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Abstract

In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is
compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens
constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological
driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need
for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis
that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology
was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial
(HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were
generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses
of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly,
prominent changes in both biophysical properties arose at ,4 wt%, consistent with a gel transition (from a more viscous-
dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia
into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles
relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline
clinical biomarker of mucus barrier and clearance functions.
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Introduction

There has been a longstanding observation that mucus solids

concentration (% solids by weight including salts, denoted wt%) rises

with increasing severity of many lung diseases such as chronic

obstructive pulmonary disease (chronic bronchitis phenotype) and

cystic fibrosis (See Figure 1) [1–3]. The underlying causes of

increased mucus solids concentration are diverse, ranging from

depletion of the airway surface liquid due to genetic defects in ion

channels as in cystic fibrosis [4] to hypersecretion of mucins in

chronic obstructive pulmonary disorders [5], or a combination of

both. The consequences of mucus hyper-concentration for disease

pathogenesis appear to be reduced mucus clearance and a higher

incidence of lung infection [6,7]. Despite these correlations, an

understanding of the explicit biophysical and cell biologic roles for

increased mucus solids concentration in airways disease patho-

genesis has not been established.

The mucus layer provides host defense for airways by serving as

both a barrier to penetration of inhaled materials to the airway

epithelium and a vehicle for mechanical clearance. A simple fluid

cannot perform these host defense functions. Rather, the requisite

flow transport and diffusive properties of airway mucus are

attributed to the underlying polymeric backbone generated by the

high molecular weight secreted mucins, MUC5AC and MUC5B.

Mucins are negatively charged, glycosylated proteins that are

continuously synthesized and secreted to replenish the mucus

layer. Mucins also contain cysteine-rich domains, where no

glycosylation is present, which have hydrophobic properties [8–

10]. To avoid contact with water, the hydrophobic portions of the

molecules form dynamic, physical mucin-mucin interactions that

behave as effective crosslinks [11]. Further mucin-mucin interac-

tions result from di-sulfide bonds [12]. The net result of the

interactions of mucins with other mucins, as well as other

biomolecules present in the mucus layer, is a viscoelastic material

that is responsive to a wide frequency range of forcing (breathing,

cilia, cough) and to trapped particles whose diffusive paths are

controlled by the thermal fluctuations of the mucus molecular

network.
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The viscoelastic properties of mucus are governed by two

frequency-dependent functions: the viscous and the elastic moduli.

The relative magnitude of these biophysical functions is highly

dependent on the concentration of mucins, and on the distribution

of distinct mucin macromolecules. Airway mucus and intestinal

mucus, for example, have very different mucin macromolecular

distributions. Furthermore, measurable concentrations of DNA

and actin macromolecules in airway mucus and sputum are well

known in cystic fibrosis and other airways disease, which can

confound the role of mucins in biophysical properties [13,14].

Consequently, the efficiency of mucus clearance (the volume flow

rate for a given forcing mechanism) depends on the role and

dependence of mucus solids concentration in the interplay

between viscous and elastic moduli at frequencies relevant to

mucus clearance mechanisms. The three main force clearance

mechanisms are: 1) cilia beat-dependent clearance (10–15 Hz); 2)

the gas-liquid pumping clearance mediated by tidal breathing

(,0.1 Hz) [15] and 3) cough (a broad frequency spectrum of

turbulent air drag). Thus, an assessment of a subject’s mucus

clearance efficiency and the change in efficiency with disease

requires the characterization of mucus viscoelastic properties

across a broad range of forcing frequency. Likewise, the diffusivity

of mucus, relevant for its barrier properties, is far more complex

than that of a viscous fluid, requiring the same level of frequency-

dependent information as flow transport (details are given below).

We tested the hypothesis that a simple measure of mucus,

concentration (wt%) of solids, would serve as a surrogate for the

complex biophysics and potentially correlate with both functions

of airway mucus: diffusivity and viscoelasticity. First, we measured

mucus solids concentration (wt%) from sputum collected from

subjects in our pulmonary clinic and our clinical trial databases;

these data establish reference ranges for mucus concentration in

health and disease. Second, we used mucus derived from human

bronchial epithelial (HBE) cell cultures as a source that could be

tuned to mimic concentrations identified in-vivo from subject popula-

tions. Third, we implemented microrheological particle-tracking

techniques [16,17] in microliter volumes for each wt% mucus,

using 1 mm particles to approximate the scale of bacteria and

drug-delivery particles. This technique both circumvents the

volume constraints of airway mucus samples and yields informa-

tion over a range of physiological frequencies. Fourth, analytical

techniques of the datasets provided a comprehensive assessment of

barrier (diffusivity) and transport (viscoelasticity) functions of HBE

mucus versus concentration (wt%). We then investigated the

dependence of both diffusive and viscoelastic properties on wt% of

solids, while also searching for potential signatures of a qualitative

transition in either property that could signal a trigger point for

disease progression. Our results indicate that both clearance and

barrier functions of mucus scale with mucus solids wt%, providing

a theoretical and practical basis for the utility of mucus solids

concentration as a clinically effective marker for phenotyping

subjects with airway disease and for outcomes of clinical trials.

Methods

Selection of Mucus Model System
The utility of HBE cell culture mucus has been previously

demonstrated as both a biochemical and biophysical foundational

baseline of normal and pathological pulmonary mucus [18–22].

Various biochemical techniques are available, including high-

speed density centrifugation, mass spectrometry, combination high

pressure liquid chromatography with multi-angle light scattering

and refractometry, immunohistochemistry and immunobloting, as

well as mass spectrometry. These techniques afford either direct

measurements or strong inferences of the biophysical properties of

airway mucins such as molecular weight, radius of gyration, and

transitions versus concentration into mucin entanglement and

reptation regimes [23–26]. Further, it was been previously

demonstrated that by eluting dilute mucus through columns of

differing porosity, in the above mentioned HPLC/light scattering

refractometry apparatus, that the % solids make up of HBE cell

culture mucus is roughly 1% salt, with the remainder of the %

solids divided nearly evenly between mucins and proteins [19].

