
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

January 2005

A Bisimulation for Type Abstraction and Recursion A Bisimulation for Type Abstraction and Recursion

Eijiro Sumii
University of Pennsylvania

Benjamin C. Pierce
University of Pennsylvania, bcpierce@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation
Eijiro Sumii and Benjamin C. Pierce, "A Bisimulation for Type Abstraction and Recursion", . January 2005.

Postprint version. Copyright ACM, 2005. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 2005, pages 63-74.
Publisher URL: http://doi.acm.org/10.1145/1040305.1040311

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/151
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/151
mailto:repository@pobox.upenn.edu

A Bisimulation for Type Abstraction and Recursion A Bisimulation for Type Abstraction and Recursion

Abstract Abstract
We present a sound, complete, and elementary proof method, based on bisimulation, for contextual
equivalence in a λ-calculus with full universal, existential, and recursive types. Unlike logical relations
(either semantic or syntactic), our development is elementary, using only sets and relations and avoiding
advanced machinery such as domain theory, admissibility, and TT-closure. Unlike other bisimulations,
ours is complete even for existential types. The key idea is to consider sets of relations—instead of just
relations—as bisimulations.

Keywords Keywords
Lambda-Calculus, Contextual Equivalence, Bisimulations, Logical Relations, Existential Types, Recursive
Types

Comments Comments
Postprint version. Copyright ACM, 2005. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
2005, pages 63-74.
Publisher URL: http://doi.acm.org/10.1145/1040305.1040311

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/151

https://repository.upenn.edu/cis_papers/151

A Bisimulation for Type Abstraction and Recursion

Eijiro Sumii
University of Pennsylvania

sumii@saul.cis.upenn.edu

Benjamin C. Pierce
University of Pennsylvania

bcpierce@cis.upenn.edu

ABSTRACT
We present a sound, complete, and elementary proof method,
based on bisimulation, for contextual equivalence in a λ-
calculus with full universal, existential, and recursive types.
Unlike logical relations (either semantic or syntactic), our
development is elementary, using only sets and relations
and avoiding advanced machinery such as domain theory,
admissibility, and >>-closure. Unlike other bisimulations,
ours is complete even for existential types. The key idea is
to consider sets of relations—instead of just relations—as
bisimulations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—abstract data types; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type
structure

General Terms
Theory, Languages

Keywords
Lambda-Calculus, Contextual Equivalence, Bisimulations,
Logical Relations, Existential Types, Recursive Types

1. INTRODUCTION
Proving the equivalence of computer programs is important
not only for verifying the correctness of program transfor-
mations such as compiler optimizations, but also for showing
the compatibility of program modules. Consider two mod-
ules M and M ′ implementing the same interface I; if these
different implementations are equivalent under this common
interface, then they are indeed compatible, correctly hiding
their differences from outside view.

Contextual equivalence is a natural definition of program
equivalence: two programs are called contextually equiva-
lent if they exhibit the same observable behavior when put

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05,January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

in any legitimate context of the language. However, direct
proofs of contextual equivalence are typically infeasible, be-
cause its definition involves a universal quantification over
an infinite number of contexts (and naive approaches such as
structural induction on the syntax of contexts do not work).
This has led to a search for alternative methods for prov-
ing contextual equivalence, whose fruits can be grouped into
two categories: logical relations and bisimulations.

Logical relations (and their shortcomings).Logical re-
lations were first developed for denotational semantics of
typed λ-calculi (see, e.g., [24, Chapter 8] for details) and can
also be adapted [30, 29] to their term models; this adapta-
tion is sometimes called syntactic logical relations [13]. Log-
ical relations are relations on terms defined by induction on
their types: for instance, two pairs are related when their
elements are pairwise related; two tagged terms ini(M) and
inj(N) of a sum type are related when the tags i and j
are equal and the contents M and N are also related; and,
crucially, two functions are related when they map related
arguments to related results. The soundness of logical re-
lations is proved via the Fundamental Property (or Basic
Lemma), which states that any well-typed term is related
to itself.

Logical relations are pleasantly straightforward, as long
as we stick to the simply typed λ-calculus (or even the poly-
morphic λ-calculus) without recursion. However, their ex-
tension with recursion is challenging. Recursive functions
cause a problem in the proof of the fundamental property
that must be addressed by introducing additional “unwind-
ing properties” [30, 29, 9, 13]. Recursive types are even more
difficult (in particular with negative occurrences): since log-
ical relations are defined by induction on types, recursive
types require topological properties even in the definition
of logical relations [9, 13]. Worse, these difficulties are not
confined to meta-theorems, but are visible to the users of
logical relations: in order to prove contextual equivalence
using logical relations, one often has to prove the admis-
sibility, compute the limit, or calculate the >>-closure of
particular logical relations.

Bisimulations (and their shortcomings).Bisimulations
were originally developed for process calculi [21, 22, 23] and
state transition systems in general. Abramsky [4] adapted
bisimulations to untyped λ-calculus and called them applica-
tive bisimulations. Briefly, two functions λx. M and λx. M ′

are bisimilar when (λx. M)N ⇓ ⇐⇒ (λx. M ′)N ⇓ for any
N and the results are also bisimilar if these evaluations con-

verge. Gordon and Rees [14, 17, 15, 16] extended applicative
bisimulations to calculi with objects, subtyping, universal
polymorphism, and recursive types. Sangiorgi [32] has de-
fined context bisimulation, which is a variant of applicative
bisimulation for higher-order π-calculus [32].

Unlike logical relations, bisimulations have no difficulty
with recursion (or even concurrency). However, existing
bisimulation methods for typed λ-calculi are very weak in
the presence of existential polymorphism; that is, they are
useless for proving interesting equivalence properties of ex-
istential packages. For instance, consider the two packages

M = pack int, 〈1, λx : int. x
int
= 0〉 as τ

M ′ = pack bool, 〈true, λx : bool.¬x〉 as τ

where τ = ∃α. α× (α→ bool). Existing bisimulation meth-
ods cannot prove the contextual equivalence ` M ≡ M ′ : τ
of these simple packages, because they cannot capture the
fact that the only values of type α are 1 in the “left-hand
world” and true in the right-hand world. The same obser-
vation applies to context bisimulation.

The only exceptions to the problem above are bisimula-
tions for polymorphic π-calculi [28, 7]. However, π-calculus
is name-based and low-level. As a result, it is rather diffi-
cult to encode polymorphic λ-calculus into polymorphic π-
calculus while preserving equivalence (though there are some
results [7] for the case without recursion), so it is at least as
difficult to use π-calculus for reasoning about abstraction in
λ-calculus or similar languages with (in particular higher-
order) functions and recursion. In addition to the problem
of encoding, existing bisimulations for polymorphic π-calculi
are incomplete [28] and complex [7].

Encoding existential polymorphism in terms of universal
polymorphism does not help either. Consider the following
encodings of M and M ′

N = λf : σ. f [int]〈1, λx : int. x
int
= 0〉

N ′ = λf : σ. f [bool]〈true, λx : bool.¬x〉

where σ = ∀α. α× (α→ bool)→ ans and ans is some answer
type. In order to establish the bisimulation between N and
N ′, one has at least to prove

f [int]〈1, λx : int. x
int
= 0〉 ⇓

⇐⇒ f [bool]〈true, λx : bool.¬x〉 ⇓

for any observer function f of type σ, which is almost the
same as the definition of ` M ≡ M ′ : τ .

Our solution. We address these problems—and thereby
obtain a sound and complete bisimulation for existential
types (as well as universal and recursive types)—by adapt-
ing key ideas from our previous work [34] on bisimulation
for sealing [26, 27], a dynamic form of data abstraction.
The crucial insight is that we should define bisimulations
as sets of relations—rather than just relations—annotated
with type information.

For instance, a bisimulation X showing the contextual
equivalence of M and M ′ above can be defined (roughly) as

X = {(∅,R0), (∆,R1), (∆,R2), (∆,R3)}

where

R0 = {(M, M ′, τ)}
R1 = R0 ∪ {(〈1, λx : int. x

int
= 0〉,

〈true, λx : bool.¬x〉,
α× (α→ bool))}

R2 = R1 ∪ {(1, true, α),

(λx : int. x
int
= 0,

λx : bool.¬x,

α→ bool)}
R3 = R2 ∪ {(false, false, bool)}
∆ = {(α, int, bool)}.

