors
Fi

x; i ¼ 1; 2; . . . 5, where F1
x represents the little finger, F2

x

represents the ring finger, F3
x represents the middle finger,

F4
x represents the index finger, andF5

x represents the thumb.
In this section, the template-generation process is described.

4.1 Image Capturing, Preprocessing, and Subimage
Extraction

Images of the right hand are scanned at 180 dpi/256 gray
levels using a low-cost scanner. The user puts his/her hand
on the scanner with the fingers spread naturally; there are
no pegs, or any other hand-position constrainers. An
example of an image (biometric sample) acquired with this
method is shown in Fig. 2a.

The acquired image is binarized using thresholding. Due
to the high contrast between the background and the hand
on the images, global thresholding provides satisfactory
results. Fig. 2b shows a binarized image from Fig. 2a. A
contour-following algorithm is applied to a binarized image
to extract the hand contour. The hand contour is then
processed in order that the relevant points for finding
regions of interest on the original gray-scale image (the palm
region and the finger-strip regions) are determined. An
example of a processed hand contour with the relevant
points marked is shown in Fig. 3a.

Points T1, T2, T3, T4, T5, B2, B3, B4, and B6 (the fingertips
and the valleys between the fingers) are located using the
local minima and maxima on the contour. Points B1, B5, and
B7 are set by making sure that the distance between each of
these points and its corresponding fingertip is the same as the
distancebetween the fingertip and thebase-point on theother
side of the finger. Points P1 and P2, which are relevant for
determining the palm region, are located as shown in Fig. 3a.

The palm is the inner surface of the hand between the
wrist and the fingers. In our system, the palm region (the
region of interest) is defined as a square region with two of
its corners placed on the middle-points of the line segments
P1-B2 and B4-P2 (see Fig. 3a).

In order to find the finger-strip region (the region of
interest) of each finger, the following steps are performed:
Four additional points are determined on the finger contour.
Two of them (points F1 and F2; Fig. 3b) are at one-third of the
distance between the fingertip and the base of the finger
(defined as the middle-point of the line segment B1-B2;
Fig. 3b); the other two (points F3 and F4; Fig. 3b) are at two-
thirds of the same distance. The line connecting the middle-
points of the line segments F1-F2 and F3-F4 defines the line of
symmetry for the finger-strip region. The length of the strip is
chosen tobe five-sixths of the lengthof the finger (thedistance
between the base of the finger and the fingertip). Stripwidths
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are determined for each finger experimentally, in such a way
that the strip’s length-width ratio is constant for each finger.

The selected finger-strip region contains the folds of the
skin corresponding to theplaces between thephalanxesof the
finger. These folds of the skin and their positions contribute to
the discriminatory characteristics of the region.

4.2 Geometry and Lighting Normalization

The regions of interest in the original gray-scale images vary
in size and orientation from image to image. However, in
order to apply the K-L transform, they all need to be
normalized to exactly the same size and orientation. Geome-
try normalization is applied to the gray-scale image to obtain
the corresponding hand-part subimages: The palm subimage
is normalized to 64� 64 pixels, the little-finger and thumb

subimages to 16� 64 pixels, and the ring, middle, and index-
finger subimages to 14� 64 pixels. Fig. 4a shows the original
hand imagewith the regions of interestmarked on it. Figs. 4b,
4c, 4d, 4e, 4f, and 4g show the corresponding subimages
obtained using the geometry normalization procedure.

After the subimages have been extracted, a lighting
normalization using histogram fitting is applied. In this
process, a target histogram GðlÞ is selected for each of
the six subimage classes as the histogram of the
corresponding subimage obtained from the first hand
image in the database. The subimages are transformed so
that their original histograms (described with a histogram
function HðlÞ; l ¼ 0; 1; 2; . . . ; 255; where l is the discrete
gray-scale intensity level) become the same as the target
histograms (described with a histogram function GðlÞ).
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Fig. 1. Block-diagram of the implemented system.
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Fig. 2. (a) Example of a scanned hand image. (b) Binarized hand image.

Fig. 3. (a) The hand contour and the relevant points for finding the regions of interest. (b) Processed finger on the hand contour.