Sputum Collection
Sputum was collected from subjects either by spontaneous

expectoration or via sputum induction for different protocols. All

studies were approved by the UNC Institutional Review Board

and informed consent obtained from all subjects. Normal subjects

were induced with hypertonic saline for sputum collection; CF and

COPD subjects produced both spontaneous sputa as well as

receiving induction. The CF and COPD sputa spontaneously

expectorated were collected and stored in sterile cups on ice until

delivered to the core laboratory. Induced sputum was collected

from normal volunteers, CF, and COPD subjects via induction as

previously described [20,27]. In brief, the subjects were given

nebulized albuterol followed by nebulized hypertonic saline at

increasing doses of 3%, 4%, and 5% until able to produce a

sample. All subjects performed throat clearance and nasal

clearance prior to producing a sample. If an adequate sample

was obtained at the lower doses of hypertonic saline, they did not

progress to a higher solids concentration. The sputum samples

were kept on ice until delivered to the core laboratory, usually

within 30 minutes. Samples were collected in accordance with

protocols # 02-1305, 05-2876, and 07-1178, approved by the

Office of Human Research Ethics at The University of North

Carolina at Chapel Hill. Written consent was obtained from all

study participants.

Weight % Solids Measurements
The solids concentration of mucus was measured by aliquoting

between 100 and 200 mL of mucus or sputum on a pre-weighted

piece of foil and recording the final mass of the sample and foil.

The sample was then placed in an 80uC oven overnight. The final

mass of the dried foil and sample was recorded and solids wt%

calculated [18]. For in vivo sputum samples, percent solids (wt%)

Figure 1. Concentration (wt% solids including salts) of sputum
for normal, COPD, and cystic fibrosis samples. The data yields: for
normal sputum, 1.760.56 wt% from 17 samples; for COPD sputum,
3.762.3 wt% from 47 samples; and for cystic fibrosis, 7.0%62.3 wt%
from 21 samples. The red lines on the figure at 1.5% and 5% show the
range of HBE mucus solids concentrations assayed in this study.
doi:10.1371/journal.pone.0087681.g001
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were assessed by measurement of pre- and post-desiccation

weights of selected sputum plugs (200–500 mg) [28].

Preparation of Mucus Samples and Biochemical
Characterization
Mucus was harvested from primary human bronchial epithelial

(HBE) cell cultures as previously described [18,19,21]. Briefly,

excess surgical tissue was procured by the UNC Tissue Core

Facility. Normal human bronchial epithelial cells were cultured on

a 0.4 mm pore-sized Millicell (Millipore, Billerica, MA) coated

with collagen and maintained in air-liquid interface media (UNC

Tissue Core) as described in [29]. Over a period of 6 weeks,

confluent cultures developed cilia, generated and established a

periciliary liquid (PCL) layer surrounding the cilia, a mucus layer,

and the HBE culture transported mucus. Washings from .100

cultures were pooled and then concentrated against Spectra/Gel

to the desired wt%. Concentrated mucus was dialyzed against PBS

to insure isotonicity as previously described [18,21].

Diffusive Microbead Measurements
We selected 1 mm polystyrene particles with carboxyl surface

chemistry for use in our assays. This particle size is substantially

larger than the length scales of the mucin mesh network

[18,30,31]. The carboxyl functionalization rather than an amine

surface chemistry was chosen as previous studies have shown that

amine treated beads have impaired diffusion in sputum [32]. PEG

surface chemistries, which enhance the diffusion of smaller

particles (200 nm and smaller) [31,33] in mucus have little effect

on the diffusivity of larger (500 nm) particles [33]. These

considerations of particle size and surface chemistry imply that

the diffusive noise spectrum of 1 mm beads faithfully represents the

bulk linear viscoelasticity of the sample.

We note that bead surface treatment as described above is

designed to screen the binding affinities that mucins and associated

macromolecules in mucus have with certain pathogens and

microbes. One must screen these affinities so that the particle

fluctuations that are measured are as faithful as possible to the

inherent fluctuations of the mucus sample, which are then

transformed to viscoelastic moduli by the fluctuation-dissipation

relationship of complex fluids. This transformation is described in

the Methods sub-section,

Viscoelastic Transport Characterization
Our sample chamber consisted of a slide and coverslip

separated by a double layer of paraffin with a ,1 cm disc was

cut out of the to create a space for 5 mL of mucus to be loaded.

Once loaded, mucus samples were imaged by transmitted light,

and the motion of diffusing beads was recorded at 60 frames per

second with a high- speed video camera (Pulnix; JAI, CA). This

frame rate and exposure time were chosen to minimize static and

dynamic particle tracking error [34]. Bead position was deter-

mined using Video Spot Tracker (Center for Computer Integrated

Systems for Microscopy and Manipulation; (http://cismm.cs.unc.

edu/downloads/). Between 56 and 178 particles were tracked over

1800 frames at each mucus solids wt%.

Mean Squared Displacement (MSD) and Auto Correlation
Function (ACF) statistics of individual particles and
ensembles
Time series of particle positions, x(t),y(t)½ � were obtained from

the Video Spot Tracker software, typical time series are shown in

Figure 2A. Using individual paths (i.e., time positions per particle),

the mean squared displacements, Dr2 tð Þ , were calculated as

follows,

Dr2 tð Þ~
1

N{t

X

N{t

i~1

x tiztð Þ{x tið Þð Þ2z y tiztð Þ{y tið Þð Þ2
h i

, ð1Þ

where t is the time lag and the integer N is the total number of

frames in a given image stream, which is 1800 for all single particle

datasets. The smallest lag is the reciprocal camera frame rate,

t~1=60 s, while the largest possible lag is t~1800=60~30 s.