Because we are ultimately interested in the equivalence of
M and M ′, we begin by including (∅,R0) in X. (The role
of the first element ∅ of this pair will be explained in a
moment.) Next, since a context can open those packages
and examine their contents, we add (∆,R1) to X, where ∆
is a concretion environment mapping the abstract type α to
its respective concrete types in the left-hand side and the
right-hand side. Then, since the contents of the packages
are pairs, a context can examine their elements, so we add
(∆,R2) to X. Last, since the second elements of the pairs
are functions of type α→ bool, a context can apply them
to any arguments of type α; the only such arguments are,
in fact, 1 in the left-hand world and true in the right-hand
world, so we add (∆,R3) to X. Since the results of these
applications are equal as booleans, there is nothing else that
a context can do to distinguish the values in R3.

Conceptually, each R occuring in a pair (∆,R) ∈ X rep-
resents the knowledge of a context at some point in time,
which increases via new observations by the context. In
order to prove contextual equivalence, it suffices to find a
bisimulation X that is closed under this increase of con-
texts’ knowledge. (Thus, in fact, not only X but also the
singleton set {(∆,R3)} is a bisimulation in our definition.)

Why do we consider a bisimulation X to be a set of Rs
(with corresponding ∆s) instead of taking their union in the
first place? Because the latter does not exist in general! In
other words, the union of two “valid” Rs is not always a
valid R. For instance, consider the union of R3 and its in-
verse R−1

3 = {(V ′, V, τ) | (V, V ′, τ) ∈ R3}. Although each
of them makes perfect sense by itself, taking their union is
nonsensical because it confuses two different worlds (which,
in fact, is not even type-safe). This observation is abso-
lutely fundamental in the presence of type abstraction (or
other forms of information hiding such as sealing), and it
forms the basis of many technicalities in the present work
(as well as our previous work [34]). By considering a set of
relations instead of taking their union, it becomes straight-
forward to define bisimilarity to be the largest bisimulation
and thereby apply standard co-inductive arguments—in or-
der to prove the completeness of bisimilarity, for instance.
(In addition, this also gives a natural account to the gen-
erativity of existential types, i.e., to the fact that opening
the same package twice gives incompatible contents.) Thus,
for example, both {(∆,R3)} and {(∆−1,R−1

3)} are bisim-
ulations (where ∆−1 = {(α, τ, τ ′) | (α, τ ′, τ) ∈ ∆}) and so
is their union {(∆,R3), (∆

−1,R−1
3)}, but neither {(∆,R3 ∪

R−1
3)} nor {(∆−1,R3 ∪R−1

3)} is.
This decision does not incur any significant difficulty for

users of our bisimulation: we devise a trick—explained be-
low, in the definition of bisimulation for packages—that keeps
the set of relations finite in many cases; even where this trick
does not apply, it is not very difficult to define the infinite
set of relations (e.g., by set comprehension or by induction)
and check it against our definition of bisimulation (as we
will do in Example 4.3 for generative functors or as we did
in previous work [34, Examples 4.7 and 4.8] for security pro-
tocols).

Contributions.This is the first sound, complete, and ele-
mentary proof method for contextual equivalence in a lan-
guage with higher-order functions, impredicative polymor-
phism (both universal and existential), and full recursive
types. As discussed above, previous results in this area were
(1) limited to recursive types with no negative occurrence,
(2) incomplete for existential types, and/or (3) technically
involved.

Many of the ideas used here are drawn from our previous
work [34] on a sound and complete bisimulation for untyped
λ-calculus with dynamic sealing (also known as perfect en-
cryption). This form of information hiding is very differ-
ent from static type abstraction. Given the difference, it
is surprising (and interesting) in itself to find that similar
ideas can be adapted to both settings. Furthermore, the
language in the present paper is typed (unlike in our pre-
vious work), requiring many refinements to take type infor-
mation into account throughout the technical development.
In general, typed equivalence is much coarser than untyped
equivalence—in particular with polymorphism—because not
only terms but also contexts have to respect types. Accord-
ingly, our bisimulation keeps careful track of the mapping of
abstract type variables to concrete types, substituting the
former with the latter if and only if appropriate.

Overview.The rest of this paper is structured as follows.
Section 2 presents our language and its contextual equiva-
lence, generalized in a non-trivial way for open types as re-
quired by the technicalities which follow. Section 3 defines
our bisimulation. Section 4 gives examples to illustrate its
uses and Section 5 proves soundness and completeness of
the bisimulation with respect to the generalized contextual
equivalence. Section 6 generalizes these results, which have
been restricted to closed values for simplicity, to non-values
and open terms. Section 7 discusses a limitation of our
bisimulation concerning higher-order functions. Section 8
discusses related work, and Section 9 concludes with future
work.

Throughout the paper, we use overbars as shorthands for
sequences—e.g., we write x, [V /x], (α, σ, σ′) and x : τ in-
stead of x1, . . . , xn, [V1, . . . , Vn/x1, . . . , xn], (α1, σ1, σ

′
1), . . . ,

(αn, σn, σ′n) and x1 : τ1, . . . , xn : τn where n ≥ 0.

2. GENERALIZED CONTEXTUAL
EQUIVALENCE

Our language is a standard call-by-value λ-calculus with
polymorphic and recursive types. (We conjecture that it
would also be straightforward to adapt our method to a
call-by-name setting.) Its syntax is given in Figure 1. The
(big-step) semantics M ⇓ V and typing rules Γ ` M : τ are
standard; we omit them for brevity and refer readers to the
full version [35] for details. We include recursive functions

M, N, C, D ::= term
x variable
fix f(x : τ) : σ = M recursive function
MN application
Λα. M type function
M [τ] type application
pack τ, M as ∃α. σ packing
open M as α, x in N opening
〈M1, . . . , Mn〉 tupling
#i(M) projection
ini(M) injection
case M of in1(x1) ⇒ M1 [] . . . [] inn(xn) ⇒ Mn

case branch
fold(M) folding
unfold(M) unfolding

U, V, W ::= value
fix f(x : τ) : σ = M recursive function
Λα. M type function
pack τ, V as ∃α. σ package
〈V1, . . . , Vn〉 tuple
ini(V) injected value
fold(V) folded value

π, ρ, σ, τ ::= type
α type variable
τ →σ function type
∀α. τ universal type
∃α. τ existential type
τ1× . . . × τn product type
τ1 + . . . + τn sum type
µα. τ recursive type

Figure 1: Syntax

fix f(x : τ) : σ = M as a primitive for the sake of exposition;
alternatively, they can be implemented in terms of a fixed-
point operator, which is typable using recursive types. We
adopt the standard notion of variable binding with implicit
α-conversion and write λx : τ. M for fix f(x : τ) : σ = M
when f is not free in M . We will write let x : τ = M in N
for (λx : τ. N)M . We sometimes omit type annotations—
as in λx. M and let x = M in N—when they are obvious
from the context. The semantics is defined by the evaluation
M ⇓ V of term M to value V .

For simplicity, we consider the equivalence of closed values
only. (This restriction entails no loss of generality: see Sec-
tion 6.) However, in order to formalize the soundness and
completeness of our bisimulation with respect to contextual
equivalence, it helps to extend the definition of contextual
equivalence to values of open types. For instance, we will
have to consider whether λx : int. x is contextually equiva-
lent to λx : int. x− 1 at type α→ int, where the implemen-
tation of abstract type α is int in fact. But this clearly de-
pends on what values of type α (or, more generally, what val-
ues involving type α) exist in the context: for instance, if the
only values of type α are 2 in the left-hand world and 3 in the
right-hand world, then the equivalence does hold; however,
if some integers i on the left and j on the right have type α
where i 6= j− 1, then it does not hold. In order to capture at
once all such values in the context involving type α, we con-
sider the equivalence of multiple pairs of values—annotated
with their types—such as {(2, 3, α), ((λx : int. x), (λx : int.
x− 1), α→ int)} and {(i, j, α), ((λx : int. x), (λx : int. x− 1),

α→ int)}; the former should be included in the equivalence
while the latter should not, provided that i 6= j− 1. For this
reason, we generalize and define contextual equivalence as
follows.

Definition 2.1. A concretion environment ∆ is a finite
set of triples of the form (α, σ, σ′) with σ and σ′ closed and
(α, τ, τ ′) ∈ ∆ ∧ (α, σ, σ′) ∈ ∆ ⇒ τ = σ ∧ τ ′ = σ′.