Fig. 4. (a) Original hand image with the regions of interest marked on it. (b) Palm subimage. (c) Little-finger subimage. (d) Ring-finger subimage.
(e) Middle-finger subimage. (f) Index-finger subimage. (g) Thumb subimage.



The procedure of histogram fitting [40] can be described
as follows: First, we need to find the functions fH!UðlÞ and
fG!UðlÞ that map the histograms HðlÞ and GðlÞ onto a
uniform distribution histogram UðlÞ:

fH!UðlÞ ¼

Pl

j¼0

HðjÞ

PL�1

j¼0

HðjÞ

ð1Þ

fG!UðlÞ ¼

Pl

j¼0

GðjÞ

PL�1

j¼0

GðjÞ

; ð2Þ

where L represents the number of discrete intensity levels
in the images (256 in our case).

To find the desired mapping function fH!GðlÞ that maps
the image histogram onto the target histogram, we need to
find the inverse function of fG!UðlÞ, which we will mark as
fU!GðlÞ. The function fU!GðlÞ is simply implemented by
searching through all the values of the function fG!UðlÞ.
After we have this function, we can express the desired
mapping fH!GðlÞ as

fH!GðlÞ ¼ fU!GðfH!UðlÞÞ; l ¼ 0; 1; . . . ; L� 1: ð3Þ

The experimental results showed that histogram fitting
improves the performance of our system in such a way that
the recognition error is reduced. We also tested a lighting
normalization procedure that involves prespecified mean
and variance, as used in [34] for palm print images, but we
found that this procedure does not improve the perfor-
mance of the system as much as histogram fitting.

Fig. 5 presents subimages from Fig. 4, before and after
the histogram fitting. Fig. 6 shows some palm subimages
with the corresponding histograms from before and after
the histogram fitting.

Image preprocessing, subimage extraction, and nor-
malization are based on simple and well-known algo-
rithms. The processing time for all of the above
procedures is 0.536 seconds (on a computer with
1177 SPECint_base2000) for a 1; 530� 1; 650 pixels image.

4.3 Extraction of the Eigenpalm and Eigenfinger
Features

The eigenspace technique has been widely used for pattern
recognition, as well as in the field of biometrics. It is most

popular as a face-recognition technique [28], but, in a recent
paper [30], it is also used for recognizing palm print images.
The K-L transform, also known as PCA (Principal Compo-
nent Analysis), applied to a set of images, can be used to find
the subspace that is occupied by all of the images from the
analyzed set. When the images are encoded into this
subspace and then returned to the original space, the error
between the reconstructed and the original images is
minimized (i.e., no other transform exists that can represent
these images with the same number of samples and has a
smaller reconstruction error).

Eigenpalm and eigenfinger feature extraction is based on
the K-L transform and is used to obtain the most important
features from the palm and finger subimages in our system.
These features are obtained by projecting the original
subimages into corresponding subspaces. We create six
image subspaces: one for the palm subimages and one for
the subimages of each finger. The process of obtaining these
subspaces andprojecting the subimages into them is identical
for all subspaces.

To begin with, we have a training set of N subimages,
and each subimage consists of n elements. For example, in
the database used to compute eigenspaces we have
N ¼ 550 images. The palm subimages have n ¼ 64� 64 ¼
4; 096 elements, the little-finger and thumb subimages n ¼
16� 64 ¼ 1; 024 elements, and the ring, middle, and index-
finger subimages have n ¼ 14� 64 ¼ 896 elements.

The process of obtaining a single subspace [28], [41]
consists of finding the covariance matrix C of the
training set of subimages and computing its eigenvec-
tors vk; k ¼ 1; 2; . . . ; N .

The eigenvectors vk corresponding to the largest eigen-
values �k span the base of the sought subspace. Each
original subimage can be projected into this subspace as

�k ¼ vTk � �S k ¼ 1; 2; . . . ;m; ð4Þ

where m is the chosen dimensionality of the subimage
subspace and�S ¼ �S ��, where �S is an original subimage
from the set of subimages that have to be projected and � is
the average subimage of the training set. In Fig. 7, the average
palm subimage and the average finger subimages obtained
from our training set are presented. The coordinates of the
projected images in that subspace, �k; k ¼ 1; . . . ;m, can be
used as a feature vector for the matching procedure.