However, statistical significance and independence of data points

each limit meaningful plots of MSD to tƒ16 s [34]. The

ensemble-averaged MSD, SDr2 tð ÞT , was calculated as,

SDr2 tð ÞT~
1

Np

X

Np

p~1

Dr2p tð Þ, ð2Þ

where Np is the total number of particles tracked for a given mucus

solids wt%.

We computed the individual auto correlation function (iACF)

by averaging over the x and y coordinate ACFs (Figure 3). For

example, the xACF (rx tð Þ) corresponds to correlations in step sizes

in the x-coordinate of a given particle path, x tð Þ,y tð Þ½ �, and was

calculated as,

r
x
tð Þ~

PN{t

i~1 x tiz1ztð Þ{x tiztð Þ{Dx
� �

x tiz1ð Þ{x tið Þ{Dx
� �� �

PN{t

i~1 x tiz1ð Þ{x tið Þ{Dx
� �2
h i , ð3Þ

where Dx is the average of all the x-increments. With the iACF

given by r tð Þ~
1

2
r
x
tð Þzr

y
tð Þð Þ, the ensemble averaged ACF is

then Sr tð ÞT~
1

Np

X

Np

p~1

rp tð Þ: We note that since time increments

were uniform, our ACF is easily scaled to make contact with the

velocity autocorrelation function that is routinely reported, cf.

[35].

Diffusive Transport Characterization: Fitting of MSD
paths to fractional Brownian motion (fBm)
For all mucus solids concentrations and over the time scales

(30 s) of each dataset, we found that the single particle and

ensemble MSD data were remarkably well approximated by a

uniform power law, as shown in Figure 2 and, therefore, consistent

with a scaling of the form,

SDr2 tð ÞT~DfBmt
a: ð4Þ

The notation used for the pre-factor, DfBm, in particular the

subscript fBm, stands for fractional Brownian motion, cf. [35]. For all

particle path data in mucus, we found 0vav1, i.e., the particle

obeyed uniform sub-diffusive scaling with a consistent exponent a

over the entire experimental timescale. Values for DfBm and a

were obtained through standard statistical fitting to linear

functions in log-log plots, ln Dr2 tð Þ
� �

vs ln t½ � , for tƒ3 s. These

fittings were for single particle displacement data, as opposed to

the ensemble average (Figure 4). The reported values of a and

DfBm per mucus solids concentration consisted of the mean and

spread over all particle paths versus solids wt%.

ð3Þ
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Viscoelastic Transport Characterization: Transforming
MSD statistics to viscoelastic moduli over a broad
frequency range
We follow Mason’s protocol [16] to approximate the viscoelastic

complex modulus, G�
vð Þ , versus frequency, v (Figure 5). Using

ensemble MSD values, SDr2 tð ÞT , the complex modulus is given

by,

G�
vð Þ~

2kBT

3paiv= Dr2 tð Þf g
, ð5Þ

Figure 2. Diffusivity properties of HBE mucus. A) Particle trajectories of 1 mm diameter particles for four concentrations over 30 s. B) Ensemble-
averaged MSD versus lag time for different mucus solids concentrations. The dashed line represents a viscous fluid; any smaller slope indicates sub-
diffusive scaling. C) Individual or path-wise MSD (iMSD) for particles embedded in mucus samples color-coded by solids concentration, for 1.5, 2.0, 3.0
wt%. D) iMSD for particles embedded in mucus samples color-coded by solids concentration, for 3.0, 4.0, 5.0 wt%. Note the vertical scale disparity with
Figure 2C.
doi:10.1371/journal.pone.0087681.g002

Figure 3. Autocorrelation function data of diffusive particle in mucus. A) Typical autocorrelation function (ACF) for a bead diffusing in
mucus with 2.5 wt% solids. B) Individual, ensemble averaged and theoretical ACF for 2.5 wt% solids mucus. The equation for the theoretical ACF is
given in the Materials and Methods section, from which the value of a~0:64 is obtained from Figure 3A. This plot is for the ACF in the x-coordinate,
the ACF in the y-coordinate looks similar.
doi:10.1371/journal.pone.0087681.g003

Concentration-Dependent Airway Mucus Rheology
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where a~0:5 mm is the particle radius and = :f g denotes the

Fourier transform. The Fourier transform is approximated by:

iv= Dr2 tð Þ
� �

&Dr2 1=vð ÞC 1za vð Þ½ �i{a vð Þ: ð6Þ

Here a vð Þ~
dln Dr2 tð Þ½ �

dln t½ �

�

�

�

�

t~1=v

is the local logarithmic slope of

SDr2 tð ÞT at the frequency v~1=t and C :½ � is the Gamma

function. This approximation is optimal when the MSD is locally

(in lag-time) well-approximated by a power law, which in our data

is satisfied not only locally but globally.

Determining mucus gel-point
Potential signatures of qualitative transitions in viscoelastic and

diffusive biophysical properties from these microbead rheology

tools were also sought. The protocol proposed by Larsen and Furst

[36] was employed to detect a signature of a sol-gel transition from

the comprehensive MSD data as a function of mucus wt%. The

point at which this transition occurs is known as the gel point. In

the context of 1 mm particles, the gel point was defined as the wt%

G00
vð ÞwG0

vð Þ at which mucus underwent a change from a

viscous-dominated sol (fluid), for which for all v, to an elastic-

dominated gel, for which for all frequencies v. The Larsen-Furst

protocol requires scaling each wt% MSD curve onto a master

MSD curve by scaling the axes by factors a (horizontal) and b

(vertical). The scaled MSD figures versus wt%, therefore, have

axes bSDr2 tð ÞT and at, as in [36] and Figure 6. The gel point (GP)

is defined as the solids concentration at which the logarithmic

slope, or power law, of the shifted master curve ‘‘breaks’’ from one

slope below GP to another above GP [36]. Note that these metrics

are based on the ensemble MSD scaling behavior versus lag time

across multiple samples, rather than the macrorheology standard

based on a comparison of G0
vð Þ and G00

vð Þ across a frequency

spectrum, which require transforms of the MSD data.