The intuition is that, under ∆, abstract type α is imple-
mented by concrete type σ in the left-hand side and by an-
other concrete type σ′ in the right-hand side (of an equiva-
lence). For instance, in the example in Section 1, the con-
crete implementations of abstract type α were int in the
left-hand world and bool in the right-hand world, so ∆ was
{(α, int, bool)}. We write dom(∆) for {α1, . . . , αn} when
∆ = {(α1, σ1, σ

′
1), . . . , (αn, σn, σ′n)} and write ∆1] ∆2 for

∆1 ∪∆2 when dom(∆1) ∩ dom(∆2) = ∅.
Definition 2.2. A typed value relation R is a (either

finite or infinite) set of triples of the form (V, V ′, τ).

The intuition is that R relates value V in the left-hand side
and value V ′ in the right-hand side at type τ .

Definition 2.3. Let ∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)}.

We write ∆ ` R if, for any (V, V ′, τ) ∈ R, we have ` V :
[σ/α]τ and ` V ′ : [σ′/α]τ .

Definition 2.4 (Typed Value Relation in Context).
We write (∆,R)◦ for the relation

{([U/y][σ/α]D, [U
′
/y][σ′/α]D, τ) |

∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)},

(U1, U
′
1, ρ1), . . . , (Un, U ′n, ρn) ∈ R,

α1, . . . , αm, y1 : ρ1, . . . , yn : ρn ` D : τ}.
Intuitively, this relation represents contexts into which val-
ues related by R have been put.

Definition 2.5. Generalized contextual equivalence is the
set ≡ of all pairs (∆,R) such that:

A. ∆ ` R.

B. For any (M, M ′, τ) ∈ (∆,R)◦, we have M ⇓ ⇐⇒
M ′ ⇓.

Note that the standard contextual equivalence—between two
closed values of a closed type—is subsumed by the case
where each ∆ is empty and each R is a singleton. Con-
versely, the standard contextual equivalence is implied by
the generalized one in the following sense: if (V, V ′, τ) ∈ R
for some (∆,R) ∈ ≡ where V , V ′, and τ are closed, then
it is immediate by definition that K[V] ⇓ ⇐⇒ K[V ′] ⇓ for
any context K with a hole [] for terms of type τ . See also
Section 6 for discussions on non-values and open terms.

We write

∆ ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

for

(∆, {(V1, V
′
1 , τ1), (V2, V

′
2 , τ2), . . . }) ∈ ≡.

We also write ∆ ` V ≡R V ′ : τ for (V, V ′, τ) ∈ R with
(∆,R) ∈ ≡. Intuitively, this can be read, “values V and
V ′ have type τ under concretion environment ∆ and are
contextually equivalent under knowledge R.”

The following properties follow immediately from the def-
inition above.

Corollary 2.6 (Reflexivity). If ` V1 : [σ/α]τ1, `
V2 : [σ/α]τ2, . . . , then

{(α, σ, σ)} ` V1, V2, . . . ≡ V1, V2, . . . : τ1, τ2,

Corollary 2.7 (Symmetry). If

{(α, σ, σ′)} ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

then

{(α, σ′, σ)} ` V ′
1 , V ′

2 , . . . ≡ V1, V2, . . . : τ1, τ2,

Corollary 2.8 (Transitivity). If

{(α, σ, σ′)} ` V1, V2, . . . ≡ V ′
1 , V ′

2 , . . . : τ1, τ2, . . .

and

{(α, σ′, σ′′)} ` V ′
1 , V ′

2 , . . . ≡ V ′′
1 , V ′′

2 , . . . : τ1, τ2, . . .

then

{(α, σ, σ′′)} ` V1, V2, . . . ≡ V ′′
1 , V ′′

2 , . . . : τ1, τ2,

Example 2.9. Suppose that our language is extended in
the obvious way with integers and booleans (these are, of
course, definable in the language we have already given, but
we prefer not to clutter examples with encodings), and let
∆ = {(α, int, int)}. Then we have:

∆ ` 2, (λx : int. x)
≡ 3, (λx : int. x− 1)
: α, (α→ int)

More generally,

∆ ` i, (λx : int. x)
≡ j, (λx : int. x− 1)
: α, (α→ int)

if and only if i = j− 1.

Example 2.10. Let ∆ = {(α, int, bool)}. We have

∆ ` 1, (λx : int. x
int
= 0)

≡ true, (λx : bool.¬x)
: α, (α→ bool)

∆ ` 1, (λx : int. x
int
= 0)

≡ false, (λx : bool. x)
: α, (α→ bool)

but

∆ ` 1, (λx : int. x
int
= 0), 1, (λx : int. x

int
= 0)

6≡ true, (λx : bool.¬x), false, (λx : bool. x)
: α, (α→ bool), α, (α→ bool).

The last example shows that, even if (∆,R1) ∈ ≡ and
(∆,R2) ∈ ≡, the union (∆,R1∪R2) does not always belong
to ≡. In other words, one should not confuse two different
implementations of an abstract type, even if each of them is
correct in itself.

3. BISIMULATION
Contextual equivalence is difficult to prove directly, because
it involves a universal quantification over arbitrary contexts.
Fortunately, we can avoid considering all contexts by observ-
ing that there are actually only a few “primitive” operations
that contexts can perform on the values they have access to:
for instance, if a context is comparing a pair 〈v, w〉 with
another pair 〈v′, w′〉, all it can do is to project the first
elements v and v′ or the second elements w and w′ (and
add them to its knowledge for later use). Similarly, in or-
der to compare functions λx. M and λx. M ′, a context has
to apply them to some arguments it can make up from its
knowledge. Intuitively, our bisimulations are sets of rela-
tions representing such contextual knowledge, closed under
increase of knowledge via primitive operations like projec-
tion and application.

Based on the ideas above, our bisimulation is defined as
follows. More detailed technical intuitions will be given after
the definition.

Definition 3.1 (Bisimulation). A bisimulation is a
set X of pairs (∆,R) such that:

1. ∆ ` R.

2. For each

(fix f(x : π) : ρ = M, fix f(x : π′) : ρ′ = M ′, τ →σ) ∈ R
and for any (V, V ′, τ) ∈ (∆,R)◦, we have

(fix f(x : π) : ρ = M)V ⇓
⇐⇒ (fix f(x : π′) : ρ′ = M ′)V ′ ⇓.

Furthermore, if (fix f(x : π) : ρ = M)V ⇓ W and
(fix f(x : π′) : ρ′ = M ′)V ′ ⇓ W ′, then

(∆,R∪ {(W, W ′, σ)}) ∈ X.

3. Let ∆ = {(α1, σ1, σ
′
1), . . . , (αm, σm, σ′m)}. For each

(Λα. M, Λα. M ′, ∀α. τ) ∈ R
and for any ρ with FTV (ρ) ⊆ dom(∆), we have

(Λα. M)[[σ/α]ρ] ⇓ ⇐⇒ (Λα. M ′)[[σ′/α]ρ] ⇓.

Furthermore, if (Λα. M)[[σ/α]ρ] ⇓ W and (Λα. M ′)
[[σ′/α]ρ] ⇓ W ′, then

(∆,R∪ {(W, W ′, [ρ/α]τ)}) ∈ X.

4. For each

(pack σ, V as ∃α. τ, pack σ′, V ′
as ∃α. τ ′, ∃α. τ ′′) ∈ R,

we have either

(∆] {(α, σ, σ′)},R∪ {(V, V ′, τ ′′)}) ∈ X,

or else (β, σ, σ′) ∈ ∆ and (V, V ′, [β/α]τ ′′) ∈ R for
some β.

5. For each (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V ′

n〉, τ1× . . . × τn) ∈ R
and for any 1 ≤ i ≤ n, we have (∆,R∪ (Vi, V

′
i , τi)) ∈

X.

6. For each (ini(V), inj(V
′), τ1 + . . . + τn) ∈ R, we have

i = j and (∆,R∪ (V, V ′, τi)) ∈ X.

7. For each (fold(V), fold(V ′), µα. τ) ∈ R, we have (∆,
R∪ (V, V ′, [µα. τ/α]τ)) ∈ X.

As usual, bisimilarity, written ∼, is the largest bisimulation;
it exists because the union of two bisimulations is again a
bisimulation.

We write

∆ ` V1, . . . , Vn X V ′
1 , . . . V ′

n : τ1, . . . , τn

for

(∆, {(V1, V
′
1 , τ1), . . . , (Vn, V ′

n, τn)}) ∈ X.