The eigenvectors spanning the palm-space can be repre-
sented as images with the same dimensionality as the palm
subimages used to obtain these eigenvectors. These sub-
images are called eigenpalms. The same procedure for each
finger gives us the eigenfingers. Fig. 8 shows the eigenpalms
and eigenfingers obtained from the training database. They
are presented in decreasing order of the appropriate eigen-
value values. The ordinal numbers of the eigenpalms or
eigenfingers are indicated below each image. FromFig. 8, it is
obviousthat the imageswiththesmallerordinalnumbers (i.e.,
the larger corresponding eigenvalues) look similar to the
palm/finger images and, so, represent useful information for
the image encoding. On the other hand, images with larger
ordinal numbers look like noise and do not represent useful
information. This is the reason why only eigenvectors
corresponding to the large eigenvalues are used for the
feature extraction.

The same observations presented in [28] for eigenfaces
can also be applied to eigenpalms and eigenfingers: Each
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Fig. 5. Subimages (a) before and (b) after the histogram fitting.



individual palm and finger subimage can be represented
exactly in terms of a linear combination of the eigenvectors.
These eigenvectors can be thought of as a set of features that
together characterize the variation between the images,
without requiring that they correspond to our intuitive
notions of palm and finger features.

The dimensionality of each of the six subspaces is
selected based on the results of the preliminary recognition
experiments on the database described in Section 6.1. The

feature vector representing the palm (Px) has 150 compo-
nents, whereas the feature vectors representing the fingers
(Fi

x; i ¼ 1; 2; . . . 5) are 100-component vectors. Thus, the
template is represented by 650 features, which are used in
the identification process.

The computing of the eigenfeatures (eigenvectors of the
covariance matrices of the palm and finger subimages) is the
most time-consumingprocedure in the system.Wehaveused
Jacobi transformations [41], which is an iterative algorithm
that usually converges in between 12N3 to 20N3 operations,
where N is the dimension of the N �N covariance matrix.
The entire procedure of obtaining the six eigenspaces for the
550� 550 covariance matrices runs for 157 seconds on a
computer with 1154 SPECfp_base2000. It is important to note
that,while itmay seem that the systemwouldperformslowly
due to the computational complexity of the eigenspace
computation, this procedure must only be performed once,
during the training phase.

Theprojectionofanoriginalsubimage into thecorrespond-
ing subspace (4) has the computational complexity Oðn �mÞ,
wheren is thenumberofelementsof thesubimageandm is the
dimensionality of the subspace. For example, for a palm n ¼
4; 096 andm ¼ 150. Theprocessing time for theprojection of a
palmsubimage into thepalmsubspace is 0.003 seconds,while
the totalprocessingtimeforall sixprojections is0.008seconds.
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Fig. 7. Average palm and finger images from our database.

Fig. 6. Palm subimages with the corresponding histograms (a) before and (b) after the histogram fitting.



5 MATCHING AND FUSION AT THE

MATCHING-SCORE LEVEL

A template in our system is represented by six feature
vectors: palm feature vector Px and five finger-feature
vectors Fi

x; i ¼ 1; 2; . . . 5.
Figs. 9 and 10 demonstrate why including finger-strip

features as discriminatory features in a matching process is
justified. They show the first k, k < m features �k obtained
from the middle-finger subimages.

In order to recognize, identify, or verify a user, the
matching process between the live-template and the tem-
plates from the database has to be performed. The matching
between corresponding feature vectors is based on the
Euclidean distance. In this step, the following six distances
are obtained:

. dðPx;PjÞ;wherePx is apalmlive-templateandPj; j ¼
1; 2; . . .u are palm templates from the database,where
u is the total number of templates in the database.
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Fig. 8. Eigenpalms and eigenfingers obtained from the database (indicated by the corresponding ordinal numbers): (a) the eigenpalms and (b) the
little-finger eigenfingers.

Fig. 9. (a) Middle-finger subimages of the same person. (b) The first 30 features obtained from the above images.