Results

Mucus Solids Concentration (wt%)
Figure 1 shows measured solids concentration (wt%) of sputum

for normal, COPD, and cystic fibrosis samples. The wt% for

normal subjects (17 samples from 17 individual patients ranging in

age from 20–44, with an average age of 26.6 years) has a mean of

1.7% with a relatively small standard deviation (0.56%). The wt%

from 28 COPD subjects (47 total samples from patients ranging in

age between 52 and 70, average age 60.5 years) were ,26higher

(3.5%) with a broader range (62.3%). Sputum wt% from 14 CF

subjects (21 total samples from patients ranging in age from 24 to

48 years, average 34.8) were ,46 higher (7.0%) than normal

sputum, with a variability similar to COPD (62.3%).

Diffusive Transport Characterization
Figure 2 provides a qualitative description of diffusive properties

of HBE mucus as a function of solids wt%. Figure 2A shows

representative trajectories of 1 mm particles in 1.5, 3.0, 4.0 and 5.0

wt% mucus. Figure 2B describes the calculated ensemble averaged

mean squared displacements (MSDs) for all the mucus solids

concentrations investigated, with a dashed line of slope 1 that

Figure 4. Scaling of the MSD versus mucus solids concentration, where SDr2 tð ÞT~DfBmt
a. A) Power law exponent. Squares represent the

averaged values of a and the vertical bands represent its range over all particle paths. The goodness of fit metric for the linear relationship is
R2

~0:98. B) Scaling of the MSD pre-factor, DfBm , with goodness of fit R2
~0:96. C) Rough estimates of mean passage times of 1 micron particles

through a 25 micron mucus layer versus wt% solids, based on scaling behavior from Figures 4A&B.
doi:10.1371/journal.pone.0087681.g004

Concentration-Dependent Airway Mucus Rheology
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corresponds to diffusion in a simple viscous fluid. Figures 2C–D

show individual time-averaged MSDs. These data reveal an

obvious trend toward smaller step sizes as mucus solids concen-

tration increases.

While qualitatively noteworthy, these analyses fail to provide

statistically significant data that allow for a meaningful character-

ization of mucus diffusive properties versus wt% of solids. We,

therefore, introduced quantitative metrics based upon fitting of

individual particle MSD data (Figure 2 C–D) to a fractional

Brownian motion (fBm) sub-diffusive law, which relates the

squared displacement, Dr2 , to the lag-time, t, by a two-parameter

function given by Eqn. (4).

The use of fBm [37] followed from three basic observations: 1)

the increments of the path data were Gaussian; 2) the variance of

these increments was stationary over time; and 3) the autocorre-

lation structure among increments (Figure 3) fitted remarkably

well to the theoretical structure of fBm. A similar argument was

used in modeling the motion of fluorescently labeled bacterial

chromosomal loci in cytoplasm [35], and fBm as a model can be

supported by other statistical techniques [38,39]. Note that for

normal diffusion (simple Brownian motion) of a particle of radius a

in a fluid of viscosity, g, the MSD exponent is a~1 and the pre-

factor, DfBm , reduces to the diffusion coefficient D~kBT= 6pagð Þ
. Therefore, any information pertinent to particle size and fluid

viscosity is included in the pre-factor. For sub-diffusion, and

fractional Brownian motion in particular, little is known about the

physical basis for the pre-factor, and it has therefore been

relegated to a secondary feature of fBm in the literature. We

found, however, that both fBm parameters correlated remarkably

well with mucus wt%.

The first striking result of Figure 4A is the linear scaling

behavior of the power law exponent versus mucus solids

concentration:

a&{0:17wt%z1:1, for 1:5ƒwt%ƒ5, ð7Þ

with a very high confidence level, R2
~0:98. The second feature of

note in Figure 4A is associated with the spread in the fitting (error

bars), which was relatively low at 1.5 and 2 wt%, grew at 3 wt%,

grew again at 4 wt%, but then dropped significantly at 5 wt%. This

feature, a sharp maximum in the spread among individual particle

paths at a fixed wt%, is suggestive of a transition in the

microstructure of mucus. At 4 wt%, there were many more ‘‘fast’’

and ‘‘slow’’ particle outliers relative to the mean. Yet at 5 wt%, not

only was the behavior more strongly sub-diffusive (a drop in a) but

there were very few outliers, with all particles essentially

immobilized. This behavior is consistent with a sol-gel transition.

Similar to our results, a spread of MSD data was recently observed

in respiratory mucus samples [40] and suggested as an indicator of

heterogeneity in pore size in the mucus microstructural network.

As indicated in Figure 4B, we found a robust trend in the pre-

factor DfBm versus mucus solids concentration, in this case with an

exponential form:

Figure 5. Frequency Dependent viscoelastic properties of mucus. A) Frequency-dependent complex viscosity g� vð Þj j versus frequency v for
different mucus solids concentrations. B) The slope of the power law, g� vð Þj j*v

{s, is indicated for each wt% solids, both numerically and with a rise
vs. run plot. C) Storage, G0

vð Þ, and Loss, G00
vð Þ, moduli vs. frequency for mucus with 1.5 to 3.0 wt% solids. D), G0

vð Þand G00
vð Þ vs. frequency for

mucus with 3.0 to 5.0 wt% solids.
doi:10.1371/journal.pone.0087681.g005

Concentration-Dependent Airway Mucus Rheology
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DfBm&1:6 exp {1:5|wt%ð Þ, for 1:5ƒwt%ƒ5, ð8Þ

and once again with a high R2 value of 0.96.