We also write ∆ ` V XR V ′ : τ for (V, V ′, τ) ∈ R with
(∆,R) ∈ X. Intuitively, it can be read: values V and V ′ of
type τ with concretion environment ∆ are bisimilar under
knowledge R.

We now elaborate the intuitions behind the definition of
bisimulation. Condition 1 ensures that bisimilar values V
and V ′ are well typed under the concretion environment
∆. The other conditions are concerned with the things that
a context can do with the values it knows to gain more
knowledge.

Condition 2 deals with the case where a context applies
two functions it knows (fix f(x : π) : ρ = M and fix f(x : π′)
: ρ′ = M ′) to some arguments V and V ′. To make up these
arguments, the context can make use of any values it already

knows (U and U
′
in Definition 2.4) and assemble them using

a term D with free variables y, where the abstract types α
are kept abstract.

The crucial observation here is that it suffices to con-
sider value arguments only, i.e., only the cases where the

assembled terms [U/y][σ/α]D and [U
′
/y][σ′/α]D′ are val-

ues. This simplification is essential for proving the bisim-
ilarity of functions—indeed, it is the “magic” that makes
our whole approach tractable. Intuitively, it can be under-
stood via the fact that any terms of the form [U/y][σ/α]D

and [U
′
/y][σ′/α]D evaluate to values of the same form, as

proved in Lemma 5.3 below.
Then, to avoid exhibiting an observable difference in be-

haviors, the function applications should either both diverge
or else both converge; in the latter case, the resulting values
become part of the context’s knowledge and can be used for
further experiments.1

Condition 3 is similar to Condition 2, but for type appli-
cation rather than term application.

Condition 4 is for packages defining an abstract type α.
Essentially, a context can open the two packages and exam-
ine their contents only abstractly, as expressed in the first
half of this condition. However, if the context happens to
know another abstract type β whose implementations coin-
cide with α’s, there is no need for us to consider them twice.
The second half of the condition expresses this simplifica-
tion. It is not so crucial as the previous simplification in
Condition 2, but it is useful for proving the bisimulation of
packages, keeping X finite in many cases despite the gener-
ativity of open, as we mentioned in the introduction.

1Another technical point may deserve mentioning here: in-
stead of (∆,R ∪ {(W, W ′, σ)}) ∈ X, we could require
(W, W ′, σ) ∈ R to reduce the number ofRs required to be in
X by “predicting” the increase of contexts’ knowledge a pri-
ori. We rejected this alternative for the sake of uniformity
with Condition 4, which anyway requires the concretion en-
vironment ∆ to be extended. This decision does not make
it difficult to construct a bisimulation, as we will see soon
in the examples.

Conditions 5, 6, and 7 are for tuples, injected values, and
folded values, respectively. They capture the straightfor-
ward increase of the context’s knowledge via projection, case
branch, or unfolding.

4. EXAMPLES
Before presenting our main technical result—that bisimu-
lation is sound and complete for contextual equivalence—
we develop several examples illustrating concrete applica-
tions of the bisimulation method. The first three examples
involve existential packages, whose equivalence cannot be
proved by other bisimulations for λ-calculi. The fourth ex-
ample involves recursive types with negative occurrences,
for which logical relations have difficulties. Our bisimula-
tion technique yields a straightforward proof of equivalence
for each of the examples.

4.1 Warm-Up
Consider the following simple packages

U = pack int, 〈1, λx : int. x
int
= 0〉 as τ

U ′ = pack bool, 〈true, λx : bool.¬x〉 as τ

where τ = ∃α. α× (α→ bool). We aim to prove that U and
U ′ are contextually equivalent at type τ . To this end, let

X = {(∅,R0), (∆,R1), (∆,R2), (∆,R3), (∆,R4), (∆,R5)}
where

∆ = (α, int, bool)

R0 = {(U, U ′, τ)}
R1 = R0 ∪ {(〈1, λx : int. x

int
= 0〉,

〈true, λx : bool.¬x〉,
α× (α→ bool))}

R2 = R1 ∪ {(1, true, α)}
R3 = R1 ∪ {(λx : int. x

int
= 0,

λx : bool.¬x,

α→ bool)}
R4 = R2 ∪R3

R5 = R4 ∪ {(false, false, bool)}.
Then, X is a bisimulation. To prove it, we must check each
condition in Definition 3.1 for every (∆,R) ∈ X. Most of
the checks are trivial, except the following cases:

• Condition 4 on (U, U ′, τ) ∈ Ri for i ≥ 1, where the
second half of the condition holds.

• Condition 2 on

(λx : int. x
int
= 0, λx : bool.¬x, α→ bool) ∈ Ri

for i ≥ 3. Since V and V ′ are values, the D in Def-
inition 2.4 is either a value or a variable. However,
if D is a value, it can never satisfy the assumption
α, y1 : ρ1, . . . , yn : ρn ` D : α (easy case analysis on the
syntax of D). Thus, D must be a variable. Without
loss of generality, let D = y1. Then, by inversion of
(T-Var), ρ1 = α. Since (U1, U

′
1, ρ1) ∈ Rn, we have

U1 = 1 and U ′1 = true. Thus, V = 1 and V ′ = true,
from which the rest of this condition is obvious.

Alternatively, in this particular example, we can just take
X = {(∆,R5)} in the first place and prove it to be a bisim-
ulation by the same arguments as above. Since (U, U ′, τ) ∈
R5, this still suffices for showing the contextual equivalence
of U and U ′, thanks to the soundness of bisimilarity (Corol-
lary 5.5) and the generalized definition of contextual equiv-
alence (Definition 2.5).

4.2 Complex Numbers
Suppose now that we have real numbers and operations in
the language. Then the following two implementations U
and U ′ of complex numbers should be contextually equiva-
lent at the appropriate type ∃α. τ .

U = pack (real× real), 〈id , id , cmul〉 as ∃α. τ

U ′ = pack (real× real), 〈ctop, ptoc, pmul〉 as ∃α. τ

τ = (real× real→α)× (α→ real× real)× (α→α→α)

id = λc : real× real. c

cmul = λc1 : real× real. λc2 : real× real.

〈#1(c1)×#1(c2)−#2(c1)×#2(c2),

#2(c1)×#1(c2)+#1(c1)×#2(c2)〉

ctop = λc : real× real.

〈
p

(#1(c))2 +(#2(c))2, atan2(#2(c), #1(c))〉
ptoc = λp : real× real.

〈#1(p)× cos(#2(p)), #1(p)× sin(#2(p))〉
pmul = λp1 : real× real. λp2 : real× real.

〈#1(p1)×#1(p2), #2(p1)+ #2(p2)〉

The first functions in these packages make a complex num-
ber from its real and imaginary parts, and the second func-
tions perform the converse conversion. The third functions
multiply complex numbers.

To prove the contextual equivalence of U and U ′, consider
X = {(∆,R)} where

∆ = {(α, real× real, real× real)}
R = {(U, U ′,∃α. τ),

(〈id , id , cmul〉, 〈ctop, ptoc, pmul〉, τ),

(id , ctop, real× real→α),

(id , ptoc, α→ real× real),

(cmul , pmul , α→α→α)}
∪ {(v, w, α) | w = 〈r, t〉,

〈r× cos(t), r× sin(t)〉 ⇓ v,

r ≥ 0}
∪ {(c, c, real× real) | ` c : real× real}
∪ {(r, r, real) | ` r : real}.

Then X is a bisimulation, as can be checked in the same
manner as in the previous example.

4.3 Functions Generating Packages
The following functions U and U ′ generate packages. (I.e.,
they behave a bit like functors in ML-style module systems.)

U = λy : int. M

U ′ = λy : int. M ′

M = pack int, 〈y, λx : int. x〉 as τ

M ′ = pack int, 〈y +1, λx : int. x− 1〉 as τ

τ = ∃α. α× (α→ int)

To prove that U is contextually equivalent to U ′ at type
int→ τ , it suffices to consider the following infinite bisimu-
lation.

X = {(∆,R) |
∆ = {(βi, int, int) | −n ≤ i ≤ n},
R ⊆ ∪−n≤i≤nRi,

n = 0, 1, 2, . . . }
Ri = {(U, U ′, int→ τ),

([i/y]M, [i/y]M ′, τ),

(〈i, λx : int. x〉, 〈i +1, λx : int. x− 1〉, βi× (βi→ int)),

(i, i +1, βi),

(λx : int. x, λx : int. x− 1, βi→ int),

(i, i, int)}
The generativity of U and U ′ is given a simple account by
having a different abstract type βi for each instantiation of
U and U ′ with y = i.