Fig. 10. (a) Middle-finger subimages of the different people. (b) The first 30 features obtained from the above images.



. dðFi
x;F

i
jÞ; i ¼ 1; 2; . . . 5, where Fi

x are finger live-
templates and Fi

j; j ¼ 1; 2; . . .u are finger templates
from the database.

The distances are normalized and transformed into
similarity measures SPxj and SFixj ; i ¼ 1; 2; . . . 5, by means of six
transition functions (SP and SFi; i ¼ 1; 2; . . . 5), which were

determined experimentally from the training set of the
database as follows:

The frequency distribution of the distances dðPp;PjÞ,
and dðFi

p;F
i
jÞ; i ¼ 1; 2; . . . 5, where p and j denote templates

of the same person, is calculated. This process is performed
for every set of user templates from the training set of the
database. The corresponding frequency distributions are
collected for all users, and a histogram HðdÞ is obtained.

The transition functions are three-segment functions over
the distances interval ½0;þ1Þ. The first segment is a constant
functionwith thevalue1,over the interval ½0; �Þ,where� is the
mean value of the distances. The second segment is a linear
function that approximates the histogram’s right-hand tail
over the interval ½�; �Þ,whereHð�Þ ¼ 0. The third segment is a
constant function with the value 0, over the interval ½�;þ1Þ.
Table 1 shows the values of � and � for the palm and fingers
obtained automatically during the training phase. Fig. 11
illustrates a transition function SP, based on the frequency
distribution of the palm distances.

The normalized outputs of the six matching modules are
combined using fusion at the matching-score level. The
fusion is expressed by means of the total similarity measure
(TSMxj)

TSMxj ¼ w1 � S
P
xj þ w2 � S

F1
xj þ w3 � S

F2
xj

þ w4 � S
F3
xj þ w5 � S

F4
xj þ w6 � S

F5
xj ;

ð5Þ

where w1; w2; . . . ; w6 are weight factors associated with
each of the hand parts and fulfill the condition w1 þ w2 þ
. . .þ w6 ¼ 1. In our system, the weights are set propor-
tionally to the preliminary unimodal recognition results
(see Section 6.1) so that w1 ¼ 0:169, w2 ¼ 0:168, w3 ¼ 0:174,
w4 ¼ 0:178, w5 ¼ 0:163, and w6 ¼ 0:146.

6 EXPERIMENTAL RESULTS

6.1 Recognition

It is known that the K-L transform finds components that are
useful for representing data, and there are no well-founded
reasons, in general, to assume that these components are

useful for discriminating between data in different classes
[42], i.e., the K-L transform seeks directions that are efficient
for the representation of data in a least-squares’ sense.

The preliminary recognition experiments carried out and
described in this section have to answer the following
questions: 1) Are the K-L components for the six subspaces

(subspaces of the palm and fingers) sufficiently discrimi-
natory for recognition purposes? 2) What is the dimension-
ality of the subspaces that gives a satisfactory recognition
accuracy?

To answer the first question, we made some simple
preliminary experiments that showed the recognition
results achieved using the features from different hand
parts. We also demonstrated how fusion influences the
recognition accuracy.

Seven recognition experiments were made. Six of them
were made using features from only one hand part (i.e.,
recognition based only on eigenpalm features, recognition-
based only on little-finger eigenfinger features, etc.). The final
experiment was done using all the features and fusion at the
matching-score level as described in Section 5. The recogni-
tion experiments based on features from only one feature set
(eigenpalm or eigenfinger) were conducted as follows:

To begin with, we have a template database consisting of
550 templates (110 users, 5 templates per user). We take the
first template from the database and separate it from the rest.
This template is then matched to all the templates remaining
in the database. A very simple criterion of minimum
Euclidean distance is used for the recognition. After this,
the separated template is returned to the database, the next
template is separated, and the process described above is
repeateduntil every template in thedatabase ismatchedwith
the remainder of the database. The above process is repeated
for the templates representing each part of the hand.

The recognition experiment in which all the features were
usedwas conducted in a similarmanner, except that fusion at
the matching-score level was used. Instead of minimum
Euclidean distance, amaximum total similarity measurewas
used as the recognition criterion. The recognition results for
all seven experiments are shown in Fig. 12.