The fittings given by Eqns. (7)–(8) have immediate implications

for the expected particle passage time, denoted STT , through a

mucus layer of thickness, L. While first passage time properties are

not understood for general subdiffusive processes, the self-

similarity property of fBm allows us to compute reasonable

order-of-magnitude estimates for our physical processes. Let

STa 1ð ÞT denote the mean passage time of fBm to exit from the

interval 1,1½ � starting from the origin. It follows thatSTa Lð ÞT, the
mean exit time from the interval ,L½ �, is

STa Lð ÞT~ L2=Dfbm

� �1=a
|STa 1ð ÞT [41]. There are, as yet, no

analytical results for determining STa 1ð ÞT, but numerical evidence

reveals that this is order 1 for the values of a we are interested in

here. In this manner, an estimate for the mean passage times of

1 micron diameter particles through a 25 micron layer was

calculated and graphed in Figure 4C. The graph reveals a

dramatic disparity in mean passage times through a nominal

airway mucus layer between 1.5 wt% and 5 wt% mucus, i.e., from

minutes at 1.5 wt% to complete immobilization at 5 wt%. We

caution that these estimates are crude indicators of passage times

versus mucus solids concentration prior to full-scale direct

numerical simulations, but the essential conclusion is clear and

compelling.

Viscoelastic Properties
The viscoelastic properties of HBE mucus were calculated from

the MSD statistics, following the protocol proposed by Mason

[16]. Figure 5A shows the amplitude of the frequency-dependent

complex viscosity g
�
vð Þj j for 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 wt%

mucus. The uniform power law behavior of MSD versus lag time,

illustrated in Figure 2B, was recapitulated as a uniform power law

in the complex viscosity in frequency space, g
�
vð Þj j*v

{s, where

the exponent s decays with decreasing solids concentration

(Figure 5A). However, in this case there was not a clear functional

form of the frequency-space exponent s versus wt%, as shown in

Figure 5B.

The real and imaginary parts of the complex viscosity carry

detailed information about the loss (viscous) modulus, G00
vð Þ, and

storage (elastic) modulus, G0
vð Þ, at each frequency, where

g
�
vð Þ~G�

vð Þ=v and G�
vð Þ~G0

vð ÞziG00
vð Þ. Thus, since

Figure 5A did not inform the relative contributions of the storage

and loss moduli in the scaling behavior, G0
vð Þ and G00

vð Þ were

plotted separately for each wt% in Figures 5C–D. The graphs are

color-coded and font-specified by wt%, with G0
vð Þ denoted by

empty symbols and G00
vð Þ denoted by filled symbols. Several

striking results are conveyed by Figures 5C–D.

For example, below 3.0 wt%, the loss modulus, G00
vð Þ,

dominated the storage modulus, G0
vð Þ, uniformly across all

frequencies, implying low wt% mucus is a viscoelastic solution, or

sol, throughout this frequency range (Figure 5C). At 3.0 wt%, the

curves of G0
vð Þ and G00

vð Þ approach each other over the full

frequency range.

At 4.0 wt%, the elastic and viscous moduli were almost equal

over a frequency range between 0.1 and 10 Hz, suggesting the

onset of a transition from solution-like to gel-like behavior. Over the

remaining frequency range, the gap between the larger viscous

and lower storage modulus was significantly less than the lower

wt% data, again suggestive of the onset of a transition. At 5.0 wt%,

the elastic modulus, G0
vð Þ, dominated the viscous modulus,

G00
vð Þ, over the full frequency range implying high solids wt% mucus

is a viscoelastic gel at frequencies above 0.1 Hz.

As summarized in the Methods section, quantitative metrics

have been developed to characterize the sol-gel transition [36,42]

from passive microbead data. These MSD-based metrics were

implemented in Figure 6B, which revealed evidence for a mucus

sol-gel transition, or the point at which the elastic modulus (G0) is

larger in magnitude that the loss modulus (G00), just above 4.0 wt%.

Next, we related our experiments to reported viscoelastic studies

of mucus by extracting the dynamic moduli at the following

frequencies: 0.1 Hz to approximate the frequency of tidal

breathing; 10 Hz to approximate the frequency of the cilia beat

cycle; and, 1 Hz as an intermediate frequency added simply to

bridge the 0.1 and 10 Hz data. Figure 7 shows the storage

modulus G0
vð Þ (Figure 7A) and loss modulus G00

vð Þ (Figure 7B)

versus wt% for 0.1 Hz (black dots), 1 Hz (green squares), and

10 Hz (red x). The salient features of Figure 7 can be summarized

in the following points.

First, the capacity of mucus to store energy at a given frequency

of forcing is determined by the elastic (or storage) modulus,G0
vð Þ.

Vertical slices of data plotted in Figure 7A revealed that

G0 10Hzð Þ&20G0 0:1Hzð Þ for 1.5–4.0 wt%, i.e., the ratios of the

elastic moduli relevant to cilia and tidal breathing remain constant

over this range of wt%, even though the moduli are growing

significantly. Thus, across these solid concentrations, mucus is

tuned to preferentially store energy from cilia forcing (10 Hz) more

so than from tidal air drag (0.1 Hz). This observation implies that

mucociliary clearance exploits the elasticity of the mucus layer far

more so than air drag. Conversely, at disease-associated mucus

solids concentrations of ,5 wt%, the differentiation in energy

storage vs. frequency is diminished (the curves in Figure 7A are

converging).