The inclusion of all R ⊆ ∪−n≤i≤nRi in the definition of
X simplifies the definition of this bisimulation; although it
admits some Rs that are not strictly relevant to the proof
(such as those with only the elements of tuples, but without
the tuples themselves), they are not a problem since they do
not violate any of the conditions of bisimulation. In other
words, to prove the contextual equivalence of two values,
one has only to find some bisimulation including the values
rather than the minimal one.

4.4 Recursive Types with Negative Occurrence
Consider the packages C and C′ implementing counter ob-
jects as follows: each counter is implemented as a pair of
its state part (of abstract type st) and its method part; the
latter is implemented as a function that takes a state and
returns the tuple of methods2; in this example, there are
two methods in the tuple: one returns a new counter object
with the state incremented (or, in the second implementa-
tion, decremented) by 1, while the other tells whether an-
other counter object has been incremented (or decremented)
the same number of times as the present one.

τ = ∃st. σ
σ = µself. st× (st→ ρ)

ρ = self× (self→ bool)

C = pack int, fold(〈0,M 〉) as τ

2This implementation can be viewed as a variant of the so-
called recursive existential encoding of objects (see [12] for
details), but our goal here is to illustrate the power of our
bisimulation with existential recursive types, rather than to
discuss the object encoding itself.

C′ = pack int, fold(〈0,M ′〉) as τ

M = fix f(s : int) : [int/st][σ/self]ρ =

〈fold(〈s +1, f)〉,
λc : [int/st]σ. (s

int
= #1(unfold(c)))〉

M ′ = fix f(s : int) : [int/st][σ/self]ρ =

〈fold(〈s− 1, f〉),
λc : [int/st]σ. (s

int
= #1(unfold(c)))〉

Let us prove the contextual equivalence of C and C′ at type
τ . To do so, we consider the bisimulation X = {(∆,R)}
where:

∆ = {(st, int, int)}
R = {(C, C′, τ),

(fold(〈n, M〉), fold(〈−n, M ′〉), σ),

(〈n, M〉, 〈−n, M ′〉, st× (st→ [σ/self]ρ)),

(n,−n, st),

(M, M ′, st→ [σ/self]ρ),

(〈fold(〈n +1, M〉),
λc : [int/st]σ. (n

int
= #1(unfold(c)))〉,

〈fold(〈−n− 1, M ′〉),
λc : [int/st]σ. (−n

int
= #1(unfold(c)))〉,

σ× (σ→ bool)),

(λc : [int/st]σ. (n
int
= #1(unfold(c))),

λc : [int/st]σ. (−n
int
= #1(unfold(c))),

σ→ bool),

(true, true, bool),

(false, false, bool) |
n = 0, 1, 2, . . . }

It can indeed be shown to be a bisimulation just as the
bisimulations in previous examples. That is, unlike logi-
cal relations, our bisimulation incurs no difficulty at all for
recursive functions or recursive types even with negative oc-
currence.

4.5 Higher-Order Functions
The following higher-order functions represent the “dual” of
the example in Section 4.1.

U = λf : σ. f [int]〈1, λx : int. x
int
= 0〉

U ′ = λf : σ. f [bool]〈true, λx : bool.¬x〉
σ = ∀α. α× (α→ bool)→ unit

It is surprisingly easy to prove the contextual equivalence of
U and U ′ at type σ→ unit, i.e.,

[U/x]C ⇓ ⇐⇒ [U ′/x]C ⇓

for any x : σ→ unit ` C : τ . Since

[U/x]C = [1, (λx : int. x
int
= 0)/y, z][int/β]D0

[U ′/x]C = [true, (λx : bool.¬x)/y, z][bool/β]D0

for D0 = [(λf : σ. f [β]〈y, z〉)/x]C, it suffices to prove

[1, (λx : int. x
int
= 0)/y, z][int/β]D ⇓

⇐⇒ [true, (λx : bool.¬x)/y, z][bool/β]D ⇓
for every β, y : β, z : β→ bool ` D : τ . (Note that D0 has
the same typing as D thanks to the standard substitution
lemma.) However, this follows immediately from the bisim-
ulation {(∆,R)} where

∆ = {(β, int, bool)}
R = {(1, true, β),

(λx : int. x
int
= 0, λx : bool.¬x, β→ bool),

(false, false, bool)}
along with the soundness of bisimilarity in the next section.

5. SOUNDNESS AND COMPLETENESS
We prove that bisimilarity coincides with contextual equiva-
lence (in the generalized form presented in Section 2). That
is, two values can be proved to be bisimilar if and only if
they are contextually equivalent.

First, we prove the “if” part, i.e., that contextual equiva-
lence is included in bisimilarity. This direction is easier be-
cause our bisimulation is defined co-inductively: it suffices
simply to prove that contextual equivalence is a bisimula-
tion.

Lemma 5.1 (Completeness of Bisimulation). ≡ ⊆
∼.

Proof. By checking that ≡ satisfies each condition of
bisimulation.

Next, we show that bisimilarity is included in contextual
equivalence. To do so, we need to consider the question:
When we put bisimilar values into a context and evaluate
them, what changes? The answer is: Nothing! I.e., evalu-
ating a pair of expressions, each consisting of some set of
bisimilar values placed in some context, results again in a
pair of expressions that can be described by some set of
bisimilar values placed in some context. Furthermore, this
evaluation converges in the left-hand side if and only if it
converges in the right-hand side. Since the proof of the lat-
ter property requires the former property, we formalize the
observations above in the following order.

Definition 5.2 (Bisimilarity in Context). We write
∆ ` N ∼◦R N ′ : τ if (N, N ′, τ) ∈ (∆,R)◦ and (∆,R) ∈ ∼.

The intuition is that ∼◦ relates bisimilar values put in con-
texts.

Lemma 5.3 (Fundamental Property, Part I). Sup-
pose ∆0 ` N ∼◦R0 N ′ : τ . If N ⇓ W and N ′ ⇓ W ′, then
∆ ` W ∼◦R W ′ : τ for some ∆ ⊇ ∆0 and R ⊇ R0.

Proof. By induction on the derivation of N ⇓ W .

Lemma 5.4 (Fundamental Property, Part II). If
∆0 ` N ∼◦R0 N ′ : τ then N ⇓ ⇐⇒ N ′ ⇓.

Proof. By induction on the derivation of N ⇓ together
with Lemma 5.3.

Corollary 5.5 (Soundness of Bisimilarity). ∼ ⊆
≡.

Proof. By the definitions of ≡ and ∼◦ together with
Lemma 5.4.

Combining soundness and completeness, we obtain the
main theorem about our bisimulation: that bisimilarity co-
incides with contextual equivalence.

Theorem 5.6. ∼ = ≡.

Proof. By Corollary 5.5 and Lemma 5.1.

Details of the proofs above are found in the full version [35].
Note that these proofs are much simpler than soundness
proofs of applicative bisimulations in previous work [19, 14,
17, 15, 16, 4] thanks to the generalized condition on func-
tions (Condition 2), which is anyway required in the pres-
ence of existential polymorphism as discussed in the intro-
duction.

6. NON-VALUES AND OPEN TERMS
So far, we have restricted ourselves to the equivalence of
closed values for the sake of simplicity. In this section, we
show how our method can be used for proving the standard
contextual equivalence of non-values and open terms as well.
(Although our approach here may seem ad hoc, it suffices for
the present purpose of proving the contextual equivalence of
open terms. For other studies on different equivalences for
open terms, see [30, 29] for instance.)

A context K in the standard sense is a term with some
subterm replaced by a hole []. We write K[M] for the
term obtained by substituting the hole in K with M (which
does not apply α-conversion and may capture free variables).
Then, the standard contextual equivalence

α1, . . . , αm, x1 : τ1, . . . , xn : τn ` M
std≡ M ′ : τ

for well-typed terms α, x : τ ` M : τ and α, x : τ ` M ′ : τ
can be defined as: K[M] ⇓ ⇐⇒ K[M ′] ⇓ for every context
K with ` K[M] : unit and ` K[M ′] : unit, where unit is
the nullary tuple type. (In fact, any closed type works in
place of unit.)