It is clear fromtheresults showninFig.12 thatasatisfactory
recognition result can be achievedwith each of the handparts
used. What is particularly surprising is the very high
recognition accuracy for some of the fingers, since strip-like
finger images like those used in our system have never been
considered in biometric systems before—as far as we know.

It is also clear that fusion at the matching-score level in
the recognition process significantly improves its accuracy.
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TABLE 1
The Values of � and � for Palm and Fingers

Fig. 11. Distance to the similarity transition function based on the
frequency distribution of the palm distances (� ¼ 347; � ¼ 680).



With our database, when fusion was used for the recogni-
tion, a perfect score (100 percent) was achieved.

The answer to the question about the satisfactory
dimensionality of the feature spaces can be obtained by
experiments in which the unimodal recognition results are
analysed as a function of the subspace dimensionality. Fig. 13
shows the results of the experiments.

Fig. 13 demonstrates that a high recognition accuracy was
achieved for the palm subspace dimensionality mP ¼ 150

and the finger subspaces dimensionality mF ¼ 100. Similar
results for the palm only were obtained in [30].

6.2 Identification

We created a database of 1,820 hand images (samples) of
237 people. The entire databasewas collected over the period
of six months. The interval over which the samples of
individual persons were acquired varied, with some persons
giving all samples at one time, and the others over the period
of up to one month. The early preliminary experiments
carried out in order to verify the permanence of the used
biometric features showed us that they do not change
significantly over such period of time, even for the people
involved in physical activities potentially stressful for the
regions (i.e., tennis-players). Two identification experiments
weredone inorder to test theperformanceof the system.Five-
hundred fifty samples of 110people (five samplesperperson)
were used as a training set. The training set was used for
generation of finger and palm eigen-basis, determination of
transition functions SFi; i ¼ 1; 2; . . . ; 5 and SP, and finally,
obtaining theweight factorswi; i ¼ 1; 2; . . . ; 6. The 110 people
whose samples were collected for the training set were not
involved, neither as the clients nor as the impostors, in the
following two experiments.

Experiment 1. The first identification experiment was
carried out on a database consisting of two parts: a client
database and an impostor database. In this experiment,
57 people were selected to act as clients. Ten samples were
acquired per client. The first seven samples from each client
were used in the enrolment to generate a client-template
database. Seven templates in the database represent each
client. The remaining three sampleswereused for testing.The
remaining 70 people (237 persons total - 110 persons used in
the training set - 57 clients), 10 samples per person, had the

role of impostors. This set-up makes for 57� 3 ¼ 171 client
experiments and 70� 10 ¼ 700 impostor experiments. Note
that the samples used as impostors and clients in the testing
phase were not used in the training phase of the system.

The identification experiments were made as follows:
When an unknown sample is presented to the identification
system, the system generates a live-template and calculates
the total similarity measure (TSM) between the live-template
and all the templates stored in the client database (there are
57� 7 ¼ 399 templates). The system uses the (k, l)-NN
classifier, k = l = 3, to determine the person to whom the
unknown sample belongs. This means that it is necessary for
the three closest templates (with the largest TSM) from the
client database to belong to the same person, for example, the
personwith index p, otherwise the person represented by the
live-template is rejected as an impostor.

In the next step, the final decision (the user is identified
or rejected) is based on thresholding: if

max
i

ðTSMiÞ � T ; i ¼ 1; 2; 3; ð6Þ

then the person represented by the live-template is success-
fully identified as a user registered in the database with
index p. Otherwise, the person represented by the live-
template is rejected as an impostor. Thresholding is a very
important step for the elimination of impostors. Preliminary
identification experiments based only on the (k,l)-NN rule,
without using a threshold gave a FRR (false rejection rate) =
0 percent, but a FAR (false acceptance rate) = 24.4 percent.

The results, expressed as a FRR, and a FAR, vary,
depending on the threshold T. Fig. 14 presents the identifica-
tion test results andshows thedependencyof theFARand the
FRR on the threshold value.