Second, comparison of the change in storage modulus G0 from

the lowest (1.5 wt%) to the highest (5.0 wt%) mucus solids

Figure 6. Mucus Gel Point. A) Cartoon illustrating the mucus
network changes for increasing macromolecule (mucin) concentration.
The gel point (GP) is the point at which the strength of the chains
interacting with one another engenders the elastic moduli (G0) to be
comparable in magnitude to the viscous moduli (G00). B) Master curve of
ensemble-averaged MSDs. The solids concentration for sol-gel transi-
tion is obtained following [36], in this case breaking of the slope in the
master curve indicates the sol-gel transition occurs at a solids
concentration between 4.0 and 5.0 wt%.
doi:10.1371/journal.pone.0087681.g006
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concentration revealed that the storage modulus associated with

cilia forcing (10 Hz) increased by a factor of *103 , whereas the

storage modulus for tidal breathing (0.1 Hz) increased by a factor

of *104 . This dramatic increase in elastic modulus with wt%

suggests that at high wt% mucus is resistant to shear deformation

from all physiological phasic stresses, including single cilia, ciliary

carpets, and air drag. Importantly, this striking increase of G0 in

the 10–15 Hz range implies individual cilia would be unable to

generate sufficient force to penetrate the mucus layer.

Third, the energy dissipated by mucus at forcing frequency v is

measured by the viscous (or loss) modulus, G00
vð Þ. Vertical slices of

the data shown in Figure 7B revealed wt% dependent degrees of

differentiation at the 10 Hz of cilia relative to the 0.1 Hz of tidal

breathing. The differentiation was most significant in low wt%

mucus and decreased with increased wt%:

G00 10Hzð Þ=G00 0:1Hzð Þ*100 at 1.5 wt%, ,70 at 3.0 wt%, ,30

at 4.0 wt%, and,5 at 5.0 wt%. These data imply that healthy wt%

mucus dissipates relatively less energy from tidal breathing than

from ciliary beating. This observation reinforces the implication

from the storage modulus results that cilia-dependent clearance is

tuned more to elasticity whereas clearance mediated tidal

breathing, i.e. ‘‘gas-liquid pumping’’, is tuned more to the viscous

component of healthy mucus. These differentiated moduli then

disappear at high solids wt% typical of advanced airways disease.

Fourth, the absolute changes in viscous moduli versus wt% were

strongly frequency dependent. G00 at cilia beat frequency rose by a

factor of 10–20 across the 1.5 to 5 wt% range, whereas at tidal

breathing frequency, G00 rose by a factor of ,600. These data

imply cilia-induced viscous stress dissipates 10–20 times more

rapidly in unhealthy vs. healthy wt% mucus, whereas tidal

breathing stress dissipates 100’s of times more rapidly in unhealthy

mucus. The implication is that the previously noted viscosity-

dominated emphasis of the tidal breathing (‘‘gas liquid pumping’’)

clearance mechanism at healthy wt% mucus is precipitously lost

with increased wt%.

Discussion

Abnormal mucus solids concentration, measured as wt% (solids),

has been associated with airways disease, but has not been

developed as a biomarker for lung disease because its pathophys-

iologic relevance has remained unclear. Recent evidence has

suggested that the high molecular weight airway mucins in mucus

form an interpenetrating mesh whose biophysical functions are

highly dependent on their solids concentration, i.e., their

hydration [22]. Using microrheological experimental approaches

and new analytic techniques, we have systematically characterized

the diffusive and viscoelastic properties of HBE mucus that relate

to its barrier function and transportability over normal (1.5–2 wt%)

and disease associated (.4 wt%) solids concentrations and

physiologically relevant frequency spectra.

With respect to the barrier properties of mucus, the fate of

inhaled particles was modeled from measurements of the diffusive

properties of particles in airway mucus. A particle size was selected

that was relevant to disease, i.e., 1 mm particles, mimicking

bacterial size. It is well known that the motion of microscopic

particles in complex liquids and soft gels is described by a mean-

squared-displacement that is sub-linear in time (called sub-

diffusive) [16,25,43–45]. However, predictive simulations of the

passage times of particles through mucus at varying solids

concentrations are only possible once accurate sub-diffusive laws

and best-fit parameters are determined, since there is no

theoretical basis (i.e., no analytical formula) for passage time

distributions of sub-diffusive stochastic processes. In this work, we

fitted fractional Brownian motion [35,37–39] to comprehensive

experimental data and demonstrated a remarkably robust fit and

scaling of the model parameters versus mucus solids wt% (Figure 4).

Consequently, we have identified an accurate sub-diffusive law

and found best-fit parameters for the ensemble particle path data

in each wt% mucus.

Figures 2 and 4 provide a robust characterization of the

diffusive properties of HBE mucus versus solids concentration that

demonstrate four critical points. First, at every fixed mucus solids

wt%, individual path and ensemble averaged MSD versus lag time

were linear on a log-log scale, indicating a uniform power law

behavior that was remarkably consistent with fractional Brownian

motion, Eqn. (4). Second, beyond exhibiting a power law scaling in

the MSD, path increments were Gaussian and the autocorrelation

function (ACF) exhibited remarkable agreement with the theoret-

ical form for fractional Brownian motion, (Eqn. (3) and Figure 3).

Third, the two data-inferred parameters that characterize

fractional Brownian motion, the power law exponent a and the

pre-factor DfBm , obeyed robust fits to a linear and an exponential

dependence on mucus wt%, Eqns. (7)–(8), respectively. Fourth,

both fBm parameters, a and DfBm , were decreasing functions of

mucus solids wt%, indicating sub-diffusivity was progressively

exaggerated as mucus solids concentration increased.