We will show that the standard contextual equivalence
above holds if and only if the closed values V = Λα. λx : τ .
M and V ′ = Λα. λx : τ . M ′ are bisimilar, i.e.,

∅ ` Λα1. . . . Λαm. λx1 : τ1. . . . λxn : τn. M

∼ Λα1. . . . Λαm. λx1 : τ1. . . . λxn : τn. M ′

: ∀α1. . . . ∀αm. τ1→ . . . → τn→ τ.

(If M and M ′ have no free term/type variables at all, it
suffices just to take V = Λα. M and V ′ = Λα. M ′ for any
type variable α.) The “only if” direction is obvious from
the definitions of contextual equivalences—both the stan-
dard one above and the generalized one in Section 2—and
from the completeness of bisimulation. To prove the “if”
direction, suppose ∅ ` V ∼ V ′ : ∀α. τ → τ . By the sound-
ness of bisimulation, we have ∅ ` V ≡ V ′ : ∀α. τ → τ .
Given any K with ` K[M] : unit and ` K[M ′] : unit,
take C = K[z[α1] . . . [αm]x1 . . . xn] for fresh z. Then, it suf-
fices to prove K[M] ⇓ ⇐⇒ [V/z]C ⇓ and K[M ′] ⇓ ⇐⇒
[V ′/z]C ⇓.

To this end, we prove the more general lemma below in
order for induction to work. The intuition is that a term M
and its β-expanded version (Λα. λx : τ . M)[α]x should be-
have equivalently under any context. Since the free type/term

Γ ` M ¹ M ′ : ρ {α} ⊆ dom(Γ) Γ ` x : τ

Γ ` M ¹ (Λα. λx : τ . M ′)[α]x : ρ
(B-Exp)

Γ ` x : τ

Γ ` x ¹ x : τ
(B-Var)

Γ, f : τ →σ, x : τ ` M ¹ M ′ : σ

Γ ` (fix f(x : τ) : σ = M) ¹ (fix f(x : τ) : σ = M ′) : τ →σ
(B-Fix)

Γ ` M ¹ M ′ : τ →σ Γ ` N ¹ N ′ : τ

Γ ` MN ¹ M ′N ′ : σ
(B-App)

Γ, α ` M ¹ M ′ : τ

Γ ` Λα. M ¹ Λα. M ′ : ∀α. τ
(B-TAbs)

Γ ` M ¹ M ′ : ∀α. σ FTV (τ) ⊆ Γ

Γ ` M [τ] ¹ M ′[τ] : [τ/α]σ
(B-TApp)

Γ ` M ¹ M ′ : [τ/α]σ FTV (τ) ⊆ Γ

Γ ` (pack τ, M as ∃α. σ) ¹ (pack τ, M ′ as ∃α. σ) : ∃α. σ
(B-Pack)

Γ ` M ¹ M ′ : ∃α. τ Γ, α, x : τ ` N ¹ N ′ : σ α 6∈ FTV (σ)

Γ ` (open M as α, x in N) ¹ (open M ′ as α, x in N ′) : σ
(B-Open)

Γ ` M1 ¹ M ′
1 : τ1 . . . Γ ` Mn ¹ M ′

n : τn

Γ ` 〈M1, . . . , Mn〉 ¹ 〈M ′
1, . . . , M

′
n〉 : τ1× . . . × τn

(B-Tuple)
Γ ` M ¹ M ′ : τ1× . . . × τi× . . . × τn

Γ ` #i(M) ¹ #i(M
′) : τi

(B-Proj)

Γ ` M ¹ M ′ : τi FTV (τ1) ⊆ Γ . . . FTV (τn) ⊆ Γ

Γ ` ini(M) ¹ ini(M
′) : τ1 + . . . + τi + . . . + τn

(B-Inj)

Γ ` M ¹ M ′ : τ1 + . . . + τn Γ, x1 : τ1 ` M1 ¹ M ′
1 : τ . . . Γ, xn : τn ` Mn ¹ M ′

n : τ

Γ ` (case M of in1(x1) ⇒ M1 [] . . . [] inn(xn) ⇒ Mn)
¹ (case M ′ of in1(x1) ⇒ M ′

1 [] . . . [] inn(xn) ⇒ M ′
n) : τ

(B-Case)

Γ ` M ¹ M ′ : [µα. τ/α]τ

Γ ` fold(M) ¹ fold(M ′) : µα. τ
(B-Fold)

Γ ` M ¹ M ′ : µα. τ

Γ ` unfold(M) ¹ unfold(M ′) : [µα. τ/α]τ
(B-Unfold)

Figure 2: β-Expansion

variables α and x are to be substituted by some types/values
during evaluation under a context, this “β-expansion” rela-
tion needs to be generalized to allow nesting. Thus, we
define:

Definition 6.1 (β-Expansion). Γ ` M ¹ M ′ : τ is
the smallest relation on pairs of λ-terms M and M ′ (anno-
tated with a type environment Γ and a type τ) satisfying all
the rules in Figure 2.

The main rule is (B-Exp). The other rules are just for pre-
serving the relation ¹ under any context.

Then, we can prove:

Lemma 6.2. For any

α1, . . . , αm, x1 : τ1, . . . , xn : τn ` M ¹ M ′ : τ,

for any closed σ1, . . . , σm, and for any (` V1 ¹ V ′
1 : [σ/α]τ1)

∧ · · · ∧ (` Vn ¹ V ′
n : [σ/α]τn), we have

[V /x][σ/α]M ⇓ ⇐⇒ [V
′
/x][σ/α]M ′ ⇓.

Furthermore, if [V /x][σ/α]M ⇓ W and [V
′
/x][σ/α]M ′ ⇓

W ′, then ` W ¹ W ′ : [σ/α]τ .

Proof. Straightforward induction on the derivation of
α, x : τ ` M ¹ M ′ : τ .

Theorem 6.3. For any α, x : τ ` M : τ and α, x : τ `
M ′ : τ , if ` Λα. λx : τ . M ∼ Λα. λx : τ . M ′ : ∀α. τ → τ , then

α, x : τ ` M
std≡ M ′ : τ .

Proof. By the soundness of bisimulation, we have [(Λα.
λx : τ . M)/z]C ⇓ ⇐⇒ [(Λα. λx : τ . M ′)/z]C for any well-
typed C. Thus, given K, take C = K[z[α]x] and we get
K[(Λα. λx : τ . M)[α]x] ⇓ ⇐⇒ K[(Λα. λx : τ . M ′)[α]x] ⇓.
Meanwhile, by the definition of ¹, we have ` K[M] ¹
K[(Λα. λx : τ . M)[α]x] : unit and ` K[M ′] ¹ K[(Λα. λx : τ .
M ′)[α]x] : unit. By the lemma above, we obtain K[M] ⇓
⇐⇒ K[(Λα. λx : τ . M)[α]x] ⇓ and K[M ′] ⇓ ⇐⇒ K[(Λα.
λx : τ . M ′)[α]x] ⇓. Hence K[M] ⇓ ⇐⇒ K[M ′] ⇓.

Example 6.4. We have x : int ` x +1
std≡ 1+ x : int.

That is, x +1 and 1+ x are contextually equivalent (in the
standard sense above) at type int provided that x has type
int. To show this, it suffices to prove ∅ ` λx : int. x +1 ∼
λx : int. 1+ x : int→ int, which is trivial.

Example 6.5. The packages

M = pack int, 〈y, λx : int. x〉 as τ

M ′ = pack int, 〈y +1, λx : int. x− 1〉 as τ

are contextually equivalent (again in the standard sense above)
at type

τ = ∃α. α× (α→ int)

provided that y has type int. This follows from the bisim-
ilarity of λy : int. M and λy : int. M ′, which was shown in
Section 4.3.

7. LIMITATIONS (OR: THE RETURN OF
HIGHER-ORDER FUNCTIONS)

Although the proof of contextual equivalence in Section 4.5
was strikingly simple, the trick used there does not apply
in general. For example, consider the following implemen-
tations of integer multisets with a higher-order function to
compute a weighed sum of all elements. (We assume stan-
dard definitions of lists and binary trees.)