From Fig. 14, it is clear that our identification system
achievesanEER (equal error rate) of FRR=FAR=0.58percent
for thresholdT=0.83.AminimumTER(Total ErrorRate, TER
= FAR + FRR) of 0.72 percent is achieved with T = 0.85.

Our system can achieve a FAR = 0.0 percent with a FRR =
1.17 percent with T = 0.87. It can also achieve a FRR =
0.0 percent with a FAR = 3.29 percent with T = 0.78.

We also repeated the experiment using the 1-NN
classifier. The preliminary results showed that that the
FRR didn’t change at all, while the FAR became increased.

Experiment 2. In this experiment, exhaustive testing of the
systemwas performed as follows: The systemwas tested on a
database of 127 people. Ten samples of each person’s hand
were captured, thus a total of 1,270 samples were made
available.Whenapersonplayedaroleofaclient, sevenofhis/
her sampleswere used in the enrolment phase to create seven
client templates; the remaining three samples were used for
testing. If a person acted as an imposter, however, all
10 samples were used for testing.

The experiment proceeded as follows: One person was
randomly selected from the set of 127 people to act as a client
and was enrolled in the database. The remaining 126 people
were considered impostors. The identification was per-
formed and the results were recorded. Next, from the
127people, twoof themwere randomly selectedanddeclared
as the authorized users. So, at this point, there were two
clients and 125 impostors. Again, a process of identification
was performed and the results were recorded. The above
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Fig. 12. Recognition results based on different hand parts and their
fusion.



procedure was repeated until all 127 peoplewere declared as

clients, and no impostor remained. The whole of the above-

describedprocesswas repeated20 times. Therewere a total of

more then 1.6 million imposter experiments and more then

480 thousand client experiments.

The experiment showed the EER = 0.75 percent and

minimum TER=1.06 percent. The FAR and FRR, depending

on the selected threshold, are shown in Fig. 15.
Identification time. The total identification time per person

consists of a fixed time (required for the hand-image

preprocessing, subimage extraction, normalization, and

projection) and a variable time for the one-to-many match-

ing process:

total identification time ¼

fixed timeþMðone� to� one matching timeÞ;
ð7Þ

whereM is the number of all the templates stored during the

enrollment process, the fixed_time is 0.544 seconds, and the

one-to-one_matching_time is 0.003 milliseconds on a computer

with 1177 SPECint_base2000 and 1154 SPECfp_base2000).

For example, in Experiment 1 (M ¼ 57� 7) the identification

time per person is 0.545 seconds.

7 CONCLUSION

We have developed a prototype of an online biometric

identification system based on eigenpalm and eigenfinger

features. The experimental results, obtained on a database of

237 people (1,820 hand images), show that it achieves a very

high recognition rate (100 percent), and an identification

accuracy expressed in terms of an equal error rate (EER) of

0.58 percent and a total error rate (TER) of 0.72 percent.
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Fig. 13. Recognition results as a function of the subspace dimensionality for (a) palm subspace and (b) finger subspaces.



Compared with the approaches based on features obtained

from the palmdescribed in [9], [20], [21], [22], [30], our system

achieves better results expressed in terms of the total error

rate or equal error rate.

The total identification timeperperson (as explained in the

Section 6.2) consists of a fixed time (0.544 seconds) and a

matching time,which is0.003millisecondsper template in the

client database (on a computer with 1177 SPECint_base2000

and 1154 SPECfp_base2000). For example, for a database of

1,000 clients (7 templates per client), the total identification

time would be 0.565 seconds, which is fast enough for real-

time identification.

The use of amultimodal approach, rather than concentrat-

ing just on the palm area, was shown to be very important for

improving the system’s accuracy. Strip-like finger images

were shown to hold biometric features that can, even by

themselves, beused to achieve agood recognition accuracy. It

was also shown how fusion at the matching-score level

greatly increases the biometric system’s accuracy.

In the future, we plan to create a larger hand-images

database, with images taken over a longer period of time,

and test our system’s accuracy on this database. We also

believe that the system could be further improved by the

fusion of other hand characteristics, such as principal palm

lines and hand geometry. We are also going to apply linear

and multiple discriminant analysis to find projections in

order to compare the obtained results of the identification

with the ones obtained by means of the K-L transform.
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