This scaling behavior of MSD translated to a rough estimate of

mean passage times for a 1 micron particle, the approximate size

of airway bacteria, through a 25 micron mucus layer as: hours at

Figure 7. Concentration dependent viscoelastic properties of mucus at key frequencies. A) Elastic (storage) modulus, G0
vð Þ, versus

mucus solids concentration for three representative frequencies (from cilia to tidal breathing). B) Viscous (loss) modulus, G00
vð Þ, versus mucus solids

concentration for three representative frequencies.
doi:10.1371/journal.pone.0087681.g007
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1.5 wt%; 1 day at 2.0 wt%; months at 2.5 wt%; a year at 3.0 wt%;

and, effectively complete immobilization at 4.0 wt% and above.

There was a signature just above 4.0 wt% indicating both a smaller

sub-diffusive exponent and a dramatic reduction in variability

across paths. Above 4.0 wt%, there were essentially no outliers,

implying complete immobilization of trapped micro-particles.

The data described in Figure 5 point to an explanation for this

observation. A clear transition from G00
vð Þ -dominated moduli (a

viscous-dominated solution) to G0
vð Þ -dominated moduli (an

elasticity-dominated gel) was observed at a critical mucus wt%

over the full frequency range. This behavior is the classical macro-

rheological signature of a sol-gel transition [42]. The gel point was

more accurately inferred by comparing the MSD statistics of

passive microbead data obtained from samples that were in both

the sol (or solution) and gel phases (Figure 6). These conditions are

easily observed in real time during observations of a gelation

process as discussed in [36].

We note the similarities between our findings on HBE cell

culture mucus versus wt% of solids with recent findings of

Georgiades et al. on purified gastrointestinal mucins versus mucin

concentration [23,26]. Namely, Georgiades et al. identify a

concentration-dependent, power law scaling in the viscosity of

purified mucin below a threshold concentration, followed by a

transition to a different power law scaling above a concentration

threshold. Thus, a key macroscopic metric (viscosity) of purified

gastrointestinal mucins strongly correlates with mucin concentra-

tion, marked by a qualitative transition at a critical concentration

that is associated with an entanglement transition and an

important role of reptation. We note the related work of Katz et

al. [46] where viscosity of CVM was shown to scale with

hydration, the work of Verdugo et al. [47] where the role of ion-

dependent swelling of mucus gels affects viscoelasticity. Our

studies are on HBE mucus, which not only contains mucins but

additional proteins that constitute the mucus network; our

qualitative transition at a critical wt% of solids is a gel transition

where a spectrum of viscous and elastic moduli switch relative

dominance. As a further point of comparison of these studies, the

low frequency viscosity of HBE cell culture mucus at any fixed

wt% solids is significantly higher than the viscosity of purified

mucins at a comparable mucin concentration. This underscores

the critical role of the additional proteins in mucus beyond pure

mucins in constituting the mucus network and biophysical

properties. Furthermore, this purified mucin vs. cell culture mucus

comparison points to additional studies necessary on cell culture

mucus vs. clinical mucus and sputum samples, to identify the

biophysical and viscoelastic impact of additional proteins, as well

as other biomolecules including actin and DNA [13,14].

Once we determined the gel point (GP) of HBE mucus to be

between 4 and 5 wt% (Figure 6), the physical basis for the

observations in the MSD shown in Figures 2 and 3 became

apparent (see descriptive model, Figure 6A). As described above,

mucus contains large hydrogel-forming mucins, which together

with other proteins form a mesh that provides mucus its

viscoelastic properties. At low wt% solids, the spatial structure of

the mucin network is relatively homogeneous at micron scales, i.e.,

all particles exhibit similar sub-diffusive behavior as indicated by

the relatively small error bars seen in Figure 4. Just below the wt%

of the GP, the network forms micro-domains that increase in

density as the GP is approached, i.e., the particle ensemble

experiences diverse microenvironments resulting in a larger spread

of the MSD power law. Above the GP, the gel domains dominate

the mucus network so that all particles experience highly confined

behavior with a reduction in the MSD power law, a, and pre-

factor, DfBm, and a reduction in the spread across the particles.

Our analysis should facilitate future studies to explore the

interactions of mucus solids concentration with a spectrum of

particle sizes and surface chemistry.

The measured decrease in micro-particle diffusivity, as a

function of increasing mucus wt% solids, may reflect an enhanced

mucus barrier function with disease. Indeed, this response could be

beneficial compensation to buffer the exposure to environmental

stressors associated with environment-induced airways disease.

However, it has been reported that bacteria deposited on high

wt% mucus favor biofilm formation, in part because of decreased

mobility of bacteria and diffusivity of auto-inducers from the point

of bacterial deposition [18].

Our data also provided insights into the relationships between

wt% solids, viscoelastic properties, and mucus transport. The

physical mechanisms and magnitudes of force application to

produce transport of mucus are quite different for each transport

mechanism. For example, force application by cilia requires rapid

(10 Hz) penetration of cilia into the mucus layer mesh and mesh

deformation. Gas liquid pumping requires that the force of airflow

be imparted to mucus by an interaction of air and the mesh

dependent ‘‘roughness’’ of the air-exposed face of the mucus layer.

Cough produces a more turbulent, high frequency form of air drag

on the mucus layer.

The present work (Figures 5–7), and previous studies in cystic

fibrosis sputum (both whole [24], and samples separated by low

speed centrifugation [48]), cervicovaginal mucus (CVM) [49],

sino-nasal mucus in patients with chronic sinusitis [50], and pig

gastrointestinal mucus (PGM) [51,52], demonstrate that single

frequency viscoelastic moduli are insufficient to draw inferences

about the efficacy of mucus transport mechanisms. The data

reveal that the viscous and elastic moduli of a given mucus sample

vary by orders of magnitude across the frequency spectra relevant

to each mode of mucus transport. Importantly, an even greater

variation is observed versus mucus solids wt%. Such widely varying

mucus solids concentrations require tools in place that detect the

physiologically relevant viscoelastic properties of a mucus sample

specific to each clearance mechanism.