IntSet = pack intList, Nil, add, weigh as ∃α. τ

IntSet
′ = pack intTree, Lf, add′, weigh′ as ∃α. τ

τ = α× (int→α→α)× ((int→ real)→α→ real)

add = λi : int. λs : intList. Cons(i, s)

add
′ = λi : int. fix f(s : intTree) : intTree =

case s of Lf⇒ Nd(i, Lf, Lf)

[] Nd(j, s1, s2) ⇒ if i < j then Nd(j, fs1, s2)

else Nd(j, s1, fs2)

weigh = λg : int→ real. fix f(s : intList) : real =

case s of Nil⇒ 0 [] Cons(j, s0) ⇒ gj + fs0

weigh
′ = λg : int→ real. fix f(s : intTree) : real =

case s of Lf⇒ 0 [] Nd(j, s1, s2) ⇒ gj + fs1 + fs2

Unlike the previous example, these implementations have
no syntactic similarity, which disables the simple proof. In-
stead, we have to put the whole packages into the bisimu-
lation along with their elements. Then, by Condition 2 of
bisimulation, we need at least to prove weigh V W ⇓ ⇐⇒
weigh′ V ′ W ′ ⇓ for a certain class of V , W , V ′, and W ′. In
particular, V and V ′ can be of the forms λz : int. [IntSet/y]D
and λz : int. [IntSet′/y]D for any D of appropriate type.
Thus, because of the function application gj in weigh and
weigh′, we must prove

[IntSet, j/y, z]D ⇓ ⇐⇒ [IntSet′, j/y, z]D ⇓
for every D (and j). We are stuck, however, since this sub-
sumes the definition of IntSet ≡ IntSet′ and is harder to
prove!

Resolving this problem requires weakening Condition 2.
By a close examination of the soundness proof [35, Ap-
pendix], we find the following candidate.

2′. Take any

(fix f(x : π) : ρ = M, fix f(x : π′) : ρ′ = M ′, τ →σ) ∈ R
and any (V, V ′, τ) ∈ (∆,R)◦. Assume that, for any

N < (fix f(x : π) : ρ = M)V

N ′
< (fix f(x : π′) : ρ′ = M ′)V ′

with (N, N ′, σ) ∈ (∆0,R0)
◦ and (∆0,R0) ∈ X, we

have N ⇓ ⇐⇒ N ′ ⇓. Assume furthermore that, if
N ⇓ U and N ′ ⇓ U ′, then (U, U ′, σ) ∈ (∆1,R1)

◦ for
some ∆1 ⊇ ∆0 and R1 ⊇ R0 with (∆1,R1) ∈ X.
Then, we have

(fix f(x : π) : ρ = M)V ⇓
⇐⇒ (fix f(x : π′) : ρ′ = M ′)V ′ ⇓.

Furthermore, if (fix f(x : π) : ρ = M)V ⇓ W and
(fix f(x : π′) : ρ′ = M ′)V ⇓ W ′, then (W, W ′, σ) ∈
(∆2,R2)

◦ for some ∆2 ⊇ ∆ andR2 ⊇ R with (∆2,R2)
∈ X.

Here, N1 < N2 means that, if N2 ⇓, then N1 ⇓ and the
former evaluation derivation tree is strictly taller than the
latter. (This is reminiscent of indexed models [6, 5], but
it is unclear how they extend to a relational setting with
existential types.)

This generalization seems quite powerful: for instance, it
allows us to conclude that gj in weigh and weigh′ gives the
same result when g is substituted by V or V ′. Unfortunately,
however, the condition above has X in a negative position
((∆1,R1) ∈ X) and breaks the property that the union
of two bisimulations is a bisimulation. Although it is still
possible to prove soundness (for an arbitrary bisimulation
X instead of ∼) and completeness (≡ is still a bisimulation
because Condition 2′ is weaker than Condition 2), the new
condition is rather technical and hard to understand. We
leave it for future work to find a more intuitive principle
behind Condition 2′ that addresses this issue.

8. RELATED WORK

Semantic logical relations.Originally, logical relations
were devised in denotational semantics for relating models of
λ-calculus. Although they are indeed useful for this purpose
(e.g., relating CPS semantics and direct-style semantics),
they are not as useful for proving contextual equivalence
or abstraction properties, for the following reasons. First,
denotational semantics tend to require more complex math-
ematics (such as CPOs and categories) than operational se-
mantics. Second, it is hard—though not impossible [20]—to
define a fully abstract model of polymorphic λ-calculus, i.e.,
a model that always preserves equivalence. Without full
abstraction, not all equivalent terms can be proved to be
equivalent.

Logical relations for polymorphic λ-calculus are also useful
for proving parametricity properties [36], e.g., that all func-
tions of type ∀α. α→α behave like the polymorphic identity
function (or diverge, if there is recursion in the language).
By contrast, our bisimulation is only useful for proving the
equivalence of two given λ-terms and cannot be employed
for predicting such properties based on only types.

Syntactic logical relations.Pitts [30] proposed syntactic
logical relations, which use only the term model of poly-
morphic λ-calculus to prove contextual equivalence. He in-
troduced the notion of >>-closure (application closure of
the two functions in a Galois connection between terms and
contexts) in order to treat recursive functions without using
denotational semantics. He proved that his syntactic logical
relations are complete with respect to contextual equiva-
lence in call-by-name polymorphic λ-calculus with recursive
functions and universal types (and lists).

Pitts [29] also proposed syntactic logical relations for a
variant of call-by-value polymorphic λ-calculus with recur-
sive functions, universal types, and existential types, where
type abstraction is restricted to values like Λα. V instead of
Λα. M . Although he showed (by a counter-example) that
these logical relations are incomplete in this language and
attributed the incompleteness to the presence of recursive
functions, we have shown that a similar counter-example
can be given without using recursive functions [personal
communication, June 2000]. However, both of the counter-
examples depend on the fact that type abstraction is re-

stricted to values. It remains unclear whether his syntactic
logical relations can be made complete in a setting without
this restriction.

Birkedel and Harper [9] and Crary and Harper [13] ex-
tended syntactic logical relations with recursive types by
requiring certain unwinding properties. This extension is
conjectured to be complete with respect to contextual equiv-
alence [personal communication, March 2004].

Compared to syntactic logical relations, our bisimulation
is even more syntactic and elementary, liberating its user
from the burden of calculating >>-closure or proving un-
winding properties even with arbitrary recursive types (and
functions).

Applicative bisimulations.Abramsky [4] proposed applica-
tive bisimulations for proving contextual equivalence of un-
typed λ-terms. Gordon and Rees [14, 17, 15, 16] adapted
applicative bisimulations to calculi with objects, subtyping,
universal polymorphism, and recursive types. As discussed
in Section 1, however, these results do not apply to type
abstraction using existential types. We solved this issue by
considering sets of relations as bisimulations.

As a byproduct, it has become much easier to prove the
soundness of our bisimulation: technically, this simplifica-
tion is due to the generalization in the condition of bisim-
ulation for functions (Condition 2 in Definition 3.1), where
our bisimulation allows different arguments V and V ′ while
applicative bisimulation requires them to be the same.

Bisimulations for polymorphicπ-calculi. Pierce and San-
giorgi [28] developed a bisimulation proof technique for poly-
morphic π-calculus, using a separate environment for repre-
senting contexts’ knowledge. In a sense, our bisimulation
unifies the environmental knowledge with the bisimulation
itself by generalizing the latter as a set of relations. Because
of the imperative nature of π-calculus, their bisimulation is
far from complete—in particular, aliasing of names is prob-
lematic.

Berger, Honda and Yoshida [7] defined two equivalence
proof methods for linear π-calculi, one based on the syntac-
tic logical relations of Pitts [29, 30] and the other based on
the bisimulations of Pierce and Sangiorgi [28]. Their main
goal is to give a generic account for various features such
as functions, state and concurrency by encoding them into
appropriate versions of linear π-calculi. They proved sound-
ness and completeness of their logical relations for one of
the linear π-calculi, which directly corresponds to polymor-
phic λ-calculus (without recursion). They also proved full
abstraction of the call-by-value and call-by-name encodings
of the polymorphic λ-calculus to this version of linear π-
calculus. However, for the other settings (e.g., with recursive
functions or types), full abstraction of encodings and com-
pleteness of their logical relations are unclear. Completness
of their bisimulations is not discussed either. In addition,
their developments are much heavier than ours for the pur-
pose of just proving the equivalence of typed λ-terms.

Bisimulations for cryptographic calculi.Various bisim-
ulations [2, 1, 10, 11] have been proposed for extensions of
π-calculus with cryptographic primitives [3, 1]. Their main
idea is similar to Pierce and Sangiorgi’s: using a separate
environment to represent attackers’ knowledge. In previous
work [34], we have applied our idea of using sets of relations

as bisimulations to an extension of λ-calculus with perfect
encryption (also known as dynamic sealing) and obtained
a sound and complete proof method for contextual equiva-
lence in this setting. Although this extension was untyped,
it is straightforward to combine the present work with the
previous one and obtain a bisimulation for typed λ-calculus
with perfect encryption. The fact that our idea applies to
such apparently different forms of information hiding as en-
cryption and type abstraction suggests that it is successful
in capturing the essence of “information hiding” in program-
ming languages and computation models.

9. CONCLUSION
We have presented the first sound, complete, and elementary
bisimulation proof method for λ-calculus with full universal,
existential, and recursive types.

Although full automation is impossible because equiva-
lence of λ-terms (with recursion) is undecidable, some me-
chanical support would be useful. The technique of “bisim-
ulation up to” [33] would also be useful to reduce the size
of a bisimulation in some cases, though our bisimulations
tend to be smaller than bisimulations in process calculi in
the first place, since ours are based on big-step evaluation
rather than small-step reduction.

Another direction is to extend the calculus with more com-
plex features such as state (cf. [31, 8]). For example, it
would be possible to treat state by passing around the state
throughout the evaluation of terms and their bisimulation.
More ambitiously, one could imagine generalizing this state-
passing approach to more general “monadic bisimulation”
by formalizing effects via monads [25].

Yet another possibility is to adopt our idea of “sets of rela-
tions as bisimulations” to other higher-order calculi with in-
formation hiding—such as higher-order π-calculus [32], where
restriction hides names and complicates equivalence—and
compare the outcome with context bisimulation.

Finally, as suggested in the previous section, the idea of
considering sets of relations as bisimulations may be useful
for other forms of information hiding such as secrecy typ-
ing [18]. It would be interesting to see whether such an
adaptation is indeed possible and, furthermore, to consider
if these variations can be generalized into a unified theory
of information hiding.

Acknowledgements
We would like to thank Karl Crary, Andy Gordon, Bob
Harper, and Andrew Pitts for information and discussions
on their work and its relationship to ours. Comments from
anonymous reviewers, the members of the PL Club at the
University of Pennsylvania, and Naoki Kobayashi helped us
to sharpen the presentation.

10. REFERENCES
[1] M. Abadi and C. Fournet. Mobile values, new names, and

secure communication. In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 104–115, 2001.

[2] M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic Journal of Computing,
5:267–303, 1998. Preliminary version appeared in 7th
European Symposium on Programming, Lecture Notes in

Computer Science, Springer-Verlag, vol. 1381, pp. 12–26,
1998.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation,
148(1):1–70, 1999. Preliminary version appeared in
Proceedings of the 4th ACM Conference on Computer and
Communications Security, pp. 36–47, 1997.

[4] S. Abramsky. The lazy lambda calculus. In D. A. Turner,
editor, Research Topics in Functional Programming, pages
65–117. Addison-Wesley, 1990.

[5] A. Ahmed, A. W. Appel, and R. Virga. An indexed model
of impredicative polymorphism and mutable references.
http://www.cs.princeton.edu/~amal/papers/impred.pdf,
2003.

[6] A. W. Appel and D. McAllester. An indexed model of
recursive types for foundational proof-carrying code. ACM
Transactions on Programming Languages and Systems,
23(5):657–683, 2001.

[7] M. Berger, K. Honda, and N. Yoshida. Genericity and the
pi-calculus. In Foundations of Software Science and
Computation Structures, volume 2620 of Lecture Notes in
Computer Science, pages 103–119. Springer-Verlag, 2003.

[8] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational
properties of Lily, a polymorphic linear lambda calculus
with recursion. In Higher Order Operational Techniques in
Semantics, volume 41 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, 2000.

[9] L. Birkedal and R. Harper. Relational interpretations of
recursive types in an operational setting. Information and
Computation, 155(1–2):3–63, 1999. Summary appeared in
Theoretical Aspects of Computer Software, Lecture Notes
in Computer Science, Springer-Verlag, vol. 1281,
pp. 458–490, 1997.

[10] M. Boreale, R. De Nicola, and R. Pugliese. Proof
techniques for cryptographic processes. SIAM Journal on
Computing, 31(3):947–986, 2002. Preliminary version
appeared in 14th Annual IEEE Symposium on Logic in
Computer Science, pp. 157–166, 1999.

[11] J. Borgström and U. Nestmann. On bisimulations for the
spi calculus. In 9th International Conference on Algebraic
Methodology and Software Technology, volume 2422 of
Lecture Notes in Computer Science, pages 287–303.
Springer-Verlag, 2002.

[12] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing
object encodings. Information and Computation,
155(1–2):108–133, 1999. Extended abstract appeared in
Theoretical Aspects of Computer Software,
Springer-Verlag, vol. 1281, pp. 415–338, 1997.

[13] K. Crary and R. Harper. Syntactic logical relations over
polymorphic and recursive types. Draft, 2000.

[14] A. D. Gordon. Bisimilarity as a theory of functional
programming. mini-course. http://research.microsoft.
com/~adg/Publications/BRICS-NS-95-3.dvi.gz, 1995.

[15] A. D. Gordon. Operational equivalences for untyped and
polymorphic object calculi. In Higher Order Operational
Techniques in Semantics, pages 9–54, 1995.

[16] A. D. Gordon and G. D. Rees. Bisimilarity for F<:. Draft,
1995.

[17] A. D. Gordon and G. D. Rees. Bisimilarity for a first-order
calculus of objects with subtyping. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 386–395, 1996.

[18] N. Heintze and J. G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 1998.

[19] D. J. Howe. Proving congruence of bisimulation in
functional programming languages. Information and
Computation, 124(2):103–112, 1996.

[20] D. J. Hughes. Games and definability for System F. In
Twelfth Annual IEEE Symposium on Logic in Computer
Science, pages 76–86, 1997.

[21] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag, 1980.

[22] R. Milner. Communication and Concurrency.
Springer-Verlag, 1995.

[23] R. Milner. Communicating and Mobile Systems: The
π-Calculus. Cambridge University Press, 1999.

[24] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[25] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, 1991.

[26] J. H. Morris, Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, 1973.

[27] J. H. Morris, Jr. Types are not sets. In Proceedings of the
1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 120–124,
1973.

[28] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in
the polymorphic pi-calculus. Journal of the ACM,
47(3):531–586, 2000. Extended abstract appeared in
Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
1997, pp. 531–584.

[29] A. M. Pitts. Existential types: Logical relations and
operational equivalence. In Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer
Science, pages 309–326. Springer-Verlag, 1998.

[30] A. M. Pitts. Parametric polymorphism and operational
equivalence. Mathematical Structures in Computer
Science, 10:321–359, 2000. Preliminary version appeared in
HOOTS II Second Workshop on Higher-Order Operational
Techniques in Semantics, Electronic Notes in Theoretical
Computer Science, vol. 10, 1998.

[31] A. M. Pitts and I. Stark. Operational reasoning for
functions with local state. In Higher Order Operational
Techniques in Semantics, pages 227–273. Cambridge
University Press, 1998.

[32] D. Sangiorgi. Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigm. PhD thesis,
University of Edinburgh, 1992.

[33] D. Sangiorgi and R. Milner. The problem of “weak
bisimulation up to”. In CONCUR ’92, Third International
Conference on Concurrency Theory, volume 630 of Lecture
Notes in Computer Science, pages 32–46. Springer-Verlag,
1992.

[34] E. Sumii and B. C. Pierce. A bisimulation for dynamic
sealing. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 161–172, 2004.

[35] E. Sumii and B. C. Pierce. A bisimulation for type
abstraction and recursion. Technical Report MS-CIS-04-27,
Department of Computer and Information Science,
University of Pennsylvania, 2004.
http://www.cis.upenn.edu/~sumii/pub/.

[36] P. Wadler. Theorems for free! In Proceedings of the Fourth
International Conference on Functional Programming
Languages and Computer Architecture, pages 347–359.
ACM, 1989.

	A Bisimulation for Type Abstraction and Recursion
	Recommended Citation

	A Bisimulation for Type Abstraction and Recursion
	Abstract
	Keywords
	Comments

	tmp.1117308357.pdf.MrAIW