A complete biophysical understanding of the contribution of

viscoelastic properties to the variation in mucus transport in

patients is not available. However, we note that a correlation

between concentrated, pathological mucus and decreased clear-

ance has been reported [1] and our data yields insights into the

mechanisms by which solids wt%-dependent changes in viscoelas-

tic properties may contribute to this correlation. For example,

Puchelle [53] demonstrated that when cilia beat against a viscosity

higher that 100 mPa?s, i.e., a viscosity 100 times that of water,

beat frequency decreased and mucus clearance slowed. More

recently, direct force measurements of individual airway cilia

revealed that cilia are tuned to beat against a 100 mPa?s fluid, but

begin to fail at higher viscosities [1]. Our results show that mucus

in excess of 2.5 wt% solids exhibits complex viscosities higher than

the 100 mPa?s threshold at frequencies characteristic of cilia

(10 Hz), providing key data linking increased mucus concentra-

tions to the observation of Puchelle et al. [53]. Our results further

predict reductions in mucus clearance efficiency with increased

mucus solids wt% across the entire physiological frequency force

spectrum, from the 0.1 Hz of tidal breathing to the 10 Hz of cilia

beat, determined on the basis of viscous and elastic modulus

transitions (Figure 5). Combining our results with previous studies,

we conclude that cilia dependent and gas liquid dependent mucus

clearance is significantly and progressively compromised at mucus

concentrations above 2.5 wt% solids.

Cough is the principal back-up mechanism for failed mucus

clearance, and our viscoelastic analyses also provide insight into
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the effectiveness of cough to offset concentration-dependent

inefficiencies in cilia and breathing-induced mucus transport.

For example, cilia have to penetrate the mucus layer for their force

to be transferred to the layer and induce transport. Under high

wt% solids conditions where cilia cannot transfer force to mucus,

the 20-fold increases in G00 10Hzð Þ and 100-fold increases in

G0 10Hzð Þ between healthy and unhealthy solids wt% mucus could

be temporarily reduced by the violent air drag associated with

cough. Sufficient forcing from cough has the potential to shear-

thin (lower G00) and soften (lower G0) mucus, affording cilia a brief

window to recapture their ability to penetrate the mucus layer

before the high solids wt% mucus gel recovers from the disruptions

induced by cough. Some airways diseases, e.g., in particular CF,

lead to continuous cough, presumably in part to generate more

efficient transport properties of mucus.

Another mechanism for compromised mucociliary clearance

(MCC) associated with pathological, high solids concentration

mucus has been recently identified, namely an increase in the

relative osmotic pressure of the mucus layer versus the gel-like

properties of a concentrated periciliary layer. The osmotic

pressures of each layer reflect the activities of the interpenetrating,

i.e., semi-dilute, mesh-like properties of their respective mucins.

Button et al. [22] demonstrated that the mucus and periciliary

layers must be in osmotic balance for efficient MCC. When the

osmotic pressure of the mucus layer exceeds that of the periciliary

layer, water is drawn from and collapses the periciliary layer,

compromising the normal cilia beat stroke.

By comparing the mucus layer’s osmotic modulus vs. periciliary

layer height data with the measured osmotic modulus of mucus vs.

wt% (data reported by Button et al., Figures 6 and S1 [22]), the

osmotic pressure of mucus began to exceed that of the periciliary

layer at a mucus concentration of ,5 wt% (a value approaching that

seen in CF mucus), causing a decrease in periciliary layer height. At

concentrations at and above 8.0 wt%, the periciliary layer was

completely collapsed, totally disabling MCC. These findings are

complementary to our results, which predict the onset and

progression of cilia and tidal breathing-induced mucus transport

at much lower mucus solids wt%, beginning between 2.5 and 3.0

wt%. Further, we found that a dramatic transition in mucus

viscoelasticity across all physiological frequencies arose at ,4.0

wt%, associated with a sol-gel transition (Figure 6). Thus, our data

predict a slowing of mucus transport due to abnormal viscoelastic

properties prior to complete osmotic collapse of the periciliary

layer and shutdown of mucociliary clearance. Indeed, slowing of

mucus transport has been observed in COPD subjects with mucus

solids wt% in the 2–4% range [54].

Collectively, our data suggest that the wt% solids of mucus will

serve a simple surrogate for the mucin concentrations that govern

the key viscoelastic properties of mucus relevant to flow/no-flow.

One question is whether wt% solids will perform well in sputum

from subjects with airways disease. In CF sputum, the uniquely

large amount of DNA and actin, with its intrinsic viscoelastic

properties in extracellular solutions, may confound the wt% solids

measurement, and likewise confound the source of potentially

dramatic changes in viscoelastic properties. Precise measures of the

wt%-dependent DNA effects on CF sputum biophysical properties

will be required to answer this question. Importantly, the presence

of inflammatory cells contributes negligibly to wt% over a wide

range of cell numbers, suggesting wt% will be useful in subjects

with several inflammatory airways diseases, e.g., both COPD and

CF. Indeed, wt% solids may be a particularly useful biomarker to

identify subsets of subjects with COPD that exhibit a chronic

bronchitic phenotype.

In summary, the significant conclusions of this study lie in the

robust scaling of both diffusive and viscoelastic properties of HBE

cell culture mucus versus wt% of solids, ranging from those

associated with normal sputum concentration to pathological

concentrations. Our analysis using fractional Brownian motion,

and in particular Eqns. (7) and (8), offers an efficient protocol to

access this information, and it provides compelling evidence that

the simple marker of mucus wt% solids is an indicator of the

diffusive and viscoelastic biophysical abnormalities of mucus

associated with disease. These findings point to wt% solids of

lung mucus as a candidate for a rational and easily applied clinical

biomarker of airways disease.
